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f Babel: highlighting community
needs for integrated materials data management

Brenden G. Pelkie and Lilo D. Pozzo*

Automated experimentationmethods are unlocking a new data-rich research paradigm inmaterials science

that promises to accelerate the pace of materials discovery. However, if our data management practices do

not keep pace with progress in automation, this revolution threatens to drown us in unusable data. In this

perspective, we highlight the need to update data management practices to track, organize, process, and

share data collected from laboratories with deeply integrated automation equipment. We argue that

a holistic approach to data management that integrates multiple scales (experiment, group and

community scales) is needed. We propose a vision for what this integrated data future could look like

and compare existing work against this vision to find gaps in currently available data management tools.

To realize this vision, we believe that development of standard protocols for communicating with

equipment and data sharing, the development of new open-source software tools for managing data in

research groups, and leadership and direction from funding agencies and other organizations are needed.
Introduction

Automated experimentation methods are rapidly transitioning
from being research subjects themselves to serving as indis-
pensable tools in materials research. The availability of rela-
tively affordable off the shelf hardware, the spread of data-
hungry machine learning methods to materials science, and
the ever-pressing need to accelerate the pace of materials
innovation to meet a changing climate have all contributed to
the adoption of automated experimental methods in our
laboratories.1–3 A dizzying array of recent research has contrib-
uted tools that enable this paradigm shi, including new open
hardware platforms,4 optimization and experiment planning
methods,5 and methods for sharing procedures across different
laboratories.6–8 This newfound ability to generate vast troves of
experimental data comes as new machine learning and data
science methods build off that data,9,10 turning it into a rst-
class research product in itself.11 However, comparably little
effort has been expended on systems to collect, organize, store,
and share this data effectively. As a research community, we've
largely applied the existing data management methods and
culture that developed around manual experimentation to
automated workows. This worked ne for initial demonstra-
tion projects and forays into the eld, but as the eld matures
and continues producing valuable data with automated plat-
forms, we need to adopt better data management practices. The
data management path we are currently following reminds us of
the ‘Library of Babel’ imagined by J. L. Borges in the namesake
rsity of Washington, Seattle, Washington

–556
short story.12 This vast library contains an enumeration of all
possible past and future human knowledge, with the catch that
all of the valuable information is hidden amongst a sea of utter
gibberish. In this library, generations of librarians are driven
mad trying to nd meaning in the expanse of text. If we
continue advancing the state of automated experimentation
without overhauling how we collect, organize, and share our
data, we will nd ourselves lost and isolated standing in an
analogous ‘Laboratory of Babel’. We'll know that the data we
need to support our next materials innovation is out there
somewhere, held in an unknown dataset in a distant repository,
mixed into an expanse of useless untracked and unexplainable
data. We believe that now is the right time to make technical
and cultural shis in how we handle this problem, so that we
help future generations of researchers to develop an ‘index’ to
effectively extract value from abundant ‘gibberish’ in materials
data held in this global ‘Laboratory’.

We envision a data management future where collecting and
organizing experimental data and metadata is automated and
effortless, data provenance is fully tracked, access to up to the
minute data is enabled, and new community data sharing
platforms make all experimental data ndable. Having such
a data management practice in place would streamline the
development of machine learning models for accelerating
materials discovery, allow researchers to check the reproduc-
ibility of their results, and improve the quality and trustwor-
thiness of the data we generate. An agreed upon system for data
management would allow data related issues to fade into the
background, allowing scientists to focus on the science that
ultimately motivates us.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Managing materials research data is an inherently multi-scale endeavor. Data collected at the experiment-scale is organized and dis-
cussed at the group scale before being shared at the community scale. In turn, relevant data from community data shares can complement
internal data at the group scale, serving to better inform experiment decision making.
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In this perspective we propose a holistic vision for how data
might be collected, organized, and shared, focusing on labo-
ratories that have adopted automated equipment. This vision is
based on our research group's experience and challenges in
setting up automated experimentation workows from scratch,
and from ideas proposed in the literature. We compare the
current state of the eld against this vision to elucidate
opportunities for improvement, but also to highlight current
successes. We intentionally discuss these topics at a high level
and ground them in examples, rather than getting into details
of technical implementations. While many recent works have
explored various aspects of the data management problem,13,14

and several projects implement isolated items that are needed
to make data management work,8,15 we believe that discussion
about how disparate pieces of data management tooling t
together to form an integrated system is missing. Our hope is to
start an accessible conversation around what our data
management systems should do, not how they go about doing
this. We believe this will provide useful guidance for future
work on technical solutions to this problem and provide moti-
vation for a cultural shi around integrated and holistic data
management. While we hope our perspective helps guide future
work on research data infrastructure, it should not replace
formal customer development or user requirement scoping
processes, such as those used in technology and entrepre-
neurship (e.g. NSF Innovation Corps).16,17 Developers of new
data management tools should thoroughly evaluate the needs
of the scientists who will be using them, so that these tools are
a simple and valuable addition to research workows.

Throughout our discussion, we talk about data management
‘systems’ or ‘platforms’ in somewhat abstract terms. Because we
aim to discuss our vision in terms of capabilities rather than
specic implementations, we avoid discussing how these
aspects of our vision could or should be implemented. If
specic implementation strategies are of interest to the reader,
we recommend the tutorial perspective on databases for
chemistry by Duke et al.18 Any implementation of the ideas we
discuss here would be intimately related to laboratory auto-
mation initiatives such as laboratory scheduling tools, remote
equipment control capabilities, or full self-driving laboratories.
The ‘ideal’ data management soware implementation would
likely include these capabilities, but these topics are out of
© 2023 The Author(s). Published by the Royal Society of Chemistry
scope for this perspective. To frame the eld of experimental
data management into a structured discussion, we break the
task into three scales: experimental data collection, group data
management, and community data sharing. Experimental data
collection concerns the collection and management of data
from individual experiments. Group data management
concerns management of data within a laboratory, research
group, collaboration, or organization. Community data sharing
concerns the sharing of data among the broader community in
a manner that makes it broadly accessible and reusable. Each
scale has unique requirements and challenges but relies on
integration with the other two scales to realize its full potential,
as illustrated in Fig. 1.
Experiment-scale data management

In our three-part organization framework, the task of accurately
and completely gathering experiment data and metadata is
handled at the experiment level. Here we consider an ‘experi-
ment’ to be the collection of preparation, processing, and
characterization steps performed on a sample or group of
samples prepared in the same campaign, and ‘data’ to be any
recorded information associated with an experiment, including
characterization and preparation information. This is the
minimum granularity of data that provides context to enable
downstream use of the data. For example, in a synthesis
experiment with characterization by nuclear magnetic reso-
nance (NMR), the NMR results on their own are meaningless
without the context of how the sample was prepared. In our
framework, Experiment-scale data management tools are
primarily concerned with correctly recording data, and may
have limited support for enforcing quality of data, tracking the
motivation behind an experiment, or otherwise providing
context beyond the boundaries of an individual experiment.
These tasks are mainly addressed at higher levels of our
framework. An Experiment-scale data management tool should
ensure that any point of data recorded in a laboratory is sur-
rounded by the context needed to interpret it. To maintain this
standard, such a system must be capable of maintaining
a complete record of provenance, processing, and character-
ization steps applied to any sample. For example, in a battery
electrolyte screening study, a sample record should contain the
Digital Discovery, 2023, 2, 544–556 | 545

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00022b


Digital Discovery Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

02
5/

10
/2

4 
 1

0:
30

:0
3.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
source of the stock solutions and components a sample is made
from, a detailed log of the liquid or solid handling steps used in
the preparation of the sample, and the results of any charac-
terization processes. To the greatest extent possible, the
collection and organization of this data should be automated.
Manual data transfer slows research and introduces opportu-
nities for error.19 However, many laboratories may never be fully
automated, and some experimental steps may always require
human interaction. The manual entry of data and notes by
researchers needs to be well supported. A graphical user inter-
face could provide this support. Recent advances in natural
language processing technologies such as GPT-4 20 may also
enable new ways of recording data, such as a voice-assistant
based lab notebook. Additionally, recording exploratory exper-
iments without a preplanned structure should be straightfor-
ward. The intended steps in an experiment (e.g. target weights)
should be captured for comparison to the actual executed
experiment. This would allow for any deviations from the plan
to be automatically agged, aiding in the identication of
systemic issues with an experiment or in the hardware that is
used in its execution. To enable data-driven workows like
closed-loop optimization experiments, data should be made
available in real time as it is collected. Once data from an
experiment is collected, it should be stored in a at structure to
enable direct access to data attributes without parsing indi-
vidual les. While data quality control is not a primary focus of
an experimental data collection system in our vision, identi-
fying ‘bad’ data as early as possible can avoid wasted time and
effort. Thus, quality control should happen whenever possible.
Users should be able to ag experiments and data points with
known issues. Automatic real-time data validation could help
catch mistakes as they happen to prevent wasted time and
effort. However, these data collection systems should still log
Fig. 2 Data flow in an idealized experiment-scale data system. (a) Samp
a mix of automated and manual steps. Data is collected automatically wh
and manually enter data through a user interface. (c) The experimental da
appropriate data model, stores it, and makes it available to group-scale

546 | Digital Discovery, 2023, 2, 544–556
and store ‘bad’ data so that a complete record of experiments is
obtained, and any data validation checks should pose
a minimal interruption to the user. Implementation of a system
that manages all these tasks needs to be simple to use so that
adoption in the laboratory does not pose an undue burden on
researchers. Such a system would streamline the collection and
organization of data in the laboratory. We believe this would
reduce errors associated with incorrect data recording and save
researcher's time. Simpler data recording could facilitate the
collection of data from experiments that ‘fail’ in the eyes of
researchers, contributing to a more balanced record of experi-
mental data that would better support machine learning use
cases.21 This system would provide a single complete record of
entire experiments, ensure data that might be relevant for
future data science initiatives or repurposing of results is
collected, and lay the foundation for the organization of data at
the group and community scales. Fig. 2 illustrates how this
system could interact with laboratory processes and equipment.

Current data management workows typically rely on
manual record organization and usually fail to fully integrate
automation and digitalization. 15 years ago, Shankar found that
record keeping in research tends to be le up to individual
researchers.22 In our experience, not much has changed since.
Individuals are le to nd a system they feel comfortable with.
Experimental procedures and some results are usually stored in
a researcher's paper laboratory notebook, in varying levels of
detail. Data les from characterization instruments are gener-
ally organized in a directory and le naming structure set up by
the researcher, and are manually copied from instruments to
a central location like the researcher's PC or a cloud storage
provider. Log les recording processing steps on automated
equipment are stored in a similar fashion, if they are retained.
These les are linked together manually using a laboratory
les are prepared and characterized in a physical workflow that involves
en possible. (b) Researchers can directly interact with the data pipeline
ta management system collects data, validates and organizes it into an
data management tools.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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notebook as an index.23 Records of provenance for results reside
across an array of les, notes, and the researcher's memory.
Extracting data from these results for future work tends to
require bespoke le and data processing and can be an onerous
task. There are many examples of projects and tools that
address these limitations and implement aspects of our vision.
A core component of an automated data management system is
the ability to retrieve data from experimental equipment. A
common approach for this task is to write a series of custom
scripts that collect and aggregate data.24,25 This approach is
effective but can require extensive effort to implement and may
be impacted by small changes in the laboratory environment,
such as updated equipment congurations. Laboratory
orchestration soware packages and standards that enable
automated experimentation already interact directly with
equipment, which provides an opportunity to leverage existing
capabilities to automate data capture. The Bluesky family of
python packages allows users to specify and execute experi-
ments and collect data by directly interfacing with hardware
that uses the EPICS protocol as well as a few other hardware
interface protocols.26 This project was developed to standardize
experiment specication and data collection from synchrotron
light sources. It is widely used at the National Synchrotron Light
Source II (NSLS-II) as well as other US and international light
sources.27 The Standardization in Lab Automation (SiLA) stan-
dard and the Laboratory and Analytical Device Standard (LADS)
are two competing standards that seek to provide a unied
application programming interface (API) for interacting with
lab equipment. Both are primarily targeted at life science
laboratories, and both build from existing network communi-
cation protocols to provide lab-specic features. SiLA has seen
adoption among equipment manufacturers,28 and LADS is
Fig. 3 One of many possible examples of a graph data model applied to
outcomes of measurements, and edges (blue arrows) represent the proc
(DES) screening study, samples start from solid supplies of quaternary am
amultistep process involving several sample states, and are thermally and
synthesis along with the data they generate provides a complete record o
this complex web of data tractable.

© 2023 The Author(s). Published by the Royal Society of Chemistry
scheduled to be released in late 2023.29,30 Collaborative devel-
opment of competing lab equipment standards could lead to
a set of widely adopted interfaces to equipment that each have
specialized support for a particular use case. This would allow
experimenters to pick the best tools for particular experimental
tasks. For example, an automated ow-through nanoparticle
synthesis experiment could communicate with a bank of
syringe pumps over SiLA to control experimental conditions
and a beamline with BlueSky to manage sample characteriza-
tion. Each of these standards fullls the needs of the applica-
tion it is used for and alleviates the need for a single monolithic
standard to handle every research task imaginable. However,
development of many overlapping standards also has the
potential to fracture the ecosystem for managing hardware and
soware, and preclude straightforward digital data manage-
ment and communication. Care should be taken in standards
development and adoption to avoid this.

Data collected from an experiment needs to be validated,
organized, and stored. Data validation checks that collected
data is in an expected format and an expected range. For
example, a simple validation on the recorded mass of a sample
could check rst that the entry is numeric and not a text string,
then that the value is within the measurable range of the
balance used. This approach does not verify that the recorded
number is correct but can catch major issues with data. As
discussed above, invalid data should still be recorded but also
agged for review. Several data models for organizing experi-
mental data have been proposed. A common theme among
many of them is to represent each sample in an experiment as
a graph of sample states connected by procedures. This is an
intuitive way to represent an experiment: in the lab, a sample
starts from some feedstock materials (an initial state) before
experimental data. Here nodes (gray blocks) represent sample states or
esses connecting those states and their data. In a deep eutectic solvent
monium salts (QAS) or hydrogen bond donors (HBD), are synthesized in
electrochemically characterized. Tracking every process of the sample
f sample provenance. Applying a graph data model makes working with

Digital Discovery, 2023, 2, 544–556 | 547
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a number of processing steps are applied, each of which
generates a new sample state. At states of interest, character-
izations on the sample are performed. Fig. 3 illustrates the
application of a graph data model to an experimental procedure
for one sample.31 Projects or works that use this form of data
model include the Event-Sourced Architecture for Materials
Provenance (ESAMP),32 Cript,15 and Citrine Informatics' GEMD
data model.33 Explicitly organizing experimental data in
a format that follows this structure would make tracking the
provenance of any piece of data straightforward: given a sample
or measurement, the chain of processes and samples can be
traced backwards to determine where the sample came from, or
forwards to see how a future step turned out. This data model
can be implemented in any database or storage format, and
each of the mentioned projects has built its own version. A
prerequisite to using such a data model is a schema to describe
what data is stored and how it is related. Tools to parse data
from its source and transform it into the data model are also
needed to implement the data models we describe. Developing
these items can be a signicant challenge. A potential oppor-
tunity exists to establish a standardized representation for
experiments that can be shared and reused between different
soware systems.

Once infrastructure is in place to collect data from equip-
ment and a conceptual model for organizing that data is agreed
on, these must be implemented into a piece of useable soware.
The Experiment Specication, Capture, and Laboratory Auto-
mation Technology (ESCALATE) ontology and soware package
implements tools to specify experiment plans, record experi-
mental execution, and link resulting les to samples in a data-
base.34 ESCALATE provides both a data model for organizing
experimental data as well as a soware implementation. It
provides capabilities to specify experiment plans, record
experimental executions, and manage les. Users interact with
the soware either through a graphical web interface or an API.
Bespoke solutions in this space are also common. Several
organizations have discussed the design and implementation of
custom in-house data management systems. When imple-
menting their internal data system, The Joint Center for Arti-
cial Photosynthesis developed a lightweight system of le types
and scripts to track sample data and automate the recording of
data when possible.35 Data from this system eventually made it
into the Materials Experiment and Analysis Database (discussed
below). The National Renewable Energy Laboratory (NREL) has
implemented a similar le and script based workow that
enables tracking sample preparation and characterization data
by having users load data les into a centralized warehouse.25

Electronic lab notebooks (ELNs) also t into this section of
our framework. Traditional ELNs sought to entirely replace
paper lab notebooks with a direct translation to a digital
document. While this provides major improvements for data
searchability, shareability, and security, it does not enable the
data collection infrastructure we envision. More modern ELNs
incorporate more extensive data management features, like
recording data directly from instruments or supporting inline
data analysis.36,37 Modern ELNs can also interact with a vendor's
laboratory information management system (LIMS) product to
548 | Digital Discovery, 2023, 2, 544–556
enable organization of data across experiments and laborato-
ries. LIMS are discussed below. Given the wide selection of ELN
systems tailored for diverse types of lab work, the lack of
adoption in academic laboratories38 raises questions. While
a full exploration of issues associated with the limited adoption
of ELNs is beyond the scope of this work, high cost, signicant
effort, low community expectations, and traditionalist attitudes
are contributing factors.23

Group scale data management

In our vision, the goal of a Group scale data management
platform is to organize individual experiments across research
projects and other group objectives. In this discussion a group
is a collection of researchers actively collaborating on a project,
such as an academic research group, a department/unit, or
multiple collaborators spanning different institutions.
Elements of editorial discretion are also introduced at this level.
Group members will know and trust each other, understand the
context around the collection of data, and agree on how it will
be used. They will also be involved in discussions to assess the
quality of collected data prior to broadly disseminating it or
reporting major outcomes in the scientic literature. Effective
Group scale data management builds from and complements
strong experimental-scale data collection and management. In
practice, the distinction between experimental and group scales
is ‘thin’ and may not be apparent in real world data manage-
ment systems. However, the disparate goals of these two data
management scales merit separate treatments.

To support the goals of group data management, tools
should enable linking data from related experiments and
samples. In turn, groups of experiments should be linkable into
project campaigns. For example, in an automated sample
synthesis process, multiple experiment campaigns might be
run, with multiple replicates of a material in each campaign.
Samples that are replicates of one material should be linked to
that material, as well as to the campaign where they were
generated. In our examples, multiple high-throughput
synthesis campaigns that are all part of the same project
should be linked and accessible as one combined project. Data
from different but loosely related experiments should also be
grouped together. A user should be able to view all the work
done with a particular sample precursor, grouped across
different sample preparations and experiments. Computational
results should be included in this grouping to broaden the
scope of available information. Having all this data in one place
will enable anyone involved in a project, be they researchers,
supervisors, or articial intelligence agents, to have access to
up-to date versions of data which will enable faster and smarter
decision making around future experimental plans. It is
important that editorial tasks and human data interpretation be
supported. Capturing the motivation and intent behind
running an experiment can give context to a group of experi-
ments in a project. Low quality or compromised data could still
be relevant to a project at this scale, but quality issues should be
agged. Tracking the quality of data should be supported. This
could involve automated or human data review. Backups of data
© 2023 The Author(s). Published by the Royal Society of Chemistry
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should be automated so data isn't lost by accident, and modi-
cations to data should be tracked and version controlled so
data isn't manipulated by malice or by mistake.39 Preparation of
data for downstream uses, like machine learning initiatives or
for ‘export’ to community level databases, should be straight-
forward and automatable to prevent errors and to remove data
processing bottlenecks (Fig. 4).

As with experimental data collection, a common approach to
managing data at the group scale is to design a custom system.
This can either be a soware system, or a manual workow.
Building a custom soware system requires the expertise and
effort to set up physical and digital data management infra-
structure but can yield a system that better complements
a laboratory's experimental workows. The internal systems
developed at NREL and JCAP, both discussed above, also
provide group data management capabilities. They allow for
linking individual experiments into campaigns, sorting experi-
ments by criteria like experimental method, and sharing up to
date data among a group.25,35 These one-off systems can work
Fig. 4 A Group scale data management system supports the organi-
zation of data collected from an experiment-scale system into
research projects, searching across all a group's data, scientific
discussion around data quality and results, and inclusion in AI decision
making. These capabilities are enabled by a secure centralized data
location. Sharing data to a community scale is straightforward with this
infrastructure in place.

© 2023 The Author(s). Published by the Royal Society of Chemistry
well for groups with the resources to fully implement them but
are out of reach for most researchers. Many laboratories have
pieced together a manually updated data management system
centered around a commercial cloud storage provider such as
Google Drive or Dropbox. These platforms are attractive to use
as they facilitate simple data sharing amongst laboratory
members, provide a degree of data versioning and backup, and
are oen provided via an institutional license making them free
to use. Before relying on third party cloud storage solutions,
researchers need to consider the appropriateness of a particular
offering for the sensitivity of the data they work with. As an
example, storing protected health information on a consumer
Google Drive account would violate HIPAA.40 The vendors of
these products may also choose to make changes to either the
product itself or the terms of use of the product that can be
disruptive to how they are used in a laboratory or group, forcing
researchers to make disruptive changes to their workows.

Commercially available systems for managing data at the
group scale are commonly referred to as Laboratory Informa-
tion Management Systems (LIMS). Traditional LIMS systems
provide sample tracking and provenance management capa-
bilities, a centralized store of experimental data and other
information, some level of integration with instruments for
data collection, capabilities to manage experimental workows,
and a user interface. Some systems integrate with automated
equipment, providing capabilities we classify as experiment
management. These systems usually work in concert with
a vendor's ELN solution. Like ELNs, LIMS are available from
a robust array of vendors,37,41–43 and at least one open source
option is available.44 Many available LIMS systems are designed
for life science or commercial laboratories, but there are
options targeted at materials science research. Dotmatics offers
a platform with LIMS capabilities that is designed for materials
science and chemistry laboratories.45 Citrine informatics' data
management system is based on their GEMD data model (dis-
cussed above) and targeted at materials laboratories. This
system has the benet that data is extracted from les and
stored directly in their data model, which makes the data more
searchable and useable.46 As with ELNs, adoption in academic
laboratories is limited, likely for the same reasons (e.g. cost and/
or complexity).

We believe that there is a notable lack of open-source so-
ware options that provide the capabilities we envision for
laboratory data management, especially in materials science
elds. An open-source soware tool, built off a robust experi-
ment capture infrastructure as described above, would make
the group data management we envision accessible and cus-
tomizable for a wide array of groups. An important criterion for
this soware will be its useability and ease of adoption, in
addition to how it handles technical data management tasks.
Adoption of a group data infrastructure with the attributes we
envision that is integrated with experimental data collection
tools would revolutionize data management in most academic
laboratories, and in our opinion would be a worthwhile
investment on its own. However, even greater benets can be
realized by using this infrastructure to share research data with
the broader community.
Digital Discovery, 2023, 2, 544–556 | 549
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Community scale data management

Community data sharing has always been at the core of scien-
tic communication. Traditionally, data has been shared
through plots and tables in manuscripts, with important
context embedded in manuscript text. While recent efforts
make it possible to extract information from these documents
using natural language processing methods,47–50 traditional
publications are not an efficient way of transmitting data.
Fortunately, a slow shi towards more open data sharing is
underway. The importance of accessible data sharing has
gained broad acceptance. References to making data FAIR
(originally dened as ndable, accessible, interoperable, and
repurpose-able)51 are common in the literature.50,52–54 Well-
designed community data sharing practices enable the aggre-
gation and dissemination of data from multiple research
groups and heterogeneous projects in a unied fashion,
allowing existing data to drive unforeseen future works. Ulti-
mately the goal of openly and accessibly sharing research data is
tomake it reusable in future research. Effective data sharing can
enable new machine learning initiatives, make comparing new
results to existing values simple, or prevent the unnecessary
reproduction of existing work. What exactly this future reuse
looks like is difficult to dene, which is part of what makes
establishing robust and useful data sharing infrastructure
difficult. Thus, community data sharing initiatives should be
built to be as generally useful as possible, rather than opti-
mizing for a particular downstream use case. To support data
ndability, data should be stored in curated, focused databases.
The domain scope for these databases should be tuned so that
relevant materials or experiments are stored together, without
fractioning the ecosystem into hyper-specic datasets.
Choosing a level of specicity for a database is an important
consideration that impacts how data is likely to be re-used in
the future. Specialized databases may make re-use simple for
new applications that are similar to the original use of the data.
However, being too specic can limit community contributions
and engagement that is needed to sustain a database aer
initial support runs out, and can make it difficult to nd data-
bases that contain the desired information. Conversely, data-
bases that are too broad in scope might not support the level of
detail needed for some downstream use cases. In an example
from computational materials science, the Catalysis Hub
surface reactions database provides a home for relaxation and
chemisorption energies of reactants on catalyst surfaces ob-
tained from electronic structure calculations.55 This focus
strikes a balance that makes it specic enough to be useful, but
broad enough to have over 100 000 entries. A critical aspect of
making data accessible is ensuring the long-term existence of
databases and their accessibility over the internet. Shared data
is an important part of the scientic record, so community
databases should be administered in a way that guarantees long
term availability. To make data interoperable, data needs to be
accessible as database records rather than as groups of les.
This makes searching and ltering data using standard query
tools like SQL or SPARQL possible. However, existing
550 | Digital Discovery, 2023, 2, 544–556
community and domain specic standards should be respected
where applicable. For example, the small angle scattering
(SAXS, SANS) community has standardized beamline data
around the CANSAS standard.56 Any database dealing in
a particular type of data needs to support data retrieval in the
agreed standard to facilitate use with domain-specic tools.
Data format exchange tools like Tiled57 can facilitate data access
in preferred formats. Human readability should be enabled
through well designed user interfaces. This would make
exploratory data analysis easier and enable access by users
without a coding background. To make data reusable, it is
necessary to maintain a minimum standard of quality and
completeness for data. Low quality data can't be tolerated at this
scale because users lack the context to critically evaluate data
quality and experimental nuances that is present at smaller
scales. Peer-reviewing data submissions to these databases as
part of journal manuscript submissions could help curate this
data quality. To enable reproducibility of data (another inter-
pretation of the ‘R’ in FAIR), information about how a sample
was prepared and characterized should be shared in a stan-
dardized format. Intermediate data points should be shared
alongside nal results when possible, to support use cases that
rely on them. Fig. 5 illustrates the process for sharing data in
this envisioned system. Once one establishes a new community
data repository that satises all the points of our vision, atten-
tion needs to be turned to the social aspects of managing
a community data resource. Use of these databases needs to be
incentivized for researchers. Mechanisms for encouraging use
might involve mandates from publishers or funding agencies,
the generation of a citable digital object identier (DOI) and
other mechanisms for claiming credit for data submissions,
and a seamless interface with lab data management systems to
take the pain out of publishing data. When broadly sharing data
as we advocate for, export controls may need to be considered.
Current US export controls don't generally restrict the public
sharing of basic research outputs.58 However the US govern-
ment has recently announced efforts to limit foreign access to
US technology59 and inuence over research,60 so future
controls on research sharing may become more restrictive.
Researchers outside of the US will need to consider how their
government's export control policies might impact how they
share research data.

The current state of experimental data sharing in materials
science has been described as ‘critical’.61 A report on the
materials genome initiative by the (US) National Science
Foundation points to data sharing as a bottleneck in the
materials innovation process, and suggests that national
agencies should establish data sharing infrastructure like what
we envision above.62 We think this is an appropriately dire
assessment of the current situation, but there is a lot of work in
this space that gives cause for hope. Perhaps the most wide-
spread form of data sharing currently is through journal article
electronic supplementary information (ESI) and general data
repositories like Zenodo63 and Dryad.64 Repositories allow users
to upload their data les along with a description of what the
data contains, and then generate a unique identier for that
data. Materials focused repositories include the Materials Data
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 In a community data sharing ecosystem, data from individual research groups is curated and validated before being added to a network of
domain databases. This makes data accessible with programmatic tools like SPARQL, makes reuse (e.g. in data science initiatives) feasible, and
enables straightforward reproducibility, among other benefits.
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Facility65 and Citrination.66 Sharing data in this form at least
makes it available but doesn't address the spirit of the FAIR
philosophy. Assembling datasets from les shared as ESI, or via
a repository, requires searching the literature for relevant
publications and datasets, checking that they contain the
desired data, then manually collecting and parsing les that
likely use unique (i.e. non-standardized) formatting. Poor met-
adata annotation oen means one needs to read the original
journal publication to understand the data. Curated databases
provide solutions to these issues. These databases aggregate
data from multiple experiments and projects into one database
with a specic domain focus. Examples in the materials science
eld are limited. The NREL High Throughput Experimental
Materials (HTEM) database contains records for over 82 000
unique samples of inorganic thin lm materials. This database
is populated using the NREL internal research data infrastruc-
ture described in the experimental data section and includes
characterization data as well as some sample synthesis meta-
data.67 The Materials Experiment and Analysis Database
(MEAD) was hosted by the Joint Center for Articial Photosyn-
thesis and populated by their internal experimental data
collection system.35 Unfortunately, this database was not
accessible at the time of writing, which highlights the need to
plan for the long-term stability and availability of community
data resources. The inorganic crystal structure database (ICSD)
provides a database of inorganic crystal structures compiled
from literature.68 This database is neither open to community
contributions, nor open access. Outside of experimental mate-
rials science, many more examples show the promise of shared
community data sharing. The Materials Project is a widely
known community database for computational materials data.
It contains properties for over 154 000 materials69 and has over
200 000 registered users.70 This database makes computed
properties of materials available via both an easy to navigate
web page and an API. Arguably the best success story of
© 2023 The Author(s). Published by the Royal Society of Chemistry
community data sharing is the Protein Data Bank (PDB),
a database of protein structures. This database has lasted for
over 50 years and has grown to over 30 000 data contributors
and over a million site views per year. This database provides
curated, validated data in a consistent format. It has become
a core part of research in its eld, as submitting a new protein
structure for publication practically requires submission of that
structure to the PDB.71 Access to the PDB has also enabled
groundbreaking advancements such as the accurate prediction
of protein folding and de novo structures based on sequence,
with machine learning models.9,72

Several projects and organizations are working toward new
data sharing platforms that provide many of the capabilities we
described above. The FAIRmat consortium is a German initia-
tive to realize many of the goals for community data sharing
that we describe here. This project aims to build a series of
domain specic data repositories, following similar criteria as
we propose to establish “as few as possible but as many are
needed” to support diverse needs of different elds. Their
proposal, which is to create a federated network of databases
with centrally searchable metadata, has the potential to enable
domain specic databases that are still ndable and reusable
for applications in other contexts. This project has also
considered the needs of experimental and laboratory data
management infrastructure to feed these community reposito-
ries.73 The development of knowledge graphs to store and
structure experimental data is a promising approach to
implanting data sharing infrastructure. Knowledge graphs
structure information as a connected graph, with data points
and entities represented as graph nodes and properties or
relationships represented as edges.74 This is similar to the graph
data models discussed in the experimental data collection
section. When coupled with a standardized denition of prop-
erties and relationships, known as an ontology, knowledge
graphs promise enhanced interoperability between databases
Digital Discovery, 2023, 2, 544–556 | 551
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and exibility in dening data schemas. Knowledge graphs can
be queried using standard query languages such as SPARQL. Bai
et al. envision a knowledge-graph based approach to managing
data, and more broadly, laboratory automation. In their vision,
computational agents maintain the state of the knowledge
graph and use it to drive closed-loop experimentation.14 The
Mat-o-lab initiative seeks to develop domain-specic ontologies
for materials research, and corresponding knowledge graph
representations of data.54 This initiative envisions a network of
knowledge graphs using compatible ontologies to represent
data and enable re-use across projects. The OPTIMADE
consortium aims to solve the data interoperability challenge by
providing an API specication for materials databases.75 This
specication has been adopted by several databases including
the Materials Project.76 The wide range of solutions under
development to address the community data sharing problem
shows that this issue is well understood by the community and
makes us hopeful that truly FAIR data sharing is near.
Common obstacles and
recommendations

As shown above, data management is an active area of research,
and the need for the capabilities we describe herein are recog-
nized by the community. So, what motivated this perspective?
Most of these initiatives are carried out as individual efforts to
solve a small subset of the problems facing the eld. While this
bottom-up approach is leading to innovative and exciting tools,
these individual efforts generally don't integrate with other
tools and do little to reduce the fractured nature of the data
management eld. The NREL internal research data infra-
structure team recognized these limitations, and called for
a top-down approach to design datamanagement infrastructure
with a holistic vision in mind.25 While this is a noble goal,
building an entire research data infrastructure from scratch as
one project is a major undertaking. Further, one organization is
likely unable to anticipate and build for the diverse use cases
and requirements of such a tool. Rather than leave the devel-
opment of future tools to one entity, we believe that future
development should continue to be undertaken by diverse
community projects, but with a stronger eye towards how
projects will inter-operate to enable the seamless data
management system we envision. To enable this interopera-
bility between different tools and soware, we should dene
and adopt standards for how data is represented as a commu-
nity. As we discussed in the experimental data collection
section, interfacing lab equipment with any data collection
soware is a challenge due to vendor-specic protocols and
data formats. Developing a standardized API for communi-
cating with laboratory equipment would resolve this challenge.
A standardized data model for representing collected experi-
mental data would enable greater interoperability between
competing solutions. Agreeing on a common implementation
and specication of a graph data model for sharing between
data management tools would enable easier data sharing and
make data more reusable. Alongside data, information needed
552 | Digital Discovery, 2023, 2, 544–556
to reproduce experiments needs to be shared. The c-DL project
seeks to develop a ‘compilable’ language for specifying
synthesis steps.6,7 A standard means to specifying experimental
procedures promises to make experiments reproducible on
heterogeneous automated experimentation platforms.

We noted that there is an acute lack of soware tools to
organize and store data at the laboratory or group scale. This gap
in the data management infrastructure compounds shortfalls in
experimental data collection and community data sharing.
Without an effective means to organize and use large amounts of
experimental data and metadata, little motivation exists to
expend effort to collect data beyond what is immediately needed.
And if collected data is scattered across a wide range of les and
locations, preparing data for submission to a community data-
base can be a herculean task. A robust, user-friendly, and
generalizable implementation of a laboratory data management
system would bridge the gap between the two other levels of data
management, encouraging wider experimental data collection
and facilitating rapid dissemination of data to community
databases. An open-source soware tool for managing laboratory
data that implements the data management standards we
describe should be created, either by establishing a new project
or extending an existing one. This tool should be generalizable to
different laboratory environments, but customizable to provide
the specicity and workow efficiencies needed for any given
laboratory. This tool should provide both a graphical user
interface for easy data management, as well as programmatic
access via (at least) a python library so that use of the tool can be
integrated into existing data-generating processes controlled by
python scripts. In practice, such a tool could also fulll our vision
for experimental data collection and management as the two are
closely related. We believe the availability of an open-source tool
(as opposed to a proprietary one) in this space is critical. While
proprietary soware can solve many data management prob-
lems, it raises issues with vendor lock-in, laboratory equipment
support, and custom use cases. Automation in research labora-
tories involves prototyping new hardware and workows, so it is
virtually impossible for a commercial vendor to envision and
support all the possible use cases. A community-driven open-
source tool could be more responsive to new applications, and
individual laboratories would have a fair shot at adapting an
open-source tool to creative new workows or use cases. An open-
source tool would also remove nancial hurdles to using a data
management infrastructure.

At present, implementing data management infrastructure
requires a high level of prociency in soware engineering and
systems administration. Most academic laboratories do not have
access to personnel with these skills. Tasking grad students with
learning them is problematic as it adds to their already full
workloads. Expecting laboratories to establish their own research
data infrastructure13,18will lead to low adoption rates, poor quality
systems, and frazzled graduate students. We do not think it is fair
to ask this of junior researchers. Community organizations
should establish a leadership stance on this front and guide the
development of both soware tools for use at the experimental
and group scale, and community databases for data sharing.
These organizations could be federal agencies like the NSF or
© 2023 The Author(s). Published by the Royal Society of Chemistry
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NIST, existing community organizations like the Materials
Research Society, or newly formed consortia with data manage-
ment as their express goal. For their part, the NSF has recognized
the need for a leader in this space, and the role they could play.62

The FAIRmat initiative has been referenced as a model for what
that role could look like.62

A common theme across all areas of data management is the
need for broad community buy-in. Building the perfect data
management tool won't make a difference if nobody chooses to
use it. Getting researchers to move beyond paying lip service to
data as a rst-class research product is a major barrier to our
envisioned data management future. Funding agencies should
make effective data sharing a core project requirement by seri-
ously considering data management plans in grant application
evaluations and following up to ensure they are followed. The
extra overhead this creates for researchers should also be
recognized and accommodated. Publishers could require data
sharing to community databases as a condition of publication.77

Mechanisms for giving credit to researchers for their data
contributions would provide further incentives. Success stories
shared by early adopters of time saved, mistakes avoided, and
discoveries enabled by new data management tools and prac-
tices would also help show that taking data management seri-
ously is a worthwhile endeavor.
Conclusion

Materials science and chemistry are entering a new phase where
automated and autonomous experimentation methods will
multiply the capabilities of researchers andmake new data driven
research paradigms commonplace. To make the most out of
these new research paradigms, the community needs to overhaul
howdata is handled at all scales of the research process. However,
we are concerned that the moment to make these changes is
being missed. Rather than enabling new research approaches
based on easy access to data, new automated methods may lead
to an incomprehensible data landscape and siloed research
projects. We believe that effective data management practices for
this new era must consider the entire data lifecycle across scales
from individual experiments to broad community dissemination.
We envision one possible set of capabilities and norms that could
contribute to such a multiscale data management system.
However, this is certainly not the only vision that should be
considered. Our hope is that this perspective encourages more
researchers to participate in the discussion around data
management by making it accessible and by presenting a tanta-
lizing potential future where data management ‘just works’ and
can fade into the background. We are excited to hear alternative
visions from other researchers and to collaborate towards a future
that embraces digital datamanagementmethods and prevents us
from getting lost in the ‘Laboratory of Babel’.
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