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chemical reaction data with unsupervised
contrastive pretraining†
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and Kristin A. Persson *ef

Machine learning (ML) methods have great potential to transform chemical discovery by accelerating the

exploration of chemical space and drawing scientific insights from data. However, modern chemical

reaction ML models, such as those based on graph neural networks (GNNs), must be trained on a large

amount of labelled data in order to avoid overfitting the data and thus possessing low accuracy and

transferability. In this work, we propose a strategy to leverage unlabelled data to learn accurate ML

models for small labelled chemical reaction data. We focus on an old and prominent problem—

classifying reactions into distinct families—and build a GNN model for this task. We first pretrain the

model on unlabelled reaction data using unsupervised contrastive learning and then fine-tune it on

a small number of labelled reactions. The contrastive pretraining learns by making the representations of

two augmented versions of a reaction similar to each other but distinct from other reactions. We

propose chemically consistent reaction augmentation methods that protect the reaction center and find

they are the key for the model to extract relevant information from unlabelled data to aid the reaction

classification task. The transfer learned model outperforms a supervised model trained from scratch by

a large margin. Further, it consistently performs better than models based on traditional rule-driven

reaction fingerprints, which have long been the default choice for small datasets, as well as those based

on reaction fingerprints derived from masked language modelling. In addition to reaction classification,

the effectiveness of the strategy is tested on regression datasets; the learned GNN-based reaction

fingerprints can also be used to navigate the chemical reaction space, which we demonstrate by

querying for similar reactions. The strategy can be readily applied to other predictive reaction problems

to uncover the power of unlabelled data for learning better models with a limited supply of labels.
1. Introduction

Machine learning methods, especially deep learning, have
signicantly expanded a chemist's toolbox, enabling the
construction of quantitatively predictive models directly from
data without explicitly designing rule-based models using
chemical insights and intuitions. They have recently been
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successfully applied to address challenging chemical reaction
problems, ranging from the prediction of reaction and activa-
tion energies,1–5 reaction products,6,7 and reaction conditions,8,9

as well as designing synthesis routes10,11 to name a few. A key
ingredient underlying these successes is that modern machine
learning methods excel in extracting the patterns in data from
sufficient, labelled training examples.12 It has been shown that
the performance of these chemical machine learning models
can be systematically improved with the increase of training
examples.1,13 Despite various recent efforts to generate large
labelled reaction datasets that are suitable for modern machine
learning,3,14–17 they are typically sparse and still small consid-
ering the size of the chemical reaction space.18 Many chemical
reaction datasets, especially experimental ones, are rather
limited, consisting of only thousands or even hundreds of
labelled examples.19,20 For such small datasets, the machine
learning models can easily become overtted, resulting in low
accuracy and transferability. Therefore, it would be of interest to
seek new approaches to train the models using only a small
© 2022 The Author(s). Published by the Royal Society of Chemistry
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number of reliable, labelled reactions while still retaining the
accuracy.

When the number of labelled reactions is small compared
with the complexity of the machine learning model required to
perform the task, it helps to seek some other source of infor-
mation to initialize the feature detectors in the model and then
to ne-tune these feature detectors using the limited supply of
labels.21 In transfer learning, the source of information is
another related supervised learning task that has an abundant
number of labelled data. The model transfers benecial infor-
mation from the related task to aid its decision-making on the
task with limited labels, resulting in improved performance. For
example, transfer learning has enabled the molecular trans-
former to predict reaction outcomes with a small labelled
dataset.22,23 Transfer learning, however, still requires a large
labelled dataset to train the related task, which oen is not
readily available. Actually, it is possible to initialize the feature
detectors using reactions without any labels at all. Although
without explicit labels, unlabelled reactions contain extra
information that can be leveraged to learn a better model and
they are much easier to obtain. For example, the publicly
available USPTO dataset14 contains �3 million reactions, the
commercial Reaxys database24 and the CAS database25 have�56
millions and�156 millions records of reactions, respectively. In
this work, we present a generic unsupervised learning strategy
to distill information from unlabelled chemical reactions. For
the purpose of demonstration, we focus on the problem of
classifying reactions into distinct families.

Reaction family classication has great value for chemists. It
facilitates the communication of complex concepts like how
a reaction happens in terms of atomic rearrangement and helps
to efficiently navigate the chemical reaction space by systematic
indexing of reactions in books and databases.26–28 Many iconic
rules for reactivity prediction require reactions to be in the same
family,29 such as the Bell–Evans–Polanyi principle for esti-
mating activation energy from reaction energy30,31 and the
Woodward–Hoffmann rules for predicting reaction outcomes of
pericyclic transformations.32

Given the importance, there is a long tradition in classifying
reactions into families, and the techniques can be broadly
grouped into two categories: rule-driven and data-driven
methods.26,27 Rule-driven methods are based on a library of
elaborate expert-written rules, and thus reactions without
a preconceived rule cannot be classied. To overcome such
limitations, data-driven methods rst convert a reaction to its
ngerprint (typically a numerical vector) and then apply
machine learning algorithms to generate reaction families by
analyzing the ngerprints of a set of reactions.33,34 Traditionally,
reaction ngerprints are constructed from manually craed
molecule descriptors, such as the atom-pairs35 and extended-
connectivity36 molecule descriptors. Such traditional reaction
ngerprints with only a few tunable parameters have long been
used as the default choice for learning reaction properties on
small datasets. More recently, a new class of reaction nger-
prints that are learned directly from data have emerged.
Schwaller et al.28,37,38 used the transformer39 natural language
processing model to learn ngerprints from reaction SMILES
© 2022 The Author(s). Published by the Royal Society of Chemistry
string.40 Wei et al.41 developed the rst learnable graph neural
network (GNN) reaction ngerprints based on GNN molecule
descriptors.42,43 The GNN reaction ngerprints are exible to
adapt themselves to unseen reactions and have achieved satis-
fying results in a number of applications, such as the prediction
of reaction energy and activation energy.1,3 However, as many
other modern machine learning methods, they need a large
number of labelled reactions to train.

We present a GNN-based model to classify reactions and
propose a strategy to train the model using only a small number
of labelled reactions. The strategy can be categorized as a transfer
learning technique discussed above: we rst pretrain the model
on a large number of unlabelled reactions and then ne-tune it
using a small number of labelled reactions. The pretraining is
based on recent advances in contrastive self-supervised learning
in computer vision,44–46 where representations of unlabelled
images are learned by contrasting different views of them. In
contrast, our GNN model extracts generic concepts of reactions
by contrasting augmented versions of unlabelled reactions. The
core idea behind this is straightforward: if we modify a reaction,
for example, by removing an atom away from the reaction center,
oentimes we would still get the “same” reaction in terms of
which class it belongs to. Taking advantage of this “an
augmented reaction resembles itself” idea, we pretrain themodel
by requiring the ngerprints of various augmentations of a reac-
tion be as similar to each other as possible. (This pretraining is
unsupervised since no labels are used).

The pretrain-ne-tuned model outperforms supervised GNN
models trained from scratch and traditional ngerprint-based
models by a large margin for small datasets. For example,
using only 8 labelled reactions per class in the Schneider33

training set, it achieves an F1 score of 0.86, while the supervised
model and the traditional ngerprints-based model get an F1
score of 0.64 and 0.63, respectively. Even without ne-tuning,
the reaction representation (RxnRep) ngerprint derived from
our model still performs better than traditional rule-driven
reaction ngerprints and more recent masked-language reac-
tion ngerprints. We explored various reaction augmentation
methods and found that appropriate reaction augmentation is
the key to the success of the contrastive pretraining. Selecting
a reaction center based on altered bonds and then augmenting
the reaction beyond a subgraph around the reaction center
turns out to be a simple yet robust augmentation method. To
elucidate how the contrastive pretraining helps to learn a better
model, we analyzed the high-dimensional learned reaction
ngerprints by projecting them into a two-dimensional space
and found that the pretraining itself can already push the
ngerprints of reactions in the same class close to each other,
forming clear clusters. The learned model can be repurposed
for other chemical applications, either as the starting point for
other supervised tasks or being directly used in unsupervised
tasks, which we demonstrate via the query for similar reactions.

2. Contrastive self-supervised model

An illustrative overview of the contrastive self-supervised
learning approach to train GNN models for reaction
Chem. Sci., 2022, 13, 1446–1458 | 1447
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classication is presented in Fig. 1. As introduced in Section 1,
the overall idea is to leverage the information in unlabelled
reactions to help the model make better decisions, as sche-
matically shown in Fig. 1a. In this section, we rst introduce the
base predictive GNN model for reaction classication and then
discuss the proposed contrastive approach to distill informa-
tion from unlabelled reactions. In-depth description of indi-
vidual model architecture is given in Section S1 of the ESI.†

The predictive GNNmodel is based on our previous BonDNet
model1 for the prediction of bond dissociation energy. In the
model (Fig. 1b), each reactant and product molecule in a reac-
tion is represented as a graph with atoms as nodes and bonds as
edges. The molecular graphs are attributed: each node is asso-
ciated with a feature vector describing the atom (e.g. atom type)
and similarly each edge has a feature vector describing the bond
(e.g. whether a bond is in a ring). In addition, a global feature
vector is introduced to incorporate molecule-level information
(e.g. the molecular weight). Taking the attributed molecular
graphs of a reaction as the input x, a molecule GNN encoder
iteratively updates the atom, bond, and global features to obtain
better representations of the molecules using a message-
passing scheme.47 We emphasize that a reaction can have
multiple reactants and products, and each reactant and product
molecule is processed separately by the molecule GNN encoder.
Unlike traditional molecule descriptors that generate a xed-
size vector for each molecule, our model keeps individual
Fig. 1 Illustrative overview of the contrastive self-supervised approach
boundary of a classification problem using and without using unlabelle
discover the true pattern underlying the data. (b) Predictive GNN model f
a reaction as input and maps it to the reaction family label. (c) Contrast
augmentations of an input reaction are passed through the reaction enco
to get vector representations zi and zj, and the model maximizes the agre
have multiple reactant and product molecules; for brevity, we show one

1448 | Chem. Sci., 2022, 13, 1446–1458
atom, bond, and global features during the message passing,
and then directly aggregates them to form a reaction repre-
sentation. To achieve this, in the last molecule GNN encoder
layer, we take the difference of the two feature vectors of each
atom between the products and reactants, and then use an
attention-based pooling to convert the set of difference feature
vectors into a single vector h, which we call the ngerprint of the
reaction. Finally, we map the reaction ngerprint to the reaction
class label using a multilayer perceptron (MLP). In essence, the
predictive model has two parts: (a) a GNN reaction encoder f($)
that takes the molecular graphs of a reaction x as input and
generates a vector ngerprint h for the reaction, h¼ f(x), and (b)
an MLP that decodes the reaction ngerprint h to the reaction
class label, y ¼ MLP(h).

One can train the predictive GNN model using a fully
labelled dataset by minimizing a loss function, e.g. the cross-
entropy loss function. However, this supervised training
approach that trains a model from scratch generally needs
a large number of labelled reactions. For small labelled data-
sets, we propose a contrastive self-supervised learning approach
to pretrain the GNN reaction encoder f($) to leverage the infor-
mation in unlabelled reactions. The contrastive model (Fig. 1c)
consists of four parts.

� A reaction augmentation module that modies the input
molecular graphs of a reaction. Two augmentations are selected
from a pool of augmentation methods and applied to the input
for chemical reaction classification. (a) Schematics of the decision
d data. Taking advantage of unlabelled data, a model can potentially
or reaction classification. The model takes the graph representation of
ive self-supervised model to pretrain the GNN reaction encoder. Two
der to get their reaction fingerprints hi and hj and then a projection head
ement between the two representations of the reaction. A reaction can
for each.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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reaction x, resulting in two augmented reactions, xĩ and x ̃j. We
consider ve reaction augmentation methods: mask atom
features, drop atoms, mask bond features, drop bonds, and take
molecular subgraphs. They are further discussed in Section 3.1.

� A reaction encoder that converts a reaction to its vector
ngerprint. The reaction encoder f($) is the same as that used in
the predictive model, into which the knowledge in the unla-
belled reactions will be injected. Two ngerprints hi ¼ f(xĩ) and
hi ¼ f(x ̃j) are obtained via the reaction encoder, one for each
augmented reaction.

� A projection head g($) that maps a reaction ngerprint to
its nal vector representation, with which we get zi¼ g(hi) and zj
¼ g(hj). An MLP is used as the projection head.

� A contrastive loss that maximizes the agreement between
the two nal representations zi and zj of a reaction, but distin-
guishes them from the nal representations of other reactions.
At each training step, we randomly sample a minibatch of N
reactions. Aer the above three steps, we obtain 2N vectors z1,
z2, ., z2N, where z2n�1 and z2n denote the two nal vector
representations of reaction n (n ¼ 1, 2,., N). From the 2N nal
representations, we construct a loss function:

L ¼ 1

2N

XN

n¼1

½lð2n� 1; 2nÞ þ lð2n; 2n� 1Þ�; (1)

where l($, $) is the normalized temperature-scaled cross-entropy
(NT-Xent) function,44

lði; jÞ ¼ �log exp
�
sim

�
zi; zj

��
s
�

P2N

k¼1;ksi

expðsimðzi; zkÞ=sÞ
: (2)

In eqn (2), sim(a, b) measures the similarity of two vectors a and
b via the cosine similarity, i.e.

simða; bÞ ¼ a$b

kakkbk ; (3)

and s is a temperature parameter that controls the scale of the
cosine similarity. Intuitively, when minimizing the loss func-
tion, the numerator in eqn (2) strives to bring the two nal
vector representations of a reaction zi and zj close to each other,
while the denominator tries to push zi away from the nal
representations of other reactions.

The supervision is fully provided by the reactions themselves
via the augmentations, and thus no labels are needed in
training the contrastive model. A model trained via this
contrastive self-supervised approach would distill generic
information of the reactions. Fine-tuned using some labels, the
model can then be applied to perform specic tasks. To do this,
we only keep the trained reaction encoder f($) and discard the
other parts. We then replace the reaction encoder in the
predictive model by the pretrained one from the contrastive
model. Finally, we train the predictive model by minimizing the
cross-entropy loss function on the labelled data as discussed
above.

Going forward, we will employ the following naming
conventions for the models: a supervised model refers to
a predictive model trained from scratch on labelled data;
© 2022 The Author(s). Published by the Royal Society of Chemistry
a pretrained model is trained via the contrastive self-supervised
approach without using any label; and a ne-tuned model is
rst pretrained using the contrastive self-supervised approach
and then ne-tuned with labels.
3. Results
3.1 Reaction augmentation strategy

In this section, we discuss the key considerations and strategies
in augmenting reactions and show that appropriate chemically
consistent augmentation is the key to the success of the
contrastive model.

Each reaction has multiple reactant and product molecules;
we can augment each molecule individually using existing
molecular graph augmentation methods,48–50 but this naive
approach is far from optimal. Instead, we add two restrictions
on what can be augmented. First, atoms (bonds) in the reaction
center should be kept intact, that is, we can only select atoms
(bonds) outside the reaction center to modify. This restriction is
motivated by the assumption that atoms (bonds) in the reaction
center are signicant in dening a reaction, and, in general,
atoms (bonds) far away from the reaction center are less
important. This is particularly true for the reaction classica-
tion problem studied in this work. Second, if an atom (bond) in
the reactants is selected for augmentation, the same atom
(bond) in the products should also be selected, and vice versa.
Atoms always have a one-to-one correspondence between the
reactants and products, but bonds do not. For example,
a broken bond only exists in the reactants but not in the
products. Therefore, we only select bonds that exist in both the
reactants and products for augmentation.

To dene a reaction center, we explore three modes (Fig. 2a):
altered bonds, functional groups, and none. Given a reaction
and the atom mapping between the reactants and products, we
can identify the broken and formed bonds. The altered bonds
center mode regards the broken and formed bonds together
with the atoms that they connect to as the reaction center. In
reality, a reaction typically occurs between functional groups.
For example, a carboxylic acid group reacts with an alcohol to
form an ester in the esterication reaction shown in Fig. 2a.
This motivates us to use the reacting functional groups as
another reaction center mode. To determine the functional
group in a molecule that reacts in a reaction, we loop over a list
of predened functional groups and inspect whether it is
associated with the altered bonds. (A detailed description of the
process is given in Section 5 and an algorithm is given as
Algorithm 1 in the ESI†). Finally, the “none” mode means no
atoms and bonds are xed as reaction center and thus all are
available for augmentation.

Once the reaction center is determined, we keep it intact and
randomly select a portion of atoms (bonds) outside it for
augmentation. We explored ve augmentation methods, and
they are schematically illustrated in Fig. 2b.

3.1.1 Mask atom. The input features of the selected atoms
are set to specic values, chosen to be the mean of the features
of all atoms in the training data.
Chem. Sci., 2022, 13, 1446–1458 | 1449
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Fig. 2 Reaction augmentation strategies. (a) Reaction center modes
exemplified with an esterification reaction. Atoms and bonds in the
shaded regions are selected as reaction centers; blue for broken
bonds, red for formed bonds, and yellow for functional groups. (b)
Augmentations applied to atoms (bonds). Given a reaction, its reaction
center (purple shaded region) is kept intact and atoms (bonds) outside
the reaction center are available for augmentation. “mask atom”
changes the input features of selected atoms; “mask bond” changes
the input features of selected bonds; “drop atom” removes selected
atoms; “drop bond” removes selected bonds; and “subgraph” removes
atoms faraway from the reaction center first. Atoms (bonds) whose
features are masked are marked by green and removed atoms (bonds)
are marked by dashed lines.
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3.1.2 Mask bond. Similar to mask atom, the input features
of the selected bonds are set to the mean bond feature.

3.1.3 Drop atom. The selected atoms together with the
bonds they form are removed from the graph.

3.1.4 Drop bond. The selected bonds are removed from the
graph. An atom forming a selected bond is also removed when it
is not connected to the graph via other bonds.

3.1.5 Subgraph. Subgraph is short for “subgraph around
the reaction center”. In this method, we aim to keep more
atoms near the reaction center (thus the name—subgraph
around the reaction center) and remove atoms that are far away
from the center. Technically, subgraph is very similar to the
drop atom method, and the only difference is how to select the
atoms to drop. In the drop atom method, atoms outside the
reaction center are randomly selected and dropped, each with
the same probability; however, in subgraph, atoms far away
from the reaction center have a higher probability of being
removed, favoring the retention of atoms near the reaction
center. Note that this requires a real reaction center to deter-
mine the distance of an atom to it, and thus subgraph cannot be
used together with the “none” reaction center mode. (Algorithm
2 in the ESI† provides further details of the subgraph method).
1450 | Chem. Sci., 2022, 13, 1446–1458
Fig. 3 shows the performance of the ne-tuned model for
various reaction center modes and augmentation methods at
different augmentation magnitude (i.e. the percentage of
augmented atoms/bonds). The results are obtained using the
Schneider dataset33 (see Section 5) with 8 labelled reactions per
class. Mask atom and mask bond are found to be ineffective
augmentation methods. Their classication F1 scores are
around that of the supervised model (0.64) and change very
little with reaction center mode and augmentation magnitude.
This shows the importance of the input atom/bond features:
changing them will misguide the contrastive pretraining,
making it unable to distill any useful information to aid the
classication task. Drop bond performs even worse, with F1
scores lower than the supervised model, suggesting that the
reaction class families depend on bonds outside the reaction
center and removing these bonds greatly affect the model
(similar observation discussed below on drop atom and
subgraph).

In contrast, drop atom and subgraph are effective augmen-
tation methods which can improve the performance of the ne-
tuned model compared with the supervised model. Two
observations from the results are made; rst, the reaction center
mode makes a substantial difference. For drop atom, the
“none” reaction center mode impacts the model performance
negatively. It gets an F1 score of �0.40, signicantly below that
of the supervised model. This is because any atom can be
dropped in the “none” mode and dropping atoms in the reac-
tion center drastically changes the nature of the reaction. For
drop atom, the functional groups center mode achieves a higher
score than the altered bonds center mode across a range of
augmentation magnitudes. This benecial effect, however,
disappears and the two center modes are on par with each other
when using the subgraph augmentation method. We speculate
that this distinction originates from the protection of the
reaction center. For drop atom, the functional groups center
mode (compared with the altered bonds center mode) can
identify more relevant atoms and bonds that correlate with the
reaction class and keep them from being disrupted. In the case
of the subgraph augmentation, the protection is effective irre-
spective of how the reaction center is determined because
atoms far away from the center are removed rst. Second,
stronger augmentation leads to better performance. This is
apparent from the drop atom case where the scores of both the
altered bonds and functional groups center modes increase
with the augmentation magnitude. For the subgraph augmen-
tation method, this is more clear from the inset.

Additional results for models trained using 16 labelled
reactions per class are given in Fig. S2 in the ESI,†which provide
further support for the conclusions discussed above. In addi-
tion, the same augmentation method is applied to both
augmentations i and j of a reaction in the above discussion. We
further sought to identify whether a combination of different
augmentation methods can benet the contrastive pretraining
and found that as long as one of the two augmentations is drop
atom or subgraph, the model performs well and no further
benet is obtained (Fig. S3 in the ESI†).
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Effectiveness of reaction augmentation strategies. F1 score of the fine-tuned model for different augmentation method, reaction center
mode, and augmentation magnitude. Augmentation magnitude refers to the percentage of atoms (bonds) outside the reaction center selected
for augmentation. The vertical bar denotes the uncertainty, obtained as the standard deviation from five different runs, each with a different
resampling of the training data. Reaction center mode “none” is not compatible with subgraph as discussed in Section 3.1.5; thus, there is no
green curve in the “Subgraph” subplot. As a reference, the F1 score of the supervised model is 0.64.
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In summary, we nd that the subgraph-based method
provides robust augmentation regardless of the reaction center
mode and augmentation magnitude. Opting for simplicity, we
select the altered bonds reaction center mode in the below
discussions, instead of the functional groups center mode.
3.2 Model performance on small datasets

Using the subgraph augmentation method with the altered
bonds reaction center mode and an augmentation magnitude
of 0.8, we next investigate the effects of the contrastive pre-
training on small datasets. The pretraining can improve model
performance on both classication and regression problems;
we focus on classication here and discuss regression in Section
S3.5 of the ESI.† We curated three reaction classication data-
sets, namely, the Schneider, TPL100, and Grambow datasets.
For each dataset, instead of using the entire training set, we
intentionally draw 4, 8,., 128 labelled reactions per class from
the training set to simulate the small data regime and train the
models on these small datasets. More information of the three
datasets and how the models are trained are given in Section 5.

Performance of the models trained on these small datasets
are shown in Fig. 4. For each dataset, contrastive pretraining
signicantly improves the classication F1 score. For example,
with 8 labelled reactions per class in the Schneider training set,
the supervised model only gets a score of 0.64; in contrast, with
the help of the contrastive pretraining, the ne-tuned model
achieves a score of 0.86, an increase of 34%. An analysis of the
classication error (Fig. S4 in the ESI†) shows that the ne-
tuned model can correctly identify most reaction classes and
© 2022 The Author(s). Published by the Royal Society of Chemistry
that the remaining error is mainly from the misclassication of
reactions that are very similar to each other, such as “methyl
esterication” and “Fischer–Speier esterication” reactions. As
expected, the performance gap gradually closes when more
reactions are added to the training set; the two models perform
almost the same with 128 reactions per class. This trend is also
observed for the TPL100 and Grambow datasets. A difference
worth noting is that the performance gap closes more slowly for
the Grambow dataset. The Grambow dataset only has ve
classes (as a comparison, TPL100 has 100 classes), and thus
although the number of training data per class increases, the
total number of training reactions does not vary much and it is
still small. In this very small data regime, the ne-tuned model
always performs better than the supervised model.

Fig. 4 also includes the results of a model using traditional
reaction ngerprint as proposed in ref. 33: AP3 + LR (logistic
regression on the AP3 ngerprints (atom pairs with a maximum
path length of three35)). This model is inferior to both the
supervised and ne-tuned GNN-based models, except for
extremely small Schneider and TPL100 training sets with 4
reactions per class.

As discussed in Section 2, the predictive model consists of
two parts: a GNN reaction encoder and an MLP decoder. For the
results shown in Fig. 4, model parameters in both the encoder
and the decoder are optimized. However, aer pretraining, it is
possible to keep the encoder xed (i.e. not allow its parameters
to change) and use it as a featurizer to convert a reaction to its
ngerprint. We call such reaction ngerprint obtained from our
pretrained GNN encoder the RxnRep (reaction representation)
ngerprint. Table 1 lists the F1 score obtained using an MLP
Chem. Sci., 2022, 13, 1446–1458 | 1451
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Fig. 4 Model performance on reaction classification. Classification F1 score versus training set size for the supervised and fine-tuned GNN
models, as well as a logistic regression (LR) model on the traditional AP3 33

fingerprint (AP3 + LR). The vertical bar denotes the uncertainty,
obtained as the standard deviation from five different runs, each with a different resampling of the training data. No result at 128 is given for the
Grambow dataset since its smallest reaction class has fewer than 128 reactions.

Table 1 Classification F1 score on the Schneider dataset for various reaction fingerprints. RxnRep denotes the reaction fingerprint obtained from
our pretrained GNN reaction encoder; AP3 33 is a fingerprint based on expert rules; RXNFP28 and DRFP51 are fingerprints based on masked
language modelling. The employed classification model is either a logistic regression (LR) algorithm or a multilayer perceptron (MLP). Values
outside and inside the parentheses are the mean and standard deviation, respectively, of the scores from five runs, each with a different
resampling of the training data

Training data size
(reactions per class) AP3 + LR AP3 + MLP RxnRep + MLP RXNFP + MLP DRFP + MLP

4 0.541 (0.008) 0.518 (0.004) 0.441 (0.010) 0.322 (0.012) 0.100 (0.005)
8 0.628 (0.005) 0.620 (0.004) 0.634 (0.003) 0.394 (0.013) 0.129 (0.004)
16 0.701 (0.011) 0.703 (0.006) 0.767 (0.003) 0.471 (0.010) 0.199 (0.008)
32 0.747 (0.002) 0.761 (0.002) 0.831 (0.002) 0.531 (0.006) 0.266 (0.007)
64 0.782 (0.004) 0.799 (0.004) 0.875 (0.003) 0.575 (0.005) 0.338 (0.006)
128 0.811 (0.002) 0.828 (0.004) 0.900 (0.002) 0.618 (0.004) 0.398 (0.002)
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decoder on the xed RxnRep ngerprint, together with results
obtained using the AP333 ngerprint, as well as the RXNFP28 and
DRFP51 ngerprints based on masked language modelling on
SMILES.40 Even without optimizing the parameters in the GNN
reaction encoder, our RxnRep ngerprint still performs better
than the other ngerprints. Similar behavior is observed for the
TPL100 and Grambow datasets (Section S3.3 of the ESI†).

Finally, we note that the above results are obtained using the
gated graph convolutional network (GatedGCN)52 as the mole-
cule encoder. To check the general applicability of the
contrastive pretraining approach, we tested on two other widely
used GNNs, the graph isomorphism network (GIN)53 and graph
attention network (GAT).54 The results conrm that the
contrastive pretraining can indeed help to learn better models
for small reaction datasets regardless of the used GNNmolecule
encoder (Section S3.4 in the ESI†).
3.3 Analysis of reaction ngerprints

The above discussion shows that the contrastive pretraining can
signicantly improve model performance on small reaction
datasets. Next, we examine how pretraining helps to learn better
models. To this end, we embed the learned high-dimensional
1452 | Chem. Sci., 2022, 13, 1446–1458
reaction ngerprint vectors into a two-dimensional space and
analyze the patterns in the embedding space.

TMAP55 embeddings for reactions in the Schneider test set
are presented in Fig. 5 (see Section 5 for a description of
TMAP). The pretrained model uses the same reaction
augmentations as in Section 3.2; the supervised and ne-
tuned models are trained on 8 labelled reactions per class.
The 46 reaction classes in the Schneider dataset are derived
from 8 super classes based on the RXNO ontology,56 and the
reactions in the plot are colored according to the super class
labels. The supervised model is able to single out some
reaction classes such as oxidation (brown) and functional
group interconversion reactions (pink). However, supervised
by a limited supply of labels, it struggles to clearly distinguish
other reactions classes. For example, heteroatom alkylation
and arylation (blue), acylation and related processes (yellow),
and C–C bond formation (green) are intermixed with each
other. Not surprisingly, the pretrained model without using
any labels cannot distinguish between all reaction classes
either, but it is encouraging to see that the pretrained model
can already separate some reactions from the rest, such as
deprotection (red) and reduction (purple) reactions. Fine-
tuned using a small number of labels, the model becomes
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Embedding of the reaction fingerprints in a two-dimensional space. Each dot in the plot represents a reaction and is colored according to
its super family label. The graph layout is generated by TMAP,55 and, in general, similar reaction fingerprints are embedded closer to each other.
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capable of distinguishing all reactions. The most intriguing
observation is related to the heteroatom alkylation and ary-
lation (blue), acylation and related processes (yellow), and
C–C bond formation (green) reactions, which the supervised
model struggles with. When only pretrained, the three seem
to be highly intermixed, and thus one might guess that the
pretraining would not help in learning a better model.
However, aer ne-tuning, the boundaries between them
become more clear compared with the supervised model,
although a small number of blue and yellow dots are still
intermixed, which correspond to “methyl esterication” and
“Fischer–Speier esterication” reactions that are very similar
to each other as discussed in Section 3.2. This suggests,
although not explicitly, that the pretraining indeed provides
important channels for the ne-tuned model to take advan-
tage of, e.g. transforming the model parameters into a space
easier to learn.

In essence, the contrastive pretraining by itself can already
separate some reaction classes from others, and, for the inter-
mixed reactions, it makes the task easier for later ne-tuning.
The ne-tuning takes advantage of the structural information
in the unlabelled reactions, which is distilled and injected into
the model via the contrastive pretraining.
© 2022 The Author(s). Published by the Royal Society of Chemistry
3.4 Searching for similar reactions

In addition to classifying reactions, the model can be repur-
posed for other use cases. For example, the learned reaction
encoder can be readily used as a featurizer to turn a reaction
into its vector ngerprint, replacing traditional rule-driven ones
derived from molecule descriptors (e.g. atom pairs35). The
reaction ngerprints can then be applied to other supervised
machine learning tasks for reactions, such as the prediction of
reaction conditions and reaction yields. Here, we focus on an
unsupervised task—searching for similar reactions, which plays
an important role in many chemical applications such as
information retrieval in large reaction databases and synthesis
route planning.

Given a query reaction, we compute its ngerprint h and
then search for similar training set reactions in the ngerprint
space using the k-nearest-neighbor algorithm with the cosine
similarity as dened in eqn (3). We consider two scenarios:
querying for one reaction whose class is in the training data and
for another reaction whose class is not in the training data. For
the former case, we query for a Fischer–Speider esterication
reaction that generates an ester from an alcohol and a carbox-
ylic acid. As the training data contains such reactions, it is not
too surprising that the rst %7E200 retrieved reactions are all of
Chem. Sci., 2022, 13, 1446–1458 | 1453
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the same type as the query reaction. Nevertheless, this means
that the model is effectively able to learn the notion of func-
tional groups that take part in a reaction, although such infor-
mation is never disclosed to the model. (The model does know
the reaction center of a reaction via the altered bonds, but not
the functional groups). Four representative retrieved reactions
are shown in Fig. 6a (more in Fig. S8 in the ESI†). Retrieved
reactions (S1), (S2), and (S4)† have decreasing similarity scores
to the query reaction q1, suggesting that the model not only
recognizes the functional groups in the reaction center, but also
attends to structures away from the center. Reaction (S3),† in
which the ]O bond in the carboxylic acid group is replaced by
a ]S bond, further conrms the model's assigned importance
of structure away from the reaction center since it has a higher
similarity score than reaction S4.†

As a second more challenging scenario, we query for a Diels–
Alder reaction whose class is not in the training data. For
demonstration, we compiled a new set of Diels–Alder and
Alder–Ene reactions to search, and four representatives are
plotted in Fig. 6b. The Diels–Alder reactions (S5) and (S6)† have
similarity scores of �0.86, much higher than that of the most
similar reaction retrieved from the original training data (0.64).
More importantly, the Alder–Ene reactions S7 and S8† also
exhibit higher similarity scores compared to the query reaction.
The task is more challenging than it seems in Fig. 6 because
Fig. 6 Similar reaction search enabled by the learned reaction fingerprin
class is in the training data. Similarity score indicates that the learned reac
to molecular structure away from the reaction centers. (b) Query for a D
query can find reactions in the same class as well as reactions not in the

1454 | Chem. Sci., 2022, 13, 1446–1458
hydrogens are not explicitly modeled in the input graphs to our
model. (Due to the large number of hydrogens in the molecules,
including them greatly increases the size of the graphs and thus
the computational burden). In fact, Diels–Alder and Alder–Ene
reactions have very similar reaction mechanisms: they are both
6-electron pericyclic reactions. The underlying driving force is
the formation of new s-bonds, which are energetically more
stable than the reactant p-bonds. It is unlikely that our model
has parametrized such delicate rules, given that the inputs are
simple 2D molecular graphs. Nevertheless, it is encouraging
that the reaction encoder can generate meaningful reaction
ngerprints for reaction classes that the encoder are never
exposed to for learning. Furthermore, it assigns high similarity
scores for reactions that exhibit very similar reaction mecha-
nisms. Hence, the methodology presented here may be useful
for discovering or designing novel chemical reactions, as many
“new” reactions share similarities with or are variations on
mechanisms of known reactions.

The two scenarios demonstrate that the reaction encoder can
generate meaningful reaction ngerprints for querying similar
reactions, respecting both the functional groups in the reaction
center and features away from the center without knowing the
functional groups a priori. The results indicate capabilities beyond
previous reaction query systems that depend on matching pre-
dened reaction templates dened by functional groups.
ts. (a) Query for a Fischer–Speier esterification reaction whose reaction
tion fingerprints not only recognize the reaction centers but also attend
iels–Alder reaction whose reaction class is not in the training data. The
same class but which have a similar reaction mechanism.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Furthermore, we note that the reaction encoder can be applied to
reaction classes and mechanisms that are very different from any
provided in the training data, although care should be taken to
not extrapolate inappropriately to avoid unbounded uncertainty.57

4. Conclusions

We have designed a machine learning model based on graph
neural networks (GNNs) for reaction classication and proposed
a contrastive approach to pretrain the model using only unla-
belled data. The contrastive approach trains a model via self-
supervision by pulling different augmented versions of a reac-
tion together and pushing them away from other reactions. We
have found that a chemically consistent reaction augmentation
strategy that protects the reaction center is the key to the success
of the contrastive approach. Selecting reaction centers based on
the broken and formed bonds in a reaction and then augment-
ing the reaction by dropping atoms beyond a subgraph around
the reaction center is found to be a robust augmentation
strategy. GNN models pretrained using this augmentation
strategy and then ne-tuned on a small number of labelled
reactions signicantly outperform both supervised models
trained from scratch and models based on reaction ngerprints
derived from expert rules or masked language modelling.

By analyzing the learned GNN reaction ngerprints, we
found that the pretraining by itself can already help to separate
some reaction families from others; leveraging a small number
of exact labels, the pretrain-ne-tuning approach learns an even
better model. The learned models can be repurposed for other
applications, which is demonstrated by searching for similar
reactions in the ngerprint space. This demonstration also
shows that the learned reaction ngerprints understand both
the functional groups in the reaction center and chemical/
structural features away from the center, and it has certain
transferability to reactions not in the training data. We expect
that the reaction ngerprints can also be used as the starting
point for transfer learning other reaction properties from small
datasets, such as predicting reaction conditions and reaction
yields. Our graph-based approach does not consider stereo-
chemistry and requires all reactions to be balanced; however,
these limitations can be overcome by incorporating techniques
developed in, e.g. ref. 58 and 59, respectively.

Overall, we have demonstrated a simple yet powerful
approach to pretrain machine learning models for chemical
reaction data without requiring any label information. We
believe such chemically consistent pretraining approaches
constitute a key component to the future success of applying
modern machine learning methods to solve challenging
chemical problems, e.g. guiding experiments where it is
extremely time-consuming or expensive to obtain a large
number of labelled data.

5. Methods
5.1 Data

We have curated three reaction datasets, namely, the Schneider,
TPL100, and Grambow datasets. The Schneider and TPL100
© 2022 The Author(s). Published by the Royal Society of Chemistry
datasets are derived from the Schneider 50k dataset33 and the 1k
TPL dataset,28 respectively, both of which are descendants of the
USPTO dataset of patent reactions.14 Aer further cleaning (add
missing atom map numbers and remove reactions whose
elements are not balanced between the reactants and products),
38 800 reactions with 46 classes remain in the Schneider data-
set. Reactions in this dataset are labelled according to the RSC
RXNO ontology.56 The 1k TPL dataset has 1000 reaction classes,
obtained by selecting the 1000 most frequent template labels
from a template extraction workow.28 This dataset is extremely
imbalanced. Aer further cleaning (the same as for the
Schneider dataset), the most frequent 100 reaction classes, each
with 850 reactions, are selected to form the TPL100 dataset. The
Grambow dataset is derived from a dataset of reaction and
activation energies by Grambow and coworkers.3,60 We generate
the class labels by matching the reactions to the reaction
mechanism generator (RMG) templates.61 Only a very small
portion of reactions have an RMG template and thus a small
dataset of 1602 reactions with 5 reaction classes is obtained.

For each dataset, the contrastive pretraining uses all data,
ignoring the class labels. For the supervised training and ne-
tuning, a dataset is randomly split into the training, valida-
tion, and test subsets with a ratio of 8 : 1 : 1. To simulate the
case of small datasets, we intentionally do not use the full
training set, but randomly draw 4, 8, ., 128 reactions per class
from the training set to form small subsets. We optimize the
model parameters using the training subsets, select hyper-
parameters based on model performance on the validation set,
and report results on the test set. We emphasize that the
hyperparameter search is only conducted for the supervised
model to ensure their best performance. For the pretrained and
ne-tuned models, the same hyperparameters as their super-
vised counterparts are adopted, except for one hyper-
parameter—temperature s in the loss function of eqn (2), which
is determined via the performance of the ne-tuned model. We
nd that a value of 0.1 is robust for different datasets and thus
adopt it for all experiments. The optimal model hyper-
parameters are obtained via grid search and are given in Tables
S2 and S3 in the ESI.†
5.2 Model training

The inputs to the models are attributed molecular graphs with
atom, bond, and global features. Following our previous work,1

we opt for simple features that can be generated with RDKit,62

and a summary of the selected features is given in Table S1 in
the ESI.† In addition to the attributed molecular graphs, the
model also needs atom mapping between the reactants and
products to accomplish two tasks: computing the difference
features in the reaction encoder and selecting the same atoms
(bonds) in the reactants and products for augmentation. The
three datasets used in this work all come with atom mapping.
For a dataset where atommapping is not readily available, it can
be obtained via integer linear programming63 and even data-
driven approaches.38 We refer to ref. 64 for a benchmark of
many existing open-source and commercial atom mapping
tools.
Chem. Sci., 2022, 13, 1446–1458 | 1455
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The models are implemented using DGL65 with a PyTorch66

backend. We train all models using the Adam optimizer67 with
an initial learning rate of 10�3 and a cosine learning rate
scheduler to dampen the learning rate to 10�6 towards the end
of the training. For the supervised and ne-tuned models, we
train for a maximum of 200 epochs with a minibatch size of 100
(64 for the Grambow dataset) by minimizing the cross-entropy
loss function. For the contrastive self-supervised model, we
train for 100 epochs with a larger minibatch size of 1000 (large
batch size improves performance of the contrastive model44) by
minimizing the loss function in eqn (1). A total number of 100
epochs is enough for the contrastive model since the loss does
not further decrease aer �60 epochs (an example loss versus
epoch curve is given in Fig. S1 in the ESI†).

For models using xed reaction ngerprints, the AP333

ngerprint is calculated using RDKit;62 the RXNFP28 and DRFP51

ngerprints are obtained using codes associated with the
papers that introduce them. We use scikit-learn68 to train the
logistic regression algorithm on the AP3 ngerprint and use
PyTorch to train MLPs on all the ngerprints (including our
RxnRep ngerprint).
5.3 Functional group determination

To determine the functional group in a molecule that partici-
pates in a reaction, we loop over a list of predened functional
groups and check whether a functional group is in the molecule
by SMARTS matching69 as implemented in RDKit.62 If a func-
tional group is in the molecule and it also contains atoms in the
broken or formed bonds, it is reserved as a candidate. Among
the candidates, the one with the most number of atoms is
selected as the functional group for the molecule (see Algorithm
1 in the ESI†). For example, in the reaction shown in Fig. 2a,
there are two candidate functional groups for the butyric acid,
–OH and –COOH, both of which contain atoms in the broken
oxygen–hydrogen bond. The –COOH group is selected because
it has more atoms. The DayLight example SMARTS70 are
employed as the predened functional groups.
5.4 TMAP embedding

We embed the high-dimensional reaction ngerprints into
a two-dimensional space using TMAP.55 TMAP rst builds a k-
nearest-neighbor graph using a similarity measure of the high-
dimensional reaction ngerprints. (We use the k-nearest-
neighbor algorithm implemented in scikit-learn68 and the
cosine similarity dened in eqn (3)) .Based on the k-nearest-
neighbor graph, TMAP then calculates a minimum spanning
tree and nally generates a layout for the resulting minimum
spanning tree.
Data availability

The code is released as an open-source repository at https://
github.com/mjwen/rxnrep. The Schneider, TPL100, and Gram-
bow datasets are provided along with the repository. The orig-
inal Schneider 50k, 1k TPL, and Grambow datasets are
1456 | Chem. Sci., 2022, 13, 1446–1458
described in ref. 28, 33 and 60, respectively, and can be obtained
therein.
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