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This review focuses on exploring the intricate relationship between the catalyst particle size and shape on
a nanoscale level and how it affects the performance of reactions. Drawing from decades of research,
valuable insights have been gained. Intentionally shaping catalyst particles makes exposing a more
significant percentage of reactive facets possible, enabling the control of overactive sites. In this study, the
effectiveness of Coz0,4 nanoparticles (NPs) with nanometric size as a catalyst is examined, with a particular
emphasis on the coordination patterns between oxygen and cobalt atoms on the surface of these NPs.
Investigating the correlation between the structure and reactivity of the exposed NPs reveals that the form
of Coz04 with nanometric size can be modified to tune its catalytic capabilities finely. Morphology-
dependent nanocatalysis is often attributed to the advantageous exposure of reactive crystal facets
accumulating numerous active sites. However, experimental evidences highlight the importance of
considering the reorganization of NPs throughout their actions and the potential synergistic effects
between nearby reactive and less-active aspects. Despite the significant role played by the atomic structure
of Coz04 NPs with nanometric size, limited attention has been given to this aspect due to challenges in
high-resolution characterizations. To bridge this gap, this review strongly advocates for a comprehensive
understanding of the relationship between the structure and reactivity through real-time observation of
individual NPs during the operation. Proposed techniques enable the assessment of dimensions,
configuration, and interfacial arrangement, along with the monitoring of structural alterations caused by
fluctuating temperature and gaseous conditions. Integrating this live data with spectroscopic methods
commonly employed in studying inactive catalysts holds the potential for an enhanced understanding of
the fundamental active sites and the dynamic behavior exhibited in catalytic settings.
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1. Introduction

A catalyst's principal role is to facilitate the acceleration of
a given process without compromising the reaction's integrity.
Pt-group metals such as Ir, Ru, Pt, and Pd are acknowledged for
their exceptional catalytic activity.*> However, their high cost
and scarcity on Earth have motivated scholars to investigate
cost-effective alternatives with an abundance on the planet.>*
Transition metals including cobalt (Co), Fe, and Ni have
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surfaced as viable substitutes for catalysts based on platinum
group metals.>”® First-row transition metals such as Co exhibit
diverse properties, acting as electron inks or sources, existing in
various oxidation states, and participating in electron
exchange.’**> With its three unoccupied d orbitals, cobalt bonds
with surface-bound chemical species, enhancing catalytic
activity, especially structural flaws such as vacancies near the
crystal lattice surface.” Cobalt-based catalysts including trico-
balt tetraoxide (Co;0,) have gained significant attention in
Europe for their extensive use in energy and environmental
industries. The catalytic properties of Co, attributed to its partly
filled d orbital (3d”), allow for facile composite creation by
combining it with other elements or supports. Co and Co-based
nanostructures have been investigated to enhance the surface
area of catalysts, therefore exposing a more significant number
of active sites and allowing the selective exposure of the most
active catalytic centers. Co's ability to transition between the
Co®" and Co*" oxidation states based on redox conditions
makes it an ideal reagent complex builder.**
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Cobalt's dual oxidation state takes advantage of surplus
electrons during a reaction, demonstrating its adaptability. The
spinel crystal structure of Co;0, contributes to its multifunc-
tional semiconductor properties, and Co3;0, nanoparticles
(NPs) exhibit direct optical band gaps, making them suitable for
visible light photocatalysis.'*** Co;0,'s varied spin states, such
as high, low, and intermediate spin, make it intriguing from
a fundamental and spintronic perspective.'® Cobalt's versatility
extends to its environmental impact, as demonstrated by
Co30,'s ability to oxidize various compounds, including carbon
monoxide (CO), volatile organic compounds, sulfur dioxide
(S0,), and hydrocarbons. Co;0, is employed in processes such
as three-way catalytic conversion, phenol oxidation, diesel soot
oxidation, and clean energy production, such as hydrogen
through steam reforming methanol and ethanol."”** Addition-
ally, Coz0, serves as a commercial catalyst in the oxidation,
hydrogenation, and hydrogenolysis of esters.”

This review examines recent advancements in the shape
engineering of Co;O, with nanometric size. It focuses on their
catalytic performance, which is influenced by the coordination
patterns of oxygen and cobalt atoms on their surface. The
analysis encompasses progress in this field, exploring the
structure-reactivity relationship concerning exposed NPs. The
review concludes with a summary and a perspective on future
developments, aiming to inform readers about the potential
prospects involving Co;0,4-based catalysts.

2. Preparation strategy of the
morphological Coz04

Much effort has been dedicated to preparing Coz0, with well-
controlled shapes, sizes, and crystal structures. CozO, has
been engineered into zero-dimensional (0D) NPs,>* one-
dimensional (1D) structures such as nanorods (NRs),** nano-
wires,*»** two-dimensional (2D) nanodiscs, or nanosheets,?*>°
three-dimensional (3D) nanocubes (NCs),***' and even hierar-
chical nanoflowers or more complex structures.**>** Some of the
more well-liked methods to form these nanostructures are
coprecipitation, ultrasonic spray pyrolysis, thermal decompo-
sition, microwave-assisted, hydrothermal, and solvothermal
methods are examples of physical and chemical processes that
have been used for the preparation of Co;O, with nanometric
size.***° NPs enclose outstanding features, such as a simple and
economical synthesis method, high surface area, good stability,
and uncomplicated recovery. These properties put together
more approval than other synthesis strategies of the prepared
catalysts. Researchers have tried to prepare CozO, with nano-
metric size by different shapes using different methods to
obtain a cost-effective, simple procedure, shorter time through
an effective manner, and rectify the purity of the synthesized
prepared sample. These processes include.

2.1. Coprecipitation

The coprecipitation method is a simple, efficient, and
economical method for the mass production of ultrafine nano-
powders. Homogeneity, purity, and reactivity of the prepared
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oxide are the other advantages of this method. This method was
used to prepare Co;0, with nanometric size.*” First, Co(NO3),-
-6H,0 was dissolved in deionized water. Secondly, ammonium
oxalate was added to the solution with continuous stirring. The
precipitate was then washed with deionized water and dried at
room temperature. Finally, it was calcined at 400-500 °C for 3 h.
The average size of the obtained NPs was from 40 to 350 nm,
and the Co;O4 NPs have an average diameter of 100 nm.

2.2. Utrasonic spray pyrolysis

Ultrasonic spray pyrolysis is an efficient, controlled, and versa-
tile synthesis method. It is frequently used to prepare transition
metal oxides, particularly Co;0,4,* through high purity and
narrow size distribution.

Three different precursor solutions were prepared by dis-
solving cobalt acetate, cobalt chloride, or cobalt nitrate in
distilled water with a concentration of cobalt salt as
0.5 mol L "% The starting solution was aerosolized using an
ultrasonic nebulizer (Omron, model NB-150U) with a frequency
of 1.75 MHz. The spray pyrolysis temperature was kept at 750 °©
C. The obtained powders were collected at the reactor exit. The
prepared Co;0, samples from cobalt acetate, cobalt chloride,
and cobalt nitrate are denoted as A-Co;0,, C-C03;0,4, and N-
Co030,. According to the X-ray diffraction (XRD) data of A-Co30,,
C-Co030,4, and N-Coz;0, samples, all the prepared samples
adopted a spinel-type cubic structure. The -characteristic
diffraction peaks are sharp, and no impurities or a second
phase were detected, affirming that high-purity Co;0, was ob-
tained. Scanning electron microscopy (SEM) was used to
examine the shapes of the A-Co3;0,4, C-C03;0,, and N-Co03;0,
samples. For the A-Coz;0, powders, the dimple and wrinkle
surface can be observed. C-Co3;0, sample has a porous spher-
ical morphology, and microspheres are developed from various
closely packed primary particles; moreover, abundant voids are
left among adjacent particles. The N-CozO, sample has
a durian-like shape with a 0.5-3 um size distribution, suggest-
ing a hollow inner structure.

2.3. Thermal decomposition

The thermal decomposition of metal oxides performed in high
boiling point organic solvents and the existence of surfactants
are highly relevant. This process is mainly recognized for
preparing excellent-quality NPs with small sizes, high crystal-
linity, and narrow particle size distributions, although the
resulting NPs are very stable in organic solvents.**~** Nonethe-
less, this approach has some associated drawbacks, e.g., it
requires preparation at high reaction temperatures, an inert
atmosphere, and long processing times, resulting in increased
energy and time consumption.

For example, cobalt oxalate was used as a precursor for
synthesizing CozO4NRs by thermal decomposition.’” 0.6 g of
cobalt oxalate and 5 mL oleylamine (as a surfactant) were placed
in a 50 mL two-neck distillation flask and heated up to 140 °C for
1 h. The resulting solution was added to 5 g of triphenylphos-
phine (as a surfactant) at 240 °C. The black solution was main-
tained under stirring at 240 °C for 45 min and then cooled to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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room temperature. The final sample was washed with ethanol
several times to remove the excessive surfactant. Transmission
electron microscopy (TEM) was used to verify the size and shape
of the prepared samples. The TEM images of Co;O,NRs
demonstrated that the materials had rod-like shapes. The length
of NRs was 400-550 nm, and their diameters were about 20 nm.

2.4. Microwave-assisted methods

Microwave-assisted chemistry is becoming essential in every
area of synthetic chemistry since it can boost some competitive
advantages over other preparation methods. It could reduce the
processing times and enhance the crystallization level of the
particles. These advantages of microwave-hydrothermal
methods over conventional hydrothermal methods arise from
the direct interaction of the microwaves with the ions or
molecules in the solution and with the solid phases dispersed in
the liquid medium. In effect, it is essential to underline that the
efficiency in the conversion capacity of microwave energy into
thermal energy is governed by the physics variables: loss
tangent, relaxation time, and penetration depth.*® Non-aqueous
solvents (glycerol, ethylene glycol (EG), propylene glycol) have
been frequently used*”** to avoid or minimize the agglomera-
tion process between the particles.

This method produces high yields, simple to operate, and
efficient in terms of being environmentally friendly and energy-
consuming. Also, it has been extensively applied to prepare inor-
ganic nanostructured materials***® with applications, e.g., elec-
trodes,” humidity sensors,*® or catalytic devices.” The method's
versatility for synthesizing NPs has been especially reported.” The
microwave-assisted hydrothermal route has been developed to
prepare Co;0, with NRs' shape.* The method involved two steps:
first, NRs of cobalt hydroxide carbonate were prepared by mixing
50 mL of 0.6 M Co(NO;),-6H,0 and 2.4 g of CO(NH,), under
500 W microwave irradiated for 3 min. Subsequently, the cobalt
hydroxide carbonate NRs were calcined under air at 400 °C for 3 h
to fabricate Co;O,NRs. After the thermal decomposition of cobalt
hydroxide carbonate precursor under 400 °C for three hours,
a single phase of well-crystallized Co;0, with the cubic structure
was obtained, and no peaks of the other phase were detected,
indicating that the sample was of high purity. The as-prepared
sample was bamboo-like NRs with a diameter varying from 30 to
60 nm and a length of 100 to 1000 nm.

2.5. Hydrothermal and solvothermal methods

The hydrothermal method is one of the best-used processes for
preparing nanomaterials. It is essentially a solution reaction-
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based approach. To control the shape of the prepared mate-
rials, either low-pressure or high-pressure conditions can be
used depending on the vapor pressure of the main composition
in the reaction. It has numerous advantages over the other
conventional methods such as energy saving, simplicity, cost-
effectiveness, acceleration interaction between solid and
species, better nucleation control, higher dispersion, pollution-
free (as the reaction is done in a closed system), higher rate of
the reaction, and lower temperature of operation in the pres-
ence of a suitable solvent. Also, it provides highly crystalline
particles with better control over their size and shape.

The solvothermal process is similar in its technology to the
hydrothermal one, as it is carried out in autoclaves at high
temperatures and pressure, through just one difference: instead
of water, the synthesis is carried out in organic solvents. Co30,
nanostructures with different morphologies (NCs, nanowires,
nanobundles, nanoplates (NLs), and nanoflowers) have been
prepared,**** and the experimental details of the preparation of
Co30, nanostructures with different shapes are summarized in
Table 1.

3. Tuning the morphology of Coz0,4
for the catalytic reaction

Cobalt oxide is used mainly as a catalyst. Co;0, was used as
a model in oxidizing CO.*>* An initial investigation revealed
that Coz0, might facilitate the oxidation of CO at temperatures
as low as —54 °C. The activity was significantly decreased,
however, when the reaction gas included trace amounts of
moisture (3-10 ppm), which obscured the active Co®" sites.®>®”
Cobalt oxide's activity and durability in the CO oxidation
process were increased by changing its form from spherical NPs
to NRs, demonstrating a solid morphology-dependent impact.**
NR-shaped cobalt hydroxycarbonate was generated by precipi-
tating cobalt acetate with sodium carbonate in EG. As seen in
Fig. 1a-c, further calcination at 450 °C in air converted this
precursor into rod-shaped Co;O, NR measuring 200-300 nm in
length and 10-20 nm in diameter. The CO oxidation method
using spherical NPs yielded an initial CO conversion of 30% at
—77 °C. However, as the time-on-stream increased, this
conversion decreased to around 10% (Fig. 1h). More active and
stable than CozO, NP catalysts, NR catalysts demonstrated
100% CO conversion in the first 6 h and maintained an 80% CO
conversion for ~12 h after the reaction.

In contrast to the spherical NPs, Co;0, NR demonstrated an
approximately one-order-of-magnitude increase in the rate of
CO oxidation. At —77 °C, the Co;0,4 NR reaction rate was 3.91 X

Table 1 Experimental parameters of the preparation of different shapes of CozO4 nanostructures

Reaction time (h)

Structure-directing agents

Shape Cobalt salt (mM) Temperature (°C)

Nanocubes (NCs) 2 180 12
Nanowires 2 150 5
Nanobundles 2 120 12
Nanoplates (NLs) 2 150 15
Nanoflowers 2 180 12

© 2024 The Author(s). Published by the Royal Society of Chemistry

15 mL of ammonia (6%)

30 mL ethanol (99.9%) and 3 mmol of urea

2 mmol urea

3 mL NaOH solution (3.25 mM) with 2 mL ammonia (6%)
30 mL ethanol and 15 mL ammonia (6%)
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Fig. 1 Transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images of cobalt-based
nanostructures: (a, and b) cobalt hydroxide carbonate; (c—f) CosO4 nanorods (NRs), (c) low-magnification bright-field view, and (d—f) high-
resolution views at {110}, {1-10}, and {100}; (g) NR morphological illustration. Catalytic performance of CozO4: (h) CO conversion efficiency over
time for Cos04 nanoparticles (NPs) and NRs in a continuous-flow reactor at —77 °C; (i) reaction rate (rco) vs. CO or O, concentrations for CozO4
NRs; (j) Arrhenius plots (based on ref. 64, Copyright 2009, Nature Publishing Group).

107° molco g ' s'. Conversely, the value of the NPs was just
4.66 x 1077 molgo g~ ' s7*. The high-resolution transmission
electron microscope (HRTEM) analysis revealed that the Coz;0,
NPs were enclosed by a configuration consisting of eight {111}

and six {001} planes. Conversely, the Co;0, NR preferred to
reveal the {110} planes, constituting an estimated 40% of their
overall surface area (Fig. 1g). It was found that Co>" species
functioned as active sites for CO oxidation on the {110} plane.

—O— Coy04 nanosheets
—©— Co,0, nancbelts
=l Co,0, nanocubes

250 300 350 400
Temperature/ °C

Fig. 2 Scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) analysis with structural models of
Co304 nanostructures: (a and b) CozO4NS; (c and d) CozO4NB; (e and f) CozO4NC. (g) Methane conversion efficiency vs. temperature for CozO4
at a GHSV of 40 000 h™?* (based on ref. 30, Copyright 2008, American Chemical Society).
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The performance of Co;0, nanobelts (NBs) and NCs in CO
oxidation has been investigated.®® The reaction rate of Coz;0,
NC, which mostly exposed the ~{001} facets, was 0.62 pmol g "
s~ ', as opposed to the 0.85 pmol g * s~ * seen on NBs termi-
nated by the {110} plane. The specific conversion rate indicates

100 nm
—_—

L hm
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that at 56 °C, Co304 NB exhibits 1.37 times the activity of CO30,
NCs, demonstrating that the Co;0, NB are significantly more
active than Co;04 NC. As shown by these studies, the activation
of the surface layer lattice oxygen on the {110} planes is more
pronounced in the presence of Co*" species compared to the
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Fig. 3 Morphological and catalytic characteristics of CozO4 nanostructures: scanning electron microscopy (SEM) and high-resolution trans-

mission electron microscope (HRTEM) images of (a—d) CozO4NR {110}, (e—h) CozO4NC {100}, and

i—l) Octahedra {111}; (m) phenol oxidation

reaction rates using peroxydisulfate and CosO,4 at pH 11; (n) comparison of rate constants and Brunauer—Emmett—Teller (BET)-normalized rate
constants for different CosO4 facets (adapted from ref. 16, © 2020 Elsevier Ltd).
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Fig. 4 Morphological analysis of 3D Co3s04: (A) scanning electron microscopy (SEM) images of (a and b) CozO4NC, (c and d) CozO4nanoplates
(NLs), (e and f) CosO4NN, and (g and h) CozO4NF. (B) Transmission electron microscope (TEM) images with electron diffraction patterns of (a—c)
Co304NC, (d-f) CozO4NLs, (g—i) CozO4NN, and (j—1) CozO4NF. (C) Comparative analysis of CozO4 catalysts in oxone activation for 5-sulfo-
salicylic acid degradation of (a) CozO4NC, (b) CosO4NLs, (c) CozO4NN, and (d) CozO4NF (adapted from ref. 71, © 2020 Elsevier BV).
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{001} planes. Furthermore, it was shown that Co;0, nanowires performance resulted from the increased surface area and the

(NWs) enclosed in {111} planes and measuring around 3 nm in  profusion of Co®* cations on the surfaces.

diameter had a notably increased rate of CO oxidation at 248 °C, A catalytic study for CO oxidation® indicates that Co;0, NR

amounting to 161.75 pmol CO g ' s .5 The enhanced exposed to {111} planes exhibited enhanced activity at an acti-
vation energy of 40 kJ mol !, whereas Co;0,NLs exposed to the

Core-shell heterojunction

Fig. 5 Structural and compositional analysis of CozO4 and CosS4 nanostructures: (A) FE-scanning electron microscopy (FE-SEM) image of
Coz04NO; (B) Co3S,@C0:04NO; (C) CoszS4 nanoneedles. (D) Transmission electron microscope (TEM) and high-resolution transmission
electron microscope (HRTEM) images of Co3S4@C030,. (E) Selected area electron diffraction pattern of CozS;@Co030,4. (F) EDX elemental
mapping of Co3sS4@C030,. (G) Schematic of heterojunction-assisted CozS4@Coz04 for oxygen reduction reaction (ORR) and CO, reduction
reaction (CRR) (adapted from ref. 72, © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
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Fig. 6 Co0304 catalysts synthesized via various methods and their photocatalytic performance: (a) SEM images of coatings prepared by PLD, (b)
particle size distribution histogram for PLD coatings, (c) time-dependent photocatalytic degradation of MB using CosO4 NPs assembled coating
via PLD and cobalt nitrate and (d—g) SEM images respectively of coatings prepared by (d) electroless, (e) electron beam, (f) sol—gel depositions,
and powder form; (h) comparative photocatalytic efficiency of powder CozO,4 and coatings by different methods (adapted from ref. 73 and 74 ©
2012 Elsevier BV).
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same planes had superior activity at a reduced activation energy
of 21 k] mol . Significant morphology-dependent effects on CO
oxidation have been observed, contradicting prior hypotheses
to some degree (maybe due to the porous structures amid cracks
and interspaces in the Co;04 nanostructures). The formation of
Co30,4 NS, Co30,4 NB, and Co3;04 NC by hydrothermal synthesis
of a cobalt hydroxide precursor followed by direct thermal
breakdown was investigated in kinetic experiments for methane
(CH,) combustion (Fig. 2a-f).** The specific rates (rcp4) for
€030, NC (343 °C), Co;04 NB (319 °C), and Co;0, NS (313 °C)
were 1.25, 2.28, and 2.72 pumol g~ ', respectively, as shown in
Fig. 2g. Additionally, the Ts,, representing the temperature at
which half of the methane conversion occurred, exhibited
a decreasing trend in the same sequence. The structural study
indicated that the most prevalent planes on CozO,4 NS, Co30,
NB, and Coz;0, NC were {112}, {110}, and {001}, respectively.
Beyond these crystal planes, the methane combustion process
persisted in the following order: {112} > {110} )) {001}. It can be
deduced that manipulating the structure of nanostructured
cobalt oxides leads to a substantial display of catalytically active
sites. This is supported by the enhanced CH, combustion
activity observed in Co;0, as a nanosheet, which exposes the
more reactive {112} planes. The catalytic activity of Co;0, sup-
ported on stainless steel wire mesh, produced by the ammonia
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evaporation process, was investigated with the preferred
oxidation (PROX) of CO.*® The 500 nm-diameter mesoporous
Co03;0, nanowires' diameter is 3.4 nm, and they have a Bru-
nauer-Emmett-Teller (BET) surface area of 71 m* g *. This
structured catalytic system is very stable over the whole
temperature range of 100-175 °C due to its low-pressure drop
and high heat exchange rate; furthermore, its exceptional
catalytic activity is twice that of the highest-performing Co;0,
catalyst previously documented.

Although PROX was believed to have an active Co®" site, its
mechanism may have been distinct from the low-temperature
oxidation of the CO reaction. Researchers® stated that the
turnover frequency of CozO, NC, composed of six 100-facet
facets, was 3.5 to 4 times more than that of Co;0, NS, Co;0, NB,
and Co;0, NP. Besides reducing Co** in hydrogen-rich envi-
ronments, spectroscopic investigations revealed that Co;0,
NC's bulk and surface Co®" sites were only modestly stabilized.
For selective CO oxidation, the optimum pair Co**/Co>" was
used. By using a sequence of Co;0, catalysts, including exposed
{111}, {110}, and {100} planes, it was verified that Co®*" func-
tioned as the active site. As shown from the linear relationship
between the number of Co** surface areas and the quantity of
CO, produced,” the 100 facets positively impacted the PROX.
Analyses of different Co;0, attributes indicate that the phase

Fig.7 Microscopic analysis of 5% Pd-doped CozO4NS: (a) scanning electron microscopy (SEM), (b) transmission electron microscope (TEM), and
(c) high-resolution transmission electron microscope (HRTEM) images highlighting of PdO {002} and 0.466 nm of CozO,4 {111} (reproduced with
permission from ref. 75, Copyright 2011, WILEY-VCH Verlag Gmbh& Co). Detailed TEM and scanning transmission electron microscopy (STEM)
analysis of CozO4NR catalysts: (d) TEM, (e) HRTEM, and (f) STEM image of Pt atoms singularly dispersed on CozO4NR (reproduced with

Permission from ref. 77, Copyright; American Chemical Society).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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and surface characteristics, including shape, surface area, and
facets, significantly affect the catalytic activity. As seen in
Fig. 3a-1,'® the synthesis of Co;0,, including a variety of Co;0,
NR {110}, Coz0, NC {100}, and nano-octahedron {111} (NO)
facets has been completed. The catalytic reactivity of Co3;0, NR,
Co30,4 NC, and Co30, NO was the highest for phenol oxidation
by the persulfate (PS) process. Fig. 3m and n demonstrated that
the Co;0, NR exhibited the lowest adsorption energy estimated
by the density functional theory (DFT). This confirms that PS is
more easily activated via a non-radical pathway on the Coz;0,
{110} plane.*®

To degrade 5-sulfosalicylic acid, four distinct 3D Co30,
catalysts were fabricated, each with a unique morphology
(Fig. 4): Co;0,4 NC {111}, Co;0, NLs {110}, Co;0, NNs (nano-
needles, {110}), and Co;O,NFs (nanoflowers, {112}).”* Primarily,
Co3;0, NF ({112} facets) is the most beneficial 3D Co;0, catalyst
for the oxidation activation to degrade 5-sulfosalicylic acid™ due
to its plentiful Co>" and more reactive surface, in addition to its
most excellent surface area (121.1 m”> g~'). The core-shell
contrast ratio of the as-prepared Co3S,;@C03;0, core-shell
octahedron catalyst via hydrothermal and post-surface lattice
anion exchange is comparatively less than that of the other
core-shell structures.” This is because the concentrations of
Co3S, and Co;z0, are close. The hexagonal shape of the selected
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area electron diffraction pattern, as seen in Fig. 5E, corresponds
to both the {111} facet exposure and the close-packed hexagonal
pattern observed in the inset of Fig. 5D in HRTEM. The lattice
spacing of the {220} pattern is 0.33 nm. As seen in Fig. 5G,
electrochemical CO, reduction reaction (CRR) and oxygen
reduction reaction (ORR) were investigated using a core-shell
configuration of Co;0, NO coated with a CozS, surface. A
distinctive electronic configuration is bestowed by the hetero-
junction separating the p-type Co;0, core and the n-type Co;S,
shell, enabling both catalytic processes.

To solve the recovery issue and make a reusable, eco-friendly
“green” catalyst, the optimum catalyst is Co;0, with nanometric
size attached to a particular substrate with solid adhesion.
Chemical (sol-gel), physical (pulsed laser deposition, or PLD),
and electrochemical (electroless) methods have been used to
create coatings that are reconstructed with Co;0, with nano-
metric size. Fig. 6a and b shows that the Co;04 NPs generated
using the PLD approach without post-annealing treatment have
a mixed amorphous-nanocrystalline phase, a tiny average size
of 18 nm, a narrow size distribution of ¢ = 3 nm, a perfectly
spherical form, and allow a degree of accumulation.””*

In a methylene blue (MB) solution, the activity of a homoge-
neous catalyst generating Co>" ions was compared to that of
a thin coating catalyst constructed with heterogeneous Co3;0,

Fig. 8 Transmission electron microscope (TEM) images of CozO4NR (a), CozO4NH (d), and CosO4NC (g). High-resolution transmission electron
microscope (HRTEM) images of Au/CosO4NR (b, and c), Au/CozO4NH (e, and f), and Au/CosO4NC (h, and i). Source: reprinted with permission

from ref. 78, ©2011 Elsevier BV.
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with nanometric size. Complete mineralization of MB dye was
achieved in 240 min, indicating a far greater degradation rate
than the 40% removed by Co>" ions (Fig. 6¢). In the same study,
researchers”™ found that coatings made of assembled Coz;0,
with nanometric size had a slightly lower catalytic activity but
still demonstrated good recycling capability. Fig. 6d—-g shows
that PLD-deposited Co;0, coatings have the superior photo-
degradation rate of MB dye when compared to Co;0, coatings
made using other processes (i.e., electro-beam deposition, sol-
gel, and electroless) that have almost equal particle-like
morphology (Fig. 6h).

4. Co304-supported metal
nanoparticles (NPs)
Co;0, has been considered an active support for heterogeneous

catalysis for a very long time and is distinguished by its solid
metal support interactions. As stated, Co3O, with nanometric

View Article Online

RSC Advances

size has an evident morphological influence on CH, combus-
tion in the following sequence: Co;0,4 NS, Co;0, NB, and Co;0,
NC.* Despite applying the same quantity of Pd NPs to these
materials, the Pd/Co;0,4 NS catalyst continued to produce the
most methane combustion. The PdO {111} and CozO, NS
formed a geometrically advantageous match, particularly on the
{112} facet (Fig. 7a-c), which enhanced the solid metal support
interactions and subsequently facilitated the activation of C-H
bonds.” The number of missing neighbors of a Co;0, unit cell
on a plane {112} is five for the NS shape. PdO must be sited in
the 5-fold center of the surface of Co;0, NS as a thin discrete
film through a matching geometry and strong coordination
rather than a top or bridge site.”

Due to its low activation barrier of 29.6 k] mol ™", single Pt
atoms attached to Co;O, demonstrate significant catalytic
activity in the water gas shift process at 200 °C (turnover
frequency = 0.58 moly, per sitep, per s). The significantly
decreased activation energy observed for these individual Pt
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Fig. 9 Scanning transmission electron microscopy (STEM) imaging and catalytic performance of Au-doped CozO4: (a—c) Au particles on CozO,4
{001} in Au/Co3z04NC; (d—f) Au particles on Coz04 {111} in Au/Cos04 nanoparticles (NPs); (g) catalytic efficiency of Au/CozO4NPs and Au/
Coz04NC in ethylene glycol (EG) oxidation. Reprinted with Permission from ref. 79, 2021 Royal Society of Chemistry. Performance analysis of
Co30,4 and Au/Coz04 in CO oxidation: (h) temperature-dependent catalytic activity for CO oxidation; (i) Arrhenius plots showing rate vs. 1/T for
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atoms may indicate that the interaction between the atoms and
the 110-faced Co;0,4 NR substantially customized the chemical
environment of the active sites (Fig. 7d-f).”

Using straightforward hydrothermal and solvothermal
techniques, anion adsorption was employed to deposit gold NPs
onto Co30, materials produced in various forms, including
rods, polyhedra, and cubes.” Au catalysts based on Co;0, were
characterized using TEM and HRTEM. The predicted
morphologies of the Co;0, supports are cube-shaped, rod-
shaped, and polyhedron (NH)-shaped (Fig. 8). Research into
the exposed planes of various morphological Co;0, materials
has led to the discovery that the morphology of the support
plays a crucial role in determining the catalytic activity. Co;0,
NR shows {110} planes most of the time on HRTEM, whereas
the {011} and {001} planes are the most prominent on Co;0, NH
and Coz0, NC structures, respectively. The {110} plane has the
most excellent oxygen vacancies, which are very important for
the oxidation of ethylene, in comparison to the {011} and {001}
planes. Consequently, the ethylene conversion rate of 93.7%
was achieved by Au/Co;0, NR, demonstrating their exceptional
catalytic activity. Ethanol conversion was 85.5% for the Au/
Co;0,4 NH catalyst. At 0 °C, the ethylene conversion on Au/Co;0,
NC was 26.8%, which was the lowest value recorded.

Our prior research” examined the effect of Co;0, crystalli-
zation on EG oxidation supports in the form of Coz;0, NCs and
NLs. As shown in Fig. 9a-c, Au NPs in the Au/Co;0, NCs
samples exhibited a quasi-truncated octahedron structure with
Au {111} and {100} faces and had an average size of 2.0 nm. As
shown by the interplanar distance of 0.29 nm, corresponding to
the {220} crystal plane of cubic Co;0, oxides, Au NPs are
anchored consistently on the Co;0, {001} facet. Furthermore,
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the inter-planar spacing of 0.46 nm corresponds to the lattice
fringes seen in Au/Co;0, NL catalysts and is caused by the
Co30,{111} facets of Co;0, NL oxides. The uniform loading of
Au particles onto the Co;0, {111} facet resulted in the formation
of a quasi-truncated octahedron encircled by Au {111} and {100}
facets, as seen in Fig. 9d-f. Under these conditions, the Co;0,
NC and Co30,4 NL constituents remained dormant during the
aerobic oxidation of EG. With the addition of Au NPs, the
catalytic activity of EG oxidation processes was substantially
enhanced. Therefore, when subjected to glycol oxidation facil-
itated by intrinsic defects and surface oxygen vacancies, Au/
Co0304 NL {111} exhibited much greater selectivity and catalytic
activity than its Au/Co;0, NC {001} counterpart (Fig. 9g). One
potential catalyst for the oxidation of EG using Au NPs is C030,
NL {111}, which facilitates the activation of O, via the oxygen
vacancies on its surface.

Furthermore, the catalysts Au/Co;0,4 P were evaluated in the
CO oxidation processes.* The catalytic activity was substantially
enhanced by adding Au NPs, as shown in Fig. 9h. This resulted
in a noteworthy CO conversion of 35% at 20 °C and complete at
80 °C. As depicted in Fig. 9i, the activation energy (E,) for CO
oxidation in Au/Co;0,4 P is 15.49 kJ mol . Therefore, oxygen
molecules follow the Langmuir-Hinshelwood mechanism,
which catalyzes CO oxidation at low temperatures (20-60 °C) via
Au/Co30, P {111}. In particular, rather than traversing the
surface lattice oxygen sites, CO should be adsorbed onto oxygen
vacancies at the surface and activated by Au NPs. The durability
of the Au/Co;0, P catalysts was also evaluated at temperatures
of 25 and 60 °C (Fig. 9j). Throughout the twelve-hours CO
oxidation process at 25 °C, the Au/Co;O, P catalyst activity
decreased from 2.92 to 1.87 Mol eactedco €au - S - A minimum
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activity of 5.26-5.39 Moleacteaco Zau S+ was recorded for 9 h
at 60 °C. This phenomenon might be primarily attributed to the
surface oxygen vacancies and inherent defects of Co;04 {111},
which activated O,. Similarly, the presence of Au’, Au®*, and Au*
species on the surface of Au NPs further enhanced the activa-
tion of CO.

5. Chemical nature of the oxide
particle morphology

Many people think that certain cobalt cations are abundant at
the active sites. CozO4 NR, rich in Co®" cations and having
mostly exposed {110} surfaces, is very active in low-temperature
CO oxidation.** Moreover, among CozO, NR, Co;0, NC, and
Co3;0, NP, Co;0, NS with mostly exposed {111} planes enriched
in Co*" cations are the most active.*® At low temperatures,
a Co30,4 SiO, nanocomposite devoid of ordered planes but
abundant in Co®>' proved an exceptionally active catalyst.®
However, these findings were mainly obtained via catalytic
research, and direct spectroscopic evidence of the active surface
oxidation state was absent.

Contrary to comparable nanostructures, there have been
consistent findings on the shape influence of Co;O, with
nanometric size in catalyzing oxidation processes (as shown
above). The many reaction routes can contribute, including
changing the reaction conditions (primarily the gas and
temperature). CO may be oxidized by the Langmuir-Hinshel-
wood method, which requires surface oxygen species, or the
Mars-van Krevelen mechanism, which utilizes lattice oxygen
species, according to spectroscopic observations®* and the
spectroscopically examined possible reaction pathways/
elementary steps of CO oxidation on Co;0, are configured in
Fig. 10, the former exhibited dominance at over 100 °C due to
oxygen vacancy formation and the Co’'/Co®" redox cycle.
Conversely, at lower temperatures, the latter demonstrated
dominance. One possible reaction mechanism is that CO
adsorbs onto Co®*’cations and then absorbs oxygen from the
surface lattice coordinated to three Co®* cations. The oxygen
vacancy is then filled with oxygen from the gas phase, according
to the Mars-van Krevelen mechanism.**

Spectroscopic evidence is lacking, although an interaction
between molecularly adsorbed CO and O-O peroxo species has
been postulated by analyzing the impact of pretreatment
conditions,* although no peroxo O-O species were found using
in situ Raman spectroscopy.®* According to in situ infrared
research, CO adsorbed on Co®" sites interacted with an oxygen
atom bound to a nearby Co®" cation, and the gas phase oxygen
was used to fill the oxygen vacancy.®® Isotopes are vital in the
redox Mars-van Krevelen process and are responsible for CO
oxidation.®*%

Theoretical investigations into the CO oxidation pathway on
Co3;0, have also shown differences.®**® For instance, a Mars—
van Krevelen process involving mostly exposed {110} planes in
Co30, has been proposed, as shown in Fig. 11.%®

Theoretically, the octahedrally coordinated Co>" site in
CoO” would be the most active site for the PROX of CO in the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(b) (c)

Fig. 11 Three adsorption configurations of CO on Co304(110): (a) on
02" (b) on O%'; (c) on Co. Bond lengths are in angstroms; bond angle
are in degrees. Co, green, O, blue, and C, red. Reprinted with
Permission from ref. 88, 2011 Royal Society of Chemistry.

hydrogen-rich stream. According to DFT calculations, the
generated carbonates should make the {001} facet of Co;0, less
reactive by blocking the surface sites on that facet but not on
CoO {001}, as shown in Fig. 12.

Surface and lattice oxygen species interact concurrently in
the reaction network, making methane oxidation on Co03;0,
catalysts more difficult. There were three distinct temperature/
conversion phases in the methane oxidation process, identi-
fied by the presence or absence of the adsorbed or lattice oxygen
and the catalyst's redox state.”* At temperatures between 300
and 450 °C, the dominating superficial Langmuir-Hinshelwood
structure produces a stoichiometric {100} surface on Coz0, NC

a) Surface Hydrogenation and Water Desorption C

H Co™.
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b) CO Oxidation on CoO{001) and Co,0,(001)
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Fig. 12 Potential energy diagrams for (a) the hydrogenation of CozO4
{001} and (b) the oxidation of CO to CO, on Coz04 {001} and CoO
{001}. For each transition state (hollow boxes), reaction barriers are
given in kJ mol™. Selected intermediates are shown as a side view
along [110], using the following color codes: black (C), blue (Co), red
(O), and white (H). Reprinted with Permission from ref. 90, 2019
American Chemical Society.
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with a regular size of around 40-60 nm and with the preferential
exposure {100}, as previously shown for CH, combustion on
these particles. At temperatures ranging from 450 to 650 °C,
where O, nearly occupies the oxygen vacancies generated by the
emission of CO, and H,0, the imperfect surface area is delin-
eated by the coexistence of the interfacial (Mars-van Krevelen)
and suprafacial (Langmuir-Hinshelwood) mechanisms.”>** At
temperatures over 650 °C and with a non-stoichiometric surface
area, the completion of oxygen vacancies is only partial,
resulting in a substantial reduction in catalyst activity and the
combustion of CH, via the Mars-van Krevelen technique.’*
Theoretical computations have led to the notion that the
C-H bond in CH, would be activated by the doubly coordinated
lattice oxygen (O,.) across the {110} surface. Therefore, the {110}
surface is expected to exhibit more activity than the {100}
surface, devoid of any O, sites.”* Assuming dissociation of CH,
on the Co-O pair; researchers® indicated that the reactivity of
methane combustion increased as follows: {001} <{011} <{112}.
Experimental observation of cubic Co;0, revealed the less active
{001} facet, while flower-shaped Cos;0, exhibited the active {111}
facet.” As compared to spherical NPs enclosed in the {001} and
{111} facets or Co304 NRs exposed to the {110} and {001} facets,
Co30, NLs encased in the {112} facet showed higher activity in
the CH, combustion process.”” The surface remodeling during
reaction circumstances may contribute to the contradicting
findings on the reactive facets. It has been shown by molecular
modeling of Co;0, NPs that the form may be maintained;
however, when exposed to oxidizing and reducing atmospheres,
the relative ratio of {111}/{100}/{110} facets changes dynami-
cally.®® Under conditions rich in hydrogen gas, the faceting
{110} plane was preferentially exposed. At the same time, the
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{111} surface remained untreated due to the development of
oxygen surface vacancies and their subsequent diffusion toward
the bulk. Nevertheless, the oxygen-rich conditions promoted
the {111} termination. Therefore, it was necessary to describe
the shape of the active catalysts. Recent breakthroughs in high-
resolution microscopic and spectroscopic methods have
opened the door to studying the functions of shaped-
synchronized NPs in terms of their dynamic performance.
Nitric oxide (NO) may be reduced with CO by reshaping Co30,
NRs with an exposed {110} surface into non-stoichiometric
CoO;_, NR (Fig. 13a and Db).” The structure-modified NRs
generate nitrogen gas by selectively reducing nitrogen oxides
(NO,) with CO at temperatures ranging from 250 to 520 °C.
Environmental transmission electron microscopy (ETEM) and
ambient pressure X-ray photoelectron spectroscopy showed that
the non-stoichiometric CoO;_, NRs had a rock-salt (RS) struc-
ture. The 100% selectivity was brought about by the active
phase, which included around 25% oxygen vacancies. Electron
transport microscopy measurements in environments rich in
hydrogen showed that CO; was reduced to CO, indicating the
formation of a boundary contact for particles larger than 15 nm
but not for smaller ones, showing that smaller NPs undergo
rapid reduction.'” ETEM identified a two-step phase transition
during the heating experiment, as shown in Fig. 13c and d. In
the low-temperature range of 200 to 280 °C, the wurtzite (WZ)
CoO was spontaneously oxidized to spinel (SP) Co;0, owing to
the residual oxygen in the TEM. Secondly, under low oxygen
partial pressure conditions, SP Co;0,4 was reduced to RS CoO at
temperatures reaching 280 °C."* These visual results show that
the as-prepared oxide NPs changed significantly under response
conditions.

[1-10]

@

Tetrahedron

Octahedron

Tetrahedron + Octahedron )

Fig. 13 Structural transformation of CozO4NR: (a) high-resolution transmission electron microscope (HRTEM) image; (b) schematic illustration
of Coz04 to CoO transformation under reaction conditions; (c) HRTEM image of CoO hexagonal pyramid; (d) illustration of the phase trans-
formation from metastable wurtzite (WZ) CoO to stable rock-salt (RS) CoO via the intermediate spinel (SP) CozO4. Reprinted with Permission
from ref. 90 and 101 Copyrights 2013 and 2019, American Chemical Society.
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6. Concluding remarks and
perspectives

Extensive exploration into the field of nanocatalysis utilizing
Co3;0, nanometrics has undeniably demonstrated that the size
and shape of the catalyst at the nanoscale level profoundly
impact its catalytic effectiveness. A growing body of evidence
suggests that the configuration of the nanometric Coz0, is
always critical in achieving optimal levels of selectivity, stability,
and catalytic activity. This technology's advancement has been
significant due to the incorporation of morphology-dependent
nanocatalysts, an innovative tool for finely adjusting catalyti-
cally active sites. Both theoretical and experimental investiga-
tions have been extensive into the morphology-dependent
nanocatalysis of nanometric Co;0,. Specifically, the arrange-
ment of surface Co**/Co®>* and O sites,'®>"** focusing on the
oxygen vacancy, has been linked to the catalytic properties of
reactive surface facets. However, there are conflicting reports
regarding the effectiveness of similar nanostructures in cata-
lyzing different processes or even the same reaction under
identical conditions. This suggests that the form-dependency of
nanometric Co;0,4, as documented, is highly susceptible to
variations in reaction parameters and established reaction
pathways.

The relationship between the catalytic activities of nano-
metric Co;0, and the selectively exposed facets induced by
shape has been demonstrated through experimental evidence.
However, it cannot be ruled out that adjacent facets may work
together synergistically. Initially designed nanostructures may
undergo structure, morphology, and chemistry changes under
actual reaction conditions. The catalytic properties observed in
the experiments are determined by the dynamic behavior of the
catalyst particles in response to temperature and the reactive
environment rather than their state when prepared or recently
used. In some instances, the activation of species in a multi-
molecule chemical reaction may occur through diffusion on
adjacent facets, resulting in a synergistic effect where the
species activated by the adsorbed reactant can adsorb and
stimulate a different type of reactant. In situ studies, physical
and chemical analyses, and dynamic characterization tech-
niques must be employed in operational environments to fully
understand functional nanostructures.

To gain a deeper understanding of the relationships within
nanostructured catalysts, further exploration is needed to
develop improved experimental and theoretical methods.'*>*
Variations in temperature and reactive gas fluctuations can
impact the well-defined form of Co;0, nanometric, leading to
changes in its electrical and geometric properties. This, in turn,
influences the proportion of active surfaces and the coordina-
tion environments of oxygen and cobalt atoms on the surface,
ultimately affecting the development of active sites. The lack of
published studies on the atomic structure of nanometric Co3;0,
can be attributed to the limited availability of high-resolution
spectroscopic and microscopic characterizations among
researchers worldwide. Also, studying active sites’ dynamic
performance under operational conditions would provide

© 2024 The Author(s). Published by the Royal Society of Chemistry
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valuable insights into the structure-reactivity relationship. By
employing techniques that allow for real-time assessment of
size, shape, interfacial structure, and gas-induced structural
changes at the active sites of individual nanoparticles,
combined with spectroscopic methods, we can significantly
enhance our understanding of the inherent active regions and
dynamic capabilities of nanostructured catalysts within cata-
Iytic environments.

Abbreviation

BET Brunauer-Emmett-Teller
CRR CO, reduction reaction
DFT Density functional theory
EG Ethylene glycol

MB Methylene blue

NBs Nanobelts

NCs Nanocubes

NH Polyhedron

NLs Nanoplates

NPs Nanoparticles

NRs Nanorods

ORR Oxygen reduction reaction
PLD Pulsed laser deposition

PS Persulfate

PROX Preferred oxidation

SEM Scanning electron microscopy
TEM Transmission electron microscopy
XRD X-ray diffraction
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