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Enhancing glucose classification in continuous
flow hydrothermal biomass liquefaction streams
through generative AI and IR spectroscopy†

Silviu Florin Acaru, *a Rosnah Abdullah, b Daphne Teck Ching Lai c and
Ren Chong Lim *a

Energy from fossil fuels is forecasted to contribute to 28% of the energy demand by 2050. Shifting to

renewable, green energy is desirable to mitigate the adverse effects on the climate posed by resultant

gases. Continuous flow hydrothermal liquefaction holds promise to convert biomass into renewable

energy. However, sustainable conversion of biomass feedstocks remains a considerable challenge, and

more process optimization studies are necessary to achieve positive net energy ratios (NERs). To fast-

track this process development, we investigated the integration of Fourier transform infrared

spectroscopy (FTIR) for data collection coupled with a support vector machine classifier (SVC). We

trained the model on data labeled after the analysis of the aqueous stream by high-performance liquid

chromatography (HPLC). Multiple test data, such as liquified wood and cotton, and dissolved glucose,

were used to classify the aqueous streams. The results showed that fused original data achieves 84%

accuracy. The accuracy increased to 93% after merging synthetic data from generative adversarial

networks (GANs) and hand-crafted statistical features. The effect of Uniform Manifold Approximation

and Projection for Dimension Reduction (UMAP) on accuracy was also studied. We noticed that UMAP

increases accuracy on some variations of the datasets, but it does not exceed the highest reported

value. Shapely Additive Explanations (SHAP) were used to investigate the contribution of the top

20 features. We discovered that features representative of glucose contribute positively to the model’s

performance, whereas those found in water have a negative influence.

Introduction

Hydrothermal liquefaction (HTL) is a thermal conversion
method that can decompose biomass such as sewage sludge,
algae, oils, or lignocellulosic materials into biofuels. Achieving
sustainability in HTL relies on the efficient energy conversion,
ensuring a net energy gain that surpasses the energy input with
its corresponding energy output. Extensive research has been
conducted on various configurations, integrated technologies,
and reporting metrics to address this matter. For example,
the microwave-assisted batch HTL of lignocellulosic biomass
revealed that the energy ratio of biocrude increases by 0.4 value

points at a retention time of 60 minutes and a temperature of
240 1C.1 Recycling the aqueous phase in a catalytic HTL can
impact the energy consumption within a 38% to 80% range,
under varied temperature conditions.2 Sequential HTL treat-
ments as alternative methods for biomass pretreatment
showed increase glucose yields of 0.5% and 3% from poplar
wood chips at temperatures of 140 1C and 180 1C, respectively.3

Effects of conventional batch HTL on a low-lipid marine species
demonstrated a gradual increase in energy recovery for carbo-
hydrates over time. After 10, 20, and 30 minutes of retention
time at a temperature of 350 1C, the recovery rates increase
from 10%, to 15%, and 29%, respectively.4 Starch as a feedstock
showed a recovery rate of 25%, while cellulose yielded 23%. The
incorporation of a catalyst such as cobalt and molybdenum
doubles the energy recovery values for both feedstocks.5

A multi-cycle HTL showed that the initial energy recovery rate
can increase from 49% up to 65% in the span of three cycles,
while the use of catalysts under these conditions showed to
lower the energy recovery rate to 55%.6 More recently, reaction
atmosphere consisting of potassium hydroxide and hydrogen
showed bio-oil yields up to 35 wt% in batch reactors.7
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Despite considerable progress achieved through different
configurations, the sustainability of HTL systems is still not
favorable for adhering to positive conversion principles. Conti-
nuous flow HTL emerges as a more appealing option over the
batch and semi-continuous types due to its ability to generate
fuel materials in large quantities and extract desired compounds
while controlling the biomass retention periods.8 During the
conversion process in continuous flow HTL, two primary
by-products are generated: a solid residue and an aqueous
phase. The aqueous phase is rich in fermentable sugars and
other valuable compounds. The sugars can be further exploited
for their calorific properties or enhanced through fermentation
to generate high-yield liquid fuels, a form of renewable energy.9

The sustainability of the continuous flow HTL system is
deemed favourable when the Net Energy Ratios (NERs) exceed
100%. The NER serves as a measure of the energy yield of a
compound relative to the energy input into the system. Unlike
other reported metrics such as energy recovery, which solely
consider the energy content of the resulting fuel or bio-oil
obtained, NER offers a more comprehensive analysis by taking
into account the total energy efficiency of the HTL system.

A preliminary study focusing on the conversion of pre-
treated wood waste residues has demonstrated that continuous
flow HTL can achieve glucose NER values as high as 63%.10

To enhance the optimization of biomass conversion in con-
tinuous flow HTL, additional studies are required to refine
parameters optimization, biomass load-to-weight ratio, and
pre-treatment methods. Nevertheless, the rapid optimization
of biomass conversion in continuous flow HTL encounters two
primary challenges.

The first challenge arises from traditional optimization
studies, which necessitate significant resources such as con-
sumables, energy, time, and skilled labour. For instance, high-
performance liquid chromatography (HPLC), an offline analysis
technique used to determine compound concentrations in the
aqueous phase, provides highly reliable data. However, the
HPLC analysis entails a series of labour-intensive steps, including
sample preparation, instrument qualification, compound identifi-
cation, and quantification.

The second challenge lies in the intricate nature of HPLC
analysis, which hampers the swift adjustment and control of
HTL parameters during testing. To address these limitations,
alternative methods that provide fast, cost-effective, and inline
measurements can be employed. Fourier transform infrared
spectroscopy (FTIR) is one such technique that enables simul-
taneous analysis of complex mixtures. It offers qualitative and
quantitative information of sufficient accuracy, making it a
valuable complement to overcome these challenges. This tech-
nique can analyse complex mixtures simultaneously, revealing
adequate qualitative and quantitative information.11 With regards
to aqueous solutions, FTIR has applications in several fields,
such as diabetes monitoring,12 food additives,13 allergens14 and
bio-hybrid fuel cells.15 Compounds of interest resulting from
conversion processes have also been analysed, such as the
sugar content in enzymatic hydrolysis of alkali-pretreated bio-
masses,16 the quantification of glucose in aqueous solutions,17

and quantification of aqueous phases (bio-crudes) derived from
HTL.18 Additionally, apart from the analysis hindrance, the
sheer number of experimental runs to reach conclusive results
also slows down the process optimization.

Research applying machine learning (ML) algorithms to
solve problems associated with energy studies is increasingly
prevalent, ranging from material design models, discovery of
unknown compounds and acceleration of innovation develop-
ment such as high-performance fast charging batteries.19,20

The increasing importance of incorporating these concepts
into hydrothermal liquefaction yields cannot be overstated.
However, ML algorithms generally perform well when trained
on large datasets. To complement the lack of data in deter-
mining the best HTL parameters, researchers resolve to compil-
ing data from various published literature.21,22 In the case of
continuous flow HTL, this approach is not feasible for two
reasons:

a. there are not enough studies that published results using
a similar HTL setup, and

b. the parameters and outputs are specific to the level of
control and handling of the biomass.

Acknowledging the inadequacy of assuming uniform hand-
ling of all experiments, deep learning (DL), a subfield of ML,
offers powerful algorithms that effectively tackle the challenges
posed by limited data availability and expedite the optimization
process. These DL algorithms play a crucial role in enhancing
learning capabilities and facilitating more efficient decision-
making.

Among the notable techniques in DL, generative adversarial
networks (GANs) stand out as a preeminent approach for
augmenting data from real-world examples, particularly in
low data scenarios. GANs have demonstrated their effectiveness
across various domains, including the design of materials
models,19 generation of realistic medical images,23 object
detection,24 augmentation of sensory signals,25 and improve-
ment of Raman spectroscopy data.26 The latter is analogous to
the infrared spectra obtained through FTIR.

Nonetheless, correct identification of the molecules in aqu-
eous solution by FTIR is challenging due to the contribution of
water molecules to the absorption spectrum. Absorption peaks
of chemical bonds under aqueous mid-infrared radiation are
broad, spreading across several wavelengths.11 Solutions such
as feature engineering using statistical values has shown to
capture the interconnection of movements by depth sensors.27

Similarly, hand-crafted statistical features could also be applic-
able to the vibrational intensity across wavelengths and amplify
the response.28 However, FTIR spectrums have regions that are
not significantly important in explaining the presence of a
compound and with the generation of statistical features,
insignificant values are introduced for each sample. Training
a model on irrelevant data can have a negative impact on
model’s performance. Dimensionality reduction techniques,
such as the Uniform Manifold Approximation for Projection
(UMAP) algorithm can be used to improve a model’s performance.
UMAP selects the essential features using nearest neighbours to
construct the simplicial set.29 The question remains whether the
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final ML model is reliable, and to confirm, one needs to ensure
that the contribution of the significant features are the deter-
mining ones. Shapley Additive Explanations (SHAP) can be used to
interpret each value of the features and understand the respective
contribution of the vibrational spectra wavelengths.30

Therefore, the aim of this study is to implement a ML model
into a continuous flow HTL system that could rapidly classify
samples with high accuracy and confidence during biomass
conversion into biofuel materials. The study’s objectives are as
follows:

1. Investigate the suitability of GANs in synthetic data
generation from FTIR spectrums to increase dataset size for
improving ML classification performance.

2. Enhance the model’s performance using hand-crafted
statistical features and a dimensionality reduction technique.

3. Verify whether the features with significant importance in
glucose compounds are contributing positively to the model’s
performance.

The novel proposed framework will accelerate glucose recog-
nition in the aqueous phase from the continuous flow HTL
conversion process when the level is above a set threshold. The
framework involves numerical data collected from three differ-
ent experiments. The first dataset is derived from wood (W)
waste and it represents the minimum viable real data of the
lignocellulosic biomass conversion process. The second dataset
is derived from conversion of cotton (C), which is a cleaner
lignocellulosic biomass representative. The last dataset is
attained from dissolved glucose (DG) with a high purity con-
tent. The dissolved glucose dataset is meant to enforce the
model into training with more samples, representative of the
target material.

Fourier transform
infrared spectroscopy

FTIR spectroscopy is an increasingly versatile and rapid analy-
tical technique which provides high information content in
the form of vibrational spectra. This technique characterizes
samples in various states: e.g., solid, gas, and aqueous environ-
ments and it has been proven successful in both in-line and
offline process monitoring.31 Accessories can enhance the
instrument’s usability in different modes, providing micro
and macro imagining, attenuated total reflectance (ATR), trans-
flection, and transmission methods. Analytically, ATR-FTIR
captures sample information at depths between 0.5–5 mm, which
is sufficient for measuring aqueous solutions where water
penetration in transmission modes reaches 6 mm at most.32

The sensory output can be delivered in image or comma
separated values (CSV) formats. In this study, CSV is used
and the contained data is processed into a tabular type.

Generative adversarial networks

GANs are deep-learning-based generative models using Neural
Networks.33 They have capacity to learn an intricate high-dimensional

probability distribution and to produce high quality samples
from the different data (e.g., images, text, tables). The principles
behind GANs involve a generator (G) and a discriminator (D)
model. The two models are in an ongoing competition governed
by the min-max GAN loss (eqn (1)). G aims to minimize the
function (V), whereas D strives to maximize it.

min
G

max
D

V D;Gð Þ ¼ Ex�pdataðxÞ log D xð Þð Þ½ �

þ Ez�pzðzÞ log 1�D G zð Þð Þð Þ½ �
(1)

In other words, the generator model is responsible for
generating new data samples from a given dataset. In contrast,
the discriminator model acts as a classifier and tries to distin-
guish whether the new data sample is real or fake by comparing
the training and fake data.

Numerous variations have been proposed over the traditional
GANs. For example, the Wasserstein model (WGAN) improved
the training stability by introducing the Earth-Mover distance
(or Wasserstein-1) to the loss function.34 Still, the model
experienced difficulties in generating accurate samples due to
weight clipping. As a remedy, improvements such as gradient
penalty (WGAN-GP) to the original critic loss showed promising
results.35 While some architectures focused on generating new
image variations, others concentrated on table data types
(tabular). The implicit joint distribution of columns, which is
the probability of two variables happening together, can be
learned from the real data. Synthetic data can be produced
from the resulted distribution. Algorithms such as tabular GAN
(TGAN) and conditional tabular GAN (CTGAN) which are based
on recurrent networks, outperformed previous statistical ways
of augmenting tabular data (e.g., classification, regression
trees, and Bayesian networks).36 Table-GAN, which is based
on convolutional neural networks, is another case model that
generates synthetic valuable tabular data.37 The interest in
synthetic data and the proven capability of this new form of
data augmentation is in the incipient stages. Continuous
improvements are being reported at very fast pace but no
studies looked at generating synthetic data using near-
infrared spectrums captured by ATR-FTIR. In this study, the
standard structure of GAN as outlined in the work reported by
ref. 33 is adopted. Detailed implementation instructions can be
found within the Data processing and augmentation section.

Experimental

The overall framework of the study is detailed in Fig. 1. The
study was initiated with the collection of experimental samples.
In this step, the wood and cotton were sequentially decomposed
into biofuel materials. A range of HTL parameters were employed
under subcritical water conditions, with specific details provided
in Tables A I and A II in the ESI.† Regular collection of aqueous
samples was performed, and they were then subjected to the
ATR-FTIR instrument at ambient temperature, where their
characteristic transmittance was recorded. The purified sam-
ples were subsequently passed through an HPLC instrument to
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analyse the presence or absence of biofuel materials. The HPLC
instrument separated compounds by passing the solution
through a separation column, and the detector at the end of
the column accurately identified and quantified each com-
pound with a high degree of accuracy. The results obtained
from the HPLC analysis were used to encode labels for the
spectroscopy data acquired from ATR-FTIR measurements.

Experimental machine set up and biomass samples

The HTL system and the biomass samples utilized for data
generation were previously described in ref. 10. For the experi-
mental setup, both cotton and dissolved glucose were employed
to create comparable HTL aqueous streams. More detailed
information can be found in the Materials and methods section
provided in the ESI.†

Data acquisition for model building

FTIR spectra acquisition. The benchtop Agilent Cary 630
FTIR spectrometer was used to collect spectrum information of
the aqueous phase. A single reflection diamond ATR sampling
module was used. The range was set within 4000–650 cm�1,
at a resolution of 4 cm�1. The samples were analysed at room
temperature. The spectrums were exported in CSV format.

HPLC sample analysis. The aqueous samples were pre-
processed by centrifugation through a 0.2 mm membrane
(Nanosep, Pall Corp., New York, USA). The glucose concen-
tration was determined using HPLC (Nexera, Shimadzu Corp.,
Kyoto, Japan) in conjunction with a refractive index detector
(RID-20A). A flow rate of 0.6 mL min�1, at 40 1C constant
temperature was passed through a silica column (Luna 5 mm
Silica (2) 100 Å, Phenomenex, Torrance, USA, length: 250 mm,

I.D.: 4.6 mm). Type 1 quality ultra-pure water was used as
mobile phase.

Data processing and augmentation

The augmentation of synthetic data involved the utilization of
several open-source libraries, including Numpy, scikit-learn, os,
Matplotlib, and Keras. These libraries provide crucial function-
alities for manipulating, pre-processing, visualizing, and con-
structing neural network models with the data.

Data pre-processing encompassed the manipulation neces-
sary to adhere to a matrix structure. For instance, in the wood
dataset, the dimensions were established as 24 rows and
900 columns, the cotton dataset consisted of 39 rows and
900 columns, and the dissolved glucose dataset was shaped
into 40 rows and 900 columns. Each row in these datasets
represents an analyzed sample of the aqueous fluid conducted
through the FTIR analysis, with the features designated as
wavelengths. Each sample was labeled according to the glucose
concentration determined by the HPLC analysis.

To prepare the datasets for augmentation, they were indivi-
dually loaded and subjected to further processing steps. These
steps involved removing irrelevant columns, scaling the data
using the Min-Max scaling technique, and dividing it into
feature and label components.

The configuration of the GAN algorithm employed a multi-
layer perceptron architecture. Within the code (available under
this link: https://github.com/silviu20/GAN_IR_Spectroscopy.git),
various essential functions were specified to facilitate the aug-
mentation process. One such function was ‘‘generate_latent_
points(latent_dim, n_samples),’’ which generates random points
(latent space vectors) by sampling from a standard normal
distribution. These points serve as input for the generator model.
Another crucial function is ‘‘generate_fake_samples(generator,
latent_dim, n_samples),’’ which generates counterfeit samples
by feeding randomly generated latent points into the generator
model. The resulting samples are labeled as ‘‘fake’’ (y = 0). The
function ‘‘generate_real_samples(n)’’ randomly selects genuine
samples from the dataset, labeling them as ‘‘real’’ (y = 1).

In order to define the structure of the generator model, the
function ‘‘define_generator(latent_dim, n_outputs)’’ is utilized.
This function employs the Keras sequential model API and
consists of two dense layers with the ‘relu’ activation function.
The first hidden layer comprised of 15 nodes, while the second
hidden layer had 30 nodes. The generator takes latent points as
input and produces synthetic samples as output. The sequen-
tial model facilitates the creation of a linear stack of layers.

Similarly, the function ‘‘define_discriminator(n_inputs)’’
is used to establish the structure of the discriminator model,
also utilizing the Keras library. The discriminator takes input
samples, including the counterfeit samples generated by the
generator, and evaluates their authenticity. Through its layers,
the discriminator extracts features and processes them using
weighted connections and activation functions. This trans-
formation enables the capture of relevant information. The
discriminator architecture incorporates three hidden layers
with the ‘relu’ activation function. The first hidden layer had

Fig. 1 The overall workflow of the HTL process with the application of
GAN for synthetic data generation. The ATR-FTIR generated spectrum
datasets were pre-processed, scaled, and passed through GAN. The
original datasets were merged with the synthetic data forming a hybrid
dataset. Hand-crafted feature extraction based on statistical features was
employed to extract extra information from the spectrums. UMAP was
then used to reduce the data to the most significant features. Ultimately,
we applied support vector machines (SVC) to build a classification model.
The feature importance was explained using SHAP.
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25 nodes, the second hidden layer had 50 nodes, and the last
layer contained a single node. As the data flows through
the discriminator’s layers, it gradually learns to differentiate
between real and fake samples based on the acquired features.
The last layer of the discriminator employs a sigmoid activation
function, producing a binary output ranging from 0 to 1. This
output represents the probability of the input sample being real
or fake, with a value close to 1 indicating high authenticity and
a value close to 0 indicating low authenticity. Using multiple
layers in the generator and discriminator offers the benefit of
enhancing the models’ capacity to comprehend and depict
intricate patterns within the data. This advantage translates
into improved performance, enabling the models to generate
more realistic samples and achieve greater accuracy in distin-
guishing between real and fake samples.38 By increasing the
dimension of the nodes in discriminator, it was expected that the
network would extract more information from the generator.39

Combining the aforementioned generator and discrimina-
tor models results in the construction of the GAN model. The
GAN model takes latent points as input, generates counterfeit
samples using the generator, and predicts their authenticity
using the discriminator. Finally, the program trains the GAN by
utilizing a combination of real and counterfeit samples. The
discriminator and generator models were alternately trained
for 100 epochs. The GAN algorithm was configured to produce
an output of three times the size of the data it was generating
from. The training progress was monitored through the evalua-
tion of discriminator and generator losses. These losses
were visualized in a history plot to provide insights into the
dynamics of the GAN model (Fig. A II in ESI†).

To incorporate the three datasets into a unified framework,
a low-level data fusion technique was employed. This technique
involved stacking the data from different sources on top of
each other, resulting in the creation of a new matrix.40 In order
to augment the data, two distinct modes were employed, as
described in ref. 41:

1. Posterior (post-fusion) to the merging of the datasets
(e.g., W + C + DG + GAN)

2. Interstitial (pre-fusion) of the datasets (e.g., W + GAN_W +
C + GAN_C + DG + GAN_DG)

Applying GAN to posteriorly merged dataset results in the
generation of synthetic data that exhibits variations across
different dataset types. On the other hand, the interstitial
dataset contains more individual and homogeneous data
types.42 Moving forward, the datasets generated through HTL
will be referred to as the ‘‘original’’ datasets. The datasets
consisting of the original dataset along with the synthetic
samples generated by GAN will be referred to as the ‘‘hybrid’’
datasets.

Feature engineering – statistical features

Within the machine learning pipeline, feature engineering
plays a pivotal role in enhancing the modeling capabilities of
algorithms to effectively fulfil their intended functions. The
features were determined by calculating the difference of
statistical values at specific wavelengths (represented as ‘‘wi’’),

where each wavelength corresponds to a different statistical
value. This technique was partially utilized in the engineering
of FTIR spectrum features.28 Furthermore, it was extensively
applied in another ML domain, specifically in the field of
human activity learning (Table 1).27

In general, the application of feature engineering techniques
can significantly enhance the accuracy of classifiers for various
reasons.

Firstly, these techniques facilitate the capture of crucial
distributional properties of the data, assisting classifiers in
distinguishing between various classes or patterns. Analyzing
the distributional properties of features can also aid in outlier
identification and handling. Outliers, being data points that
deviate significantly from the majority, have the potential to
distort the distribution and impact classifier performance.
Detecting and potentially treating or removing outliers can
enhance the accuracy of the classification process.43

Secondly, feature engineering techniques can exhibit discri-
minative power, meaning they possess distinct values for
different classes or patterns within the data.44 For example,
in the case of spectra of IR spectroscopy, calculating the
differences of statistical values can help highlight the unique
characteristics of different classes, making it easier for the
classifier to differentiate between them.

Thirdly, feature engineering can help reduce the impact of
noise, by emphasizing the relative changes in the spectra rather
than absolute intensity value.45 For instance, in the context of
spectra from IR spectroscopy, the calculation of differences
between statistical values can help emphasize the variations
that are relevant for classification while reducing the impact
of noise or absolute intensity values that may be subject to
fluctuations.

Feature extraction via UMAP

The addition of statistical features to a dataset for classification
algorithms can also have drawbacks. To begin with, it can lead
to the curse of dimensionality, where an excessive number of
features hampers algorithm performance, increases complexity,
and risks overfitting. Moreover, incorporating statistical features

Table 1 Statistical features and the calculation formulas

Feature Formula

Mean difference (M) w(i,mean) = wi � wmean

Standard deviation difference (St)

wði;stdÞ ¼ wi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
c¼1

wi � wmeanð Þ2

N

vuuut

Variance difference (V)

w i;varð Þ ¼ wi �

PN
c¼1

wi � wmeanð Þ2

N
Skewness difference (Sk)

w i;skwð Þ ¼ wi �

PN
c¼1

wi � wmeanð Þ3

N � 1ð Þs3
Kurtosis difference (K)

w i;kurð Þ ¼ wi �

PN
c¼1

wi � wmeanð Þ4

N � 1ð Þs4
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may introduce intricate relationships and interactions among
features, making the algorithm harder to interpret. Lastly, irrele-
vant or redundant features can negatively impact performance
and increase the risk of overfitting. Careful consideration, such as
feature selection and regularization techniques, is necessary to
mitigate these challenges and optimize classification algorithm
outcomes.

Non-linear feature extraction techniques have demonstrated
superior performance compared to classical approaches like
linear principal component analysis (PCA) or linear discrimi-
nant analysis (LDA) on datasets with a similar tabular structure,
such as the time-series ECG200.46 In this study, UMAP method
was employed as a feature selection technique to reduce the
dimensionality of the dataset, focusing on the most valuable
features. Dimension reduction techniques have been found to
improve classification performance, prevent overfitting and
underfitting of SVC, and enhance the runtime efficiency of
the classification algorithm.47 The hyperparameters selection
was done by plotting the UMAP results on different purposely
selected values for n_neighbors and n_components as it was
applied in these studies.48,49 Example of the datapoints dis-
tribution is plotted in Fig. A IV in ESI.† A guide to the code used
to generate and plot the figure can be found at ref. 50.
Following the investigation of hyperparameters, the dimension
was embedded with 65 components (n_components) as the
default parameter. To ensure a comprehensive overview of the
data’s overall structure, the size of the local neighborhood
(n_neighbors) was limited to 15. This constraint enabled UMAP
to effectively capture the inherent structure of the data. Notably,
in the context of infrared spectroscopy, the interaction between
atoms and infrared radiation occurs across multiple wave-
numbers. The Euclidean metric parameter was utilized to control
the computed distance between data points.

Data classification

The HPLC results were used to allocate correct labels to the
spectrum samples. Samples with a value of 0.6 wt% glucose are
considered to have a HTL NER value of 50%. Therefore, when
glucose levels were Z0.6 wt% spectrum samples were labelled
as 1, and those below labelled as 0. Several classification
algorithms, Adaboost, Gradient Boosting, Random Forest, K
(Nearest) Neighbours, SVC and Logistic Regression, were initi-
ally scanned to understand the performance across the datasets
and their permutations. The classifiers results showed similar
performance across the varied datasets (Table AIV in ESI†).
However, SVC is commonly employed in model production
from infrared datasets. The advantage is given by the projection
of input attributes into a high dimensional feature space,
thus returning a good generalization when dealing with small
datasets.51 Data processing and classification studies were done
on laptop machine with an Intel Core i5-6300 CPU 2.40 GHz �
4 processor and 8 GB RAM of memory.

Support vector machine classification

The data was split into train and test, 80/20. The data was trans-
formed using the scikit’s Min–Max scaler. The hyper-parameters

were tuned using the GridSearchCV through the following
parameters: regularization parameter, C: 0.1, 1, 10, 100, 1000,
tolerance for stopping criterion, tol: 0.005, and rbf kernel.
The number of re-shuffling & splitting iterations was set to 10.
The metrics used to assess the classification model was average
accuracy % over 10 tests.

Feature importance

The wavelengths characteristic of solid glucose is shown in the
infrared spectrums in Fig. A I(a) in ESI.† With the introduction
of water, the characteristic stretching become broader and
reduced in intensity (Fig. A I(b), ESI†). In HTL conversion,
additional compounds are present in the aqueous phase. These
make the spectrums even more challenging to interpret.
To determine whether the classification model interprets the
data accurately, we need to understand whether the corres-
ponding wavelengths are used to influence the model’s accu-
racy. Therefore, we implement SHAP to visualize which types of
features are more or less important. The SHAP library in Python
was used to calculate the values using a computer with an AMD
Ryzen Threadripper 3906 � 24 – Core Processor 3.79 GHz
processor and 128 GB RAM of memory.

Results and discussion
Data diversity pre and post GAN

Training only on the underrepresented classes can lead to
mode collapse, meaning that the model fails to capture and
generate a diverse range of outputs. We confirm that GAN
application to each individual dataset resulted in balanced
datasets. The ratios of samples above 50% NER to those below
tend towards a statistical equilibrium. Visually it is confirmed
that the synthetic samples alone follow the profile of the
original data (Fig. 2).

Classification

The SVC algorithm was tested against the original and hybrid
datasets, individually and then on fused datasets. Wood and
dissolved glucose average classification accuracies for hybrids
were less than those from the original datasets. Conversely,
cotton was slightly higher (Fig. 3(a)). The classification accura-
cies for fused datasets increased for hybrid compared to the
original spectrum samples (Fig. 3(b)). The fusion of the three
datasets (W + C + DG) returned a classification accuracy of 84%.
This value was lower than the individual original datasets
but higher than partial mergers (W + C, W + DG, C + DG).
The accuracies for hybrid datasets showed an increase in value.
However, it was noticed that the classifier’s accuracy depends
on the fusion type. A posterior GAN application returns a lower
accuracy than the interstitial GAN application, 88% compared
to 91%, respectively (Fig. 3(c)). The SVC classifier appears to
perform relatively better on the interstitially fused dataset in
terms of precision, recall and F1 score. The W + C + DG dataset
had lower but still decent performance, while the W + C + DG +
GAN dataset showed the lowest performance across all metrics
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(Table 2). Additional details of the initial study are highlighted
in Table V and confusion matrices, shown in Fig. A III in ESI.†

Ablation study

It has been reported that feature engineering can further improve
the accuracy of the classifiers. Different dataset permutations
encompassing the additional statistical features were explored.
Additionally, UMAP was applied to reduce the effect of low
contributing values such as those derived from the water content
and other compounds, and the accuracies reported.

The accuracy of the base model 1, which is the hybrid
dataset with GAN applied posteriorly to the merging (W + C +
DG + GAN) was 88%. In the first ablation study (ablation study
A1, Fig. 4), fifteen permutations showed more than 10%
decrease in accuracy, two returned similar values, while the
others manifested incremental increases, with three reaching
92% (highlighted by green borders). For the most performing
models, this represents a 4% increase in accuracy compared to
the base model 1. UMAP application (ablation study A2, Fig. 4)
showed similar performance to the base model 1, with the
exception of three outliers that reached 91% accuracy. Inter-
estingly, UMAP stabilized the performance of those models that
were fitting poorly earlier in ablation study A1. This could be
the result of retaining only the glucose contributory features.

The accuracy of the base model 2, which is the hybrid
dataset with GAN applied interstitially (W + GAN_W + C +
GAN_C + DG + GAN_DG) was approximately 91%. The process
of feature engineering improves the models to 92% and 93%
respectively, a small but valuable contribution to the classifica-
tion of glucose in aqueous solution (ablation study A3, Fig. 4).
UMAP application (ablation study A4, Fig. 4) performed poorly
compared to base model 2, reducing the accuracies to 70 to
80% range.

Model selection

The current framework showed increased accuracy results
compared to the model trained on the original dataset only
(W + C + DG). At the same time, the study showed that
numerous models could be used for the portrayed application.
Therefore, further refinement for the best model was conducted
and it involved a selection based on additional performance

Fig. 2 Original transmittance spectra of aqueous phase (a) wood,
(b) cotton, and (c) dissolved glucose. Hybrid transmittance spectra of
interstitial datasets (d) wood, (e) cotton and (f) dissolved glucose.

Fig. 3 The classification accuracies obtained for the testing sets; the
dataset abbreviations stand for W – wood, C – cotton, DG – dissolved
glucose; (a) shows the accuracy of the original dataset and the hybrid
dataset; (b) shows the accuracy of the original and hybrid, of different
dataset fusions, (c) shows the accuracy for the original fused datasets and
two different GAN application modes (posterior – W + C + DG + GAN of all
merged and interstitial – W + GAN_W + C + GAN_C + DG + GAN_DG).

Table 2 Model analysis for the fused datasets and two categories of GAN
application

Dataset Precision Recall
F1
score

Accuracy/
%

W + C + DG 0.9397 0.7790 0.8382 84
W + C + DG + GAN 0.7594 0.3429 0.4696 88
W + GAN + C + GAN + DG + GAN 0.9286 0.8592 0.8903 91

Fig. 4 Accuracies of hybrid datasets: A1 – W + C + DG + GAN + hand-
crafted features; A2 – W + C + DG + GAN + hand-crafted features + UMAP
on; A3 – W + GAN_W + C + GAN_C + DG + GAN_DG + hand-crafted
features; A4 – W + GAN_W + C + GAN_C + DG + GAN_DG + hand-
crafted features + UMAP on; abbreviations: M – mean, St – standard
deviation, V – variance, Sk – skewness, K – Kurtosis.
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metrics such as precision and recall. Some of the most perfor-
mant datasets were picked using the accuracies reported in the
ablation study (Fig. 4). We calculated the average performance
metrics over ten iterations (some are shown in Table 3 and
additional ones Table VI in ESI†). The selection criteria aimed at
finding a model with balanced precision and recall, which would
make it suitable for classifying samples with hardly distinguish-
able compounds. Based on this criterion, the W + GAN_W + C +
GAN_C + DG + GAN_DG + M + V + K dataset was the most
suitable model for our application.

Model explainability

In this section, we present the feature importance as calculated
by SHAP for two classification models. We visualized the top
20 most important features, as sorted by SHAP, out of 900
available. To highlight the differences between a non-processed
dataset and post processed, we selected two models and plotted
the SHAP values for each.

In Fig. 5 the SHAP values and their contribution to the
classification model based on the W + C + DG dataset are
shown. Absorption values from across the spectrum are pre-
sent, from the O–H group characteristic to 3000 to 4000 cm�1

(10 out of 20 features) stretching and C–O group stretching.
The impact of these features is shown by the coloured dots.
Preponderant high values are present in the absorption of the
C–H stretching in CH3 at B1364 cm�1, the syringyl ring breath-
ing represented at B1267 cm�1 and B1215 cm�1, as well as the
C–O stretching and B1073 cm�1, respectively. The O–H group
stretching has lesser impact towards the model output, as
highlighted by the blue dots. The even distribution of features
impact might be the reason for the average accuracy of 84%.

In Fig. 6, the feature contribution of the dataset W + GAN_W
+ C + GAN_C + DG + GAN_DG + M + V + K (highlighted in
Table 3) are presented. The classification model using this
dataset showed the highest performance accuracy, an average
of 93.49% � 2.35%.

Compared to the model in Fig. 5, feature engineering played
a more significant role in the order of importance of values.
In this case, only two values from the original dataset are part of
the top 20 most important features, namely the absorption
from the O–H stretching, B3291 cm�1, and the aliphatic C–H
stretching in CH3, B1364 cm�1. The primer has negative
impact on the classification model, whereas the secondary
has a high positive impact. Having the C–H stretching con-
tributing towards the model is valuable, since this stretching is

Table 3 Most performant datasets based on the accuracy value in the
ablation study

Dataset
permutation

Accuracy/
%

Standard
deviation Precision Recall

A1 M 91.80 2.88 0.9737 0.8981
A2 St + V + Sk 90.96 3.64 0.9237 0.9254
A3 M + V + K 93.49 2.35 0.9588 0.9313
A4 M + Sk 81.56 4.50 0.8873 0.8070

Fig. 5 Top 20 features contribution towards the model classification for
the W + C + DG dataset.

Fig. 6 Top 20 features contribution towards the model classification for
the W + GAN_W + C + GAN_C + DG + GAN_DG + M + V + K dataset.
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part of the glucose composition as seen in Fig. A I (in ESI†). The
resulted mean difference feature from the same wavelength is
also positively influencing the model output, and it tops as
the most influential feature (B1364 cm�1 + M). Similarly,
the engineered feature of the O–H stretching containing the
kurtosis difference value is also showing a negative contribu-
tion towards the model output. Other significant features
captured in the top 20 most important features contributing
to the model output include the mean difference of compounds
in the frequencies B1468 cm�1, B1162 cm�1, B2963 cm�1,
B1140 cm�1, B1431 cm�1, B1032 cm�1, B1405 cm�1,
1103 cm�1, and kurtosis difference of 1032 cm�1. These fre-
quencies directly express those seen in solid and aqueous
glucose solution spectrums. Additionally, it can be noticed that
O–H stretching range and C–O group range (3000 to 4000 cm�1)
contribute negatively to the model output. This is because they
represent groups of compounds found in water, which are not
important in identifying compounds specific to glucose.

Conclusions

This study investigated the use of infrared spectrums as data
support for classifying glucose production within an HTL
conversion system, a green technology for generating renew-
able energy. As a result, a novel method for improving the
model accuracy using synthetic data generation was developed.
Initially, a low number of test runs using wood and cotton were
produced using HTL. High-purity glucose was also dissolved
in deionized water to increase the dataset, in addition to the
laborious HTL output.

First, individual datasets were used for building a classifica-
tion model. Second, GAN was applied under two data fusion
circumstances. It was found that the classification of the hybrid
datasets is dependent on the fusion type. GAN used posteriorly
scored a lower accuracy compared to GAN applied interstitially.
Furthermore, hand-crafted features were added to improve the
classification models. The results showed an average accuracy
increase of more than 9% over the base model, from 84% to
more than 93%. Under the same argument, we also applied
UMAP. The dimensionality reduction method did not exceed
the earlier reported accuracy but it improved above the base
model from 84% to 91%. The best performing model was
explained by employing SHAP values. It was found that within
the top 20 features, those related to the glucose compounds are
positively influencing the classification model, whereas those
found in water are negatively contributing towards the model
output. Although this framework is tested on the HTL biomass
conversion system, it opens new avenues for integrating FTIR in
continuous process monitoring.

For example, the integration of data augmentation using
generative AI and IR spectroscopy for process monitoring has
the potential to revolutionize costly and lengthy research
and development activities such as monoclonal antibody
production, gene therapy manufacturing, and cultured meat
production. Generative AI techniques enable the generation of

synthetic data, augmenting existing datasets and providing
greater volume and variability. This augmented dataset improves
machine learning model training, enhancing accuracy and
generalization. Consequently, it accelerates the research cycle
by enabling simulation, prediction, and optimization of pro-
cess parameters without extensive physical experimentation.
FTIR as a sensory technique allows real-time process moni-
toring, continuously analyzing critical quality attributes and
parameters to ensure consistency, reproducibility, and early
detection of deviations. When coupled with a classifier such
as SVC, can even outperform traditional process control tech-
niques (e.g., Proportional–Integral–Derivative). This enables
timely interventions and corrective actions, reducing batch
rejections and enhancing overall product quality. Ultimately,
the implementation of generative AI and IR spectroscopy
mitigates risks in the aforementioned research and develop-
ment activities, resulting in cost savings by minimizing produc-
tion failures and optimizing process performance.

Consequently, the current method offers the distinct benefit
of being a decentralized AI system, addressing the issue of
biases found in master datasets. Master datasets, typically
sourced from large-scale platforms, may unknowingly harbor
biases and dominant features that contribute to inequalities or
reinforce societal imbalances. However, by training decentra-
lized AI models using local data, such as the data generated
under the HTL conditions outlined in this study, this method
potentially mitigates these biases and fosters fairer and more
inclusive machine learning applications.
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