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RbPbPS,: a promising IR nonlinear optical material
achieved by lone-pair-cation-substitution-induced
structure transformationt
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When stereochemically-active-lone-pair (SCALP) cations are introduced into chalcogenide systems, it is
beneficial to produce a remarkable second-harmonic generation (SHG) response (de¢), but it also causes
a narrow band gap (Eg), which ultimately results in negative two-photon and free-carrier absorption.
Hence, how to obtain a wide E4 (>2.33 eV) while maintaining a strong des remains a significant challenge
in this domain. In this work, Rb is partially replaced by SCALP Pb in the known ternary centrosymmetric
(CS) RbzPS, (space group: Pnma). This results in a quaternary non-centrosymmetric (NCS) RbPbPS,
(space group: P2;2:2), which possesses distinct 2D [PbPS,]~ layers and Rb* occupies the interlayer
spaces as the counter cations. Notably, RbPbPS, exhibits a promising overall performance, including
strong derr (2.5 X AgGaS,), wide IR transmittance cutoff edge (up to 18.1 pm) along with the large Eq4 (2.75
eV), resulting in an improved laser-induced damage threshold (7.5 x AgGaS,). Theoretical calculations

Received 25th April 2024, further indicated that the favorable balance between strong de¢ and large E4 in RbPbPS, can be attributed
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to the synergies of the [PbS;] and [PS4] nonlinear optical (NLO)-active units. This study not only presents a
high-performance Pb-based IR-NLO candidate but also underscores the effectiveness of partial substi-
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Introduction

Nonlinear optical (NLO) materials have garnered unpre-
cedented attention in laser science and technology because of
their ability to facilitate frequency conversion in solid-state
laser devices." As widely recognized, an excellent NLO candi-
date should meet several crucial prerequisites: a sufficient
second-harmonic generation (SHG) intensity (deg), a large
energy gap (Eg), a wide optical transparent window, a moderate
birefringence (An), chemical stability, and availability for
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tution of SCALP cations in inducing a CS-to-NCS structural transformation.

obtaining large single crystals.” In the infrared (IR) region,
numerous vital fields, including optoelectronic instruments,
resource exploration, and remote laser communication, has
sparked widespread attention and interest. Despite the strong
desr exhibited by commercial IR-NLO crystals such as AgGaQ,
(Q =S, Se)* and ZnGeP,,* which make them suitable for appli-
cations in the IR region, they still suffer from limitations in
high-power laser systems due to their low laser-induced
damage thresholds (LIDT) or detrimental two-photon absorp-
tion, primarily attributed to their small E,. However, integrat-
ing these optical performances into a single crystal is extre-
mely challenging because they typically depend on competing
structural requirements, such as the trade-off between wide E,
and strong d.q> Therefore, it is of scientific and technological
significance to explore new IR-NLO crystals with outstanding
comprehensive performance to overcome these challenges.

In addition to the performance prerequisites mentioned
above, a prerequisite of an IR-NLO crystal is that it has a non-
centrosymmetric (NCS) structure.® The addition of stereoche-
mically-active-lone-pair (SCALP) cations, like As®*, Sb**, Bi*",
Sn**, and Pb**, to chalcogenide systems has attracted the most
attention among all the feasible approaches for creating
IR-NLO materials because the majority of these chalcogenides
exhibit exceptional IR-NLO performances.” Among these

This journal is © the Partner Organisations 2024
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cations, Pb®>" makes a significant contribution to the d.¢ but
adversely affects the optical E,.® As is known, narrow energy
gaps (Ey < 2.33 eV) are unable to mitigate some harmful two-
photon or free-carrier absorption under fundamental 1064 nm
laser sources.” Therefore, achieving a wide E, (>2.33 eV) while
maintaining a strong d.g remains a significant challenge in
Pb-based IR-NLO material design. On the other hand, partial
chemical substitution in view of known centrosymmetric (CS)
parent structures has shown to be a straightforward but incred-
ibly successful approach in recent years for the design and syn-
thesis of novel high-performance SCALP-based IR-NLO crys-
tals.’® Successful examples include NCS Ba,As,Se; (parent
structure: CS Ba,GaAsSes),"" NCS K,Ag;Sb,S, (parent structure:
CS K,Sb,S,),"> NCS ABiP,Se (A = K, Rb) (parent structure: CS
A4P,S6),™ NCS Sn,BryS, (parent structure: CS SnBr,),"
Sr,_.Pb,GeSe, (parent structure: NCS Sr,GeSe,),'® and NCS
Pb,SeBr, (parent structure: CS PbBr,)."”” Considering these
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factors, our focus lies in identifying suitable CS parent struc-
tures with wide E, and achieving CS-to-NCS structural trans-
formation by introducing SCALP Pb for partial chemical sub-
stitution. This approach aims to obtain NCS materials with
excellent, well-balanced IR-NLO performance.

The ternary chalcophosphate Rb;PS, has piqued our inter-
est due to its CS space group of Pmna and unique zero-dimen-
sional (0D) cluster structure.'® By incorporating distorted Pb-
based motifs, it is possible to disrupt symmetric centers,
leading to structural reconstruction and the formation of NCS
compounds. Furthermore, Rb;PS, boasts a sufficiently large E,
(>3.5 eV), which can help offset the potential decrease in E,
resulting from the introduction of SCALP Pb** cations into
new compounds. Following this approach, we have designed
and synthesized the quaternary Pb-based thiophosphate
RbPbPS,, featuring a two-dimensional (2D) layered structure
composed of [PbS,] polyhedra and [PS,] tetrahedra.
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Fig. 1 Experimental characterization results of PbPbPS,: (a) SEM image and corresponding elemental distribution maps; (b) experimental (black)
and simulated (red) powder XRD patterns; (c) UV-vis—NIR spectrum (inset: photograph of the title crystals); (d) optical transmittance spectrum; (e)

TG-DTA test curves.
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Remarkably, RbPbPS, demonstrates comprehensive IR-NLO
performance, including a strong ds (3.2 times that of
AgGas$,), one of the widest E, among Pb-based NCS chalco-
genides, high LIDT (7.5 times that of AgGaS,), a broad
transmittance range (up to 18.1 pm), and suitable An
(0.112@2050 nm). In this report, we provide detailed
insights into the CS-to-NCS structural transformation and
the related optical properties of RbPbPS,. Additionally,
theoretical calculations are employed to further elucidate its
linear optical and NLO performances.
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Results and discussion

There are reports of RbPbPS,’s crystal structure exhibiting two
distinct phases." However, we meticulously determined the
structure of the title compound to explore the intricate
relationship between its NCS crystal structure and NLO pro-
perties. Light yellow lamellar crystals of RbPbPS,, with sizes
reaching the millimeter level, were grown using a simple
boron-chalcogen method.>® This method differs from pre-
viously reported techniques, which often necessitate complex
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Fig. 2 Structure evolution from ternary CS RbzPS, to quaternary NCS RbPbPS,: view of the 2D layered structures of (a) RbsPS4 and (b) RbPbPS,

along the ab and bc plane, respectively; (c) a polyhedral 2D layer [PbPS,]~

composed of (d) 2D Pb-S layer and (e) discrete tetrahedral [PS4] motifs; (f

and g) spatial symmetry operation changing from CS Pmna (no. 62) to NCS P2,2,2, (no. 19).
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experimental procedures or involve the use of costly and hazar-
dous elemental Rb as a raw material. Elemental distribution
maps indicate that Rb, Pb, P, and S are uniformly distributed
throughout the crystals (Fig. 1a). Furthermore, EDX results
confirmed that the average molar ratios of the title compound
correspond to the formula determined by single-crystal XRD
analysis (Fig. S1f). Powder XRD testing validated the phase
purity of the title compound, as the experimental patterns
closely matched the simulated data obtained from single-
crystal XRD analyses (Fig. 1b). The UV-vis diffuse reflectance
spectrum of RbPbPS, is depicted in Fig. 1c, and absorption
data were derived using the Kubelka-Munk equation.*' With
an experimental optical E, of 2.75 eV, RbPbPS, exhibits the
second-highest recorded value among Pb-based IR-NLO
chalcogenides. Additionally, RbPbPS, demonstrates broad
optical transparency across the 0.38-18.1 pm range (Fig. 1d).
Thermogravimetric-differential thermal analysis (TG-DTA) was
employed to assess the thermal stability of RbPbPS,, revealing
that the compound remains stable below 700 K (Fig. 1e).

In the asymmetric unit, ternary Rb;PS, has two indepen-
dent Rb atoms (Wyckoff positions: 4c and 8d), one indepen-
dent P atom (Wyckoff position: 4c¢), and two independent S
atoms (Wyckoff positions: 4c and 8d). The P*>* cation is located
in the center of its common tetrahedron, with P-S bond
lengthes ranging from 2.043 to 2.055 A and the bond angles in
the range of 108.82-111.48°. Ternary Rb;PS, belongs to the
orthorhombic system [space group: Pnma (no. 62)] and the
crystal structure consists of counterbalanced Rb" cations situ-
ated in between discrete tetrahedral [PS,] basic building units
(BBUs) aligned parallel in opposing orientations (Fig. 2a).
Unfortunately, Rb;PS, lacks NLO activity due to its CS crystal
structure.

Quaternary RbPbPS, adopts the NCS orthorhombic space
group P2,2,2; (no. 19, Table S17), according to single-crystal
XRD investigation. The cell lattice possesses dimensions of a =
6.3981(2) A, b = 6.6888(2) A, ¢ = 17.2823(5) A, and V = 739.61(4)
A®. These crystal parameters are in good agreement with the
NCS phase that was previously published. The compound has
a 2D layered structure with discrete counterbalanced Rb"
cations inserted in the channels that are arranged in an
“ABABAB” mode perpendicular to the ab-plane (Fig. 2b and c).
With seven S atoms polyhedral coordinating each Pb atom in
the structure, the highly distorted [PbS,] BBUs with Pb-S bond
lengths of 2.916-3.281 A are formed. As shown in Fig. 2d, adja-
cent [PbS,] BBUs are joined by apex-sharing S atoms to gene-
rate a 2D Pb-S layer. While the P-S bonds in RbPbPS, range in
length from 2.031 to 2.069 A and in bond angles from 106.56
to 111.62°, each P atom is comparable to that of Rb;PS, and is
encircled by four S atoms, forming the deformed [PS,] tetra-
hedron (Table S27). Subsequently, apex-sharing between these
2D Pb-S layers (Fig. 2d) and distinct [PS,] BBUs (Fig. 2e) pro-
gressively linked them, resulting in the formation of a 2D
[PbPS,]” anionic layer (Fig. 2c).

Fig. 2 shows the CS-to-NCS structural evolution via partial
SCALP cation substitution from ternary CS Rb;PS, to quatern-
ary NCS RbPbPS,. From a structural perspective, the following

This journal is © the Partner Organisations 2024
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noteworthy modifications have been made following the
partial replacement of Rb by SCALP Pb. First off, the initial
highly symmetric structure is broken by the addition of SCALP
[PbS,] BBUs and the reassembly of discrete [PS,] BBUs, which
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crystal orbital Hamilton population (COHP) curves for the Pb—S bond
length in RbPbPS, (the inset figure is the coordination geometry of Pb
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convert the OD cluster structure into a 2D layered structure.
Fig. 2f and g show the detailed symmetric operation modifi-
cations that occur after the substitution of SCALP Pb>" cations,
resulting in the removal of all center sites and the realization
of the CS-to-NCS structural evolution. In particular, space
group Pnma (no. 62) converts to P2,2,2; (no. 19) from the
Birnighausen tree via a translationengleiche reduction in index
2’s symmetry (Fig. 3a).>> When Pb is substituted for Rb, the
atomic positions (4c¢ and 8d) in RbsPS, become 4a in RbPbPS,
(see Table S31 for details). To put it briefly, the novel com-
pound that was produced, RbPbPS,, has good structural an-
isotropy, which helps to get a higher An for achieving PM
feature. Secondly, the coordination number (CN) of the two
crystallographically independent Rb atoms in Rb;PS, differ
(CN = 8 for Rb1 and CN = 9 for Rb2), but are identical in
RbPbPS, (CN = 11) with Rb-S bond distances less than 4.4 A
(refer to Fig. S2 and S3 in ESIf). Finally, considering the flex-
ible CN of Pb*>" cations, the integrated crystal orbital Hamilton
population (ICOHP) curve was examined.”® As depicted in
Fig. 3b, it is evident that the short Pb-S bond lengthes of
2.916-3.114 A exhibit stronger bonding interactions compared
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to the long Pb-S bond lengthes (3.647-3.825 A), while the Pb-S
bond distance of 3.281 A falls between them, representing a
medium interaction (see Table S2} for details). Based on the
above analysis, it is reasonable to infer that the Pb atom forms
a [PbS;] mono-capped triangular prism. Research on the dis-
tinct [PbS;] coordination mode in NCS chalcogenides is
notably lacking, and a seven-coordinated example of this has
been reported in PbsGaeZnS;s.>? Pb** cations in NCS chalco-
genides are mostly five-coordinated (as in [Na,PbI][Ga;S,]¥)
or six-coordinated (as in Pb,Ga,GeS;, ¢ and
Pby.¢sMn, g5Ga;Sg *2), among other compounds that have been
found.

Furthermore, through comparison with known ternary and
quaternary chalcophosphates, it is determined that substitut-
ing SCALP Pb for partial alkali metal Rb is the most optimal
and rational structural approach to accomplish the CS-to-NCS
structural transformation of template structure Rb;PS,.
Fig. S4f provides a detailed structural evolution. Roughly
speaking, these replacements fall into three categories. In the
first, three Rb atoms are completely substituted by one triva-
lent element or three monovalent elements in the absence of
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Fig. 5 Theoretical results of electronic structures and optical parameters of PbPbPS,: (a) band structure; (b) partial density of states; (c) calculated
nonzero independent SHG coefficient di4 (pm V™) and calculated birefringence (An); (d) calculated refractive index dispersion curves with the

shortest type-I PM cut-off wavelength.
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SCALP components. CS structures are displayed by the resul-
tant compounds, including REPS, (space group: I4,/acd),**
BPS, (space group: Ibam),”® GaPS, (space group: P2,/c),*® and
TIPS, (space group: Pnma).”” The second category entails com-
plete substitution of SCALP elements, as seen in SbPS, (space
group: P1)*® and BiPS, (space group: Ibca),>® which also belong
to the CS structures. The third category involves partial substi-
tution, where Rb is partially replaced by monovalent or diva-
lent elements. The resulting compounds, such as Rb,AgPS,
(space group: P1),>° RbAgsP,S; (space group: Phca),®* RbSrPS,
(space group: Pnma),*> RbBaPS, (space group: Pnma),*
RbPdPS, (space group: I4/mcm),** and RbHgPS, (space group:
P21/n),35 all adopt CS structures. Therefore, it is reasonable to
replace partial Rb with SCALP elements to realize a structural
transition from CS Rb;PS, to NCS RbPbPS,. Hence, employing
established CS chalcophosphates as the parent structure and
partially substituting them with SCALP-cation groups proves to
be an effective chemical strategy for accomplishing the CS-to-
NCS structural evolution.

As RbPbPS, belongs to the NCS space group P2;2,2; and
possesses the NLO-active motifs [PbS;] and [PS,], a relatively

View Article Online
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strong d.¢ could be expected. Powder SHG testing for RbPbPS,
was conducted using the modified Kurtz-Perry technology,*
with irradiation from a 2900 nm laser and commercial
material AgGaS, as a reference. As depicted in Fig. 4a, the posi-
tive correlation between the particle size and SHG intensity
indicates that RbPbPS, exhibits PM behavior. The SHG inten-
sity of RbPbPS, is approximately 2.5 times that of benchmark
AgGas, in a particle size range of 150-210 pm (Fig. 4b). Based
on degr = destyr (Pollx?®)" (degrr = 13.4 pm V™! for AgGas,),
the effective SHG coefficient d.; of RbPbPS, at 2900 nm is 21.2
pm V', In addition, powder LIDT measurement was employed
to preliminarily evaluate the LIDT value,*® with the increased
optical E, suggesting that the title crystal would exhibit higher
LIDT. As illustrated in Fig. 4b, the LIDT of RbPbPS, (10.88 MW
cm™?) is estimated to be 7.5 times that of AgGaS, (1.45 MW
em™?) under the same testing conditions. Compared with
other reported Pb-based IR-NLO materials (Fig. 4c and
Table S4}), RbPbPS, demonstrates a favorable balance between
strong d.i and large E,. Notably, RbPbPS, represents the first
quaternary Pb-based chalcogenide to overcome the incompat-
ibility between a wide E, (>2.56 eV, the E, of AgGaS,) and a
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e
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Fig. 6 Theoretical analysis of the intrinsic mechanism of SHG source for PbPbPS,: (a) cut-off energy (eV) dependence of the static di4 (pm V™2); (b)
distribution of the partial charge density maps with major contributions in the VB-1, VB-3, CB-1, CB-3 and CB-5 regions. Black atoms: Rb; blue

atoms: Pb; pink atoms: P; yellow atoms: S.
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sufficient deg (>1.0 x AgGasS,). This balance IR-NLO perform-
ance can be compared to the recently reported quaternary NCS
chalcogenides, such as o-Li,ZnGeS,;,>”  Li,CdSn,S,,*®
NaMg;Ga;Sg,>® and (Cul);P,S,.*°

To gain further insights into the underlying structure-prop-
erty relationship of the title compound, systematic theoretical
calculations were conducted, encompassing band structure,
densities of states (DOSs), and linear optical and NLO para-
meters, based on DFT. The calculated electronic band struc-
ture reveals a direct Eg of 2.27 eV for RbPbPS,, as the valence
band maximum (VBM) and conduction band minimum (CBM)
coincide at the same high-symmetry k-points (Fig. 5a). The
smaller calculated E, can be attributed to underestimation by
the DFT calculation.*” The partial DOSs of RbPbPS, are
depicted in Fig. 5b, indicating that the tops of the VBs are pre-
dominantly composed of S-3p states, with a minor contri-
bution from Pb-5s and P-3p states, while the bottoms of the
CBs primarily consist of S-3p, Pb-5p, P-3s/3p, and Rb-5p states.
Furthermore, the NLO coefficients of RbPbPS, can be calcu-
lated according to the electronic structure. In the light of
Kleinman symmetry,*> RbPbPS, exhibits only one nonzero
independent SHG coefficient, d,, = 31.8 pm v~! at 2900 nm
(ca. 0.43 eV) (Fig. 5c). Furthermore, the calculated d.g of
RbPbPS, is 26.88 pm V', under 2900 nm irradiation,*® which
essentially coincides with the experimental findings.
Additionally, the calculated An value of RbPbPS, is 0.109 at
2900 nm, significantly surpassing that of AgGa$, (An ~ 0.04).*®
This suggests that RbPbPS, may be well-suited to achieve the
PM condition for the SHG process. Furthermore, the line
refractive dispersion diagrams indicate that the shortest type-I
phase-matched output wavelength is 602 nm (Fig. 5d).**

To visually illustrate the contribution of the constituent
BBUs to the SHG effect, the cutoff energy dependence of the
static dq4 for RbPbPS, is calculated using a length-gauge form-
alism method.*® As depicted in Fig. 6a, the dy4 values exhibit
an upward trend in the VB-1, VB-3, CB-1, CB-3, and CB-5 inter-
vals. This illustrates that the orbitals in these regions have a
significant influence on the overall NLO response.*® Moreover,
by integrating the partial DOSs (Fig. 5b) with the relevant
partial charge density maps (Fig. 6b), it is evident that the
enhancement of the d.¢ in RbPbPS, primarily stems from the
strong hybridization of electron states at the top of the VBs
and the substantial distortion of [PbS,] and [PS,] groups,
indicative of the 2D [PbPS,]” alternating arrangement layer.

Conclusions

In summary, building upon the parent ternary CS compound
Rb;PS,, we implemented a strategy involving the partial substi-
tution of Rb with SCALP Pb, resulting in the creation of a new
quaternary NCS chalcophosphate, RbPbPS,. This substitution
also triggered a structural transformation from 0D clusters to
2D layers. As anticipated, experimental findings highlight
RbPbPS, as a promising candidate for IR-NLO applications,
boasting a large d (2.5 X AgGaS, at 2900 nm), a broad trans-
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mittance cutoff window (0.38-18.1 ym), and a significant E,
(2.75 eV) conducive to a high LIDT (7.5 x AgGa$, at 1064 nm).
Detailed structure-property analyses elucidate that the strong
calculated des (26.88 pm V '@2900 nm) and large calculated
birefringence (0.109@2900 nm) in RbPbPS, primarily stem
from the cooperative effects of [PbS,] and [PS,] NLO-active
motifs. These findings underscore the efficacy of the lone-pair-
cation substitution strategy in achieving both structural trans-
formation and effectively balancing strong d.¢ with a large E,
in SCALP-based chalcogenides.
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