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Introduction

Accuracy of quantum chemistry structures of
chiral tag complexes and the assignment of
absolute configurationf

Kevin Mayer, (2 Channing West,? Frank E. Marshall,” Galen Sedo,®
Garry S. Grubbs II, ©2° Luca Evangelisti © *® and Brooks H. Pate (2 *°

The absolute configuration of a molecule can be established by analysis of molecular rotational spectra
of the analyte complexed with a small chiral molecule of known configuration. This approach of
converting the analyte enantiomers, with identical rotational spectra, into diastereomers that can be
distinguished spectroscopically is analogous to chiral derivatization in nuclear magnetic resonance
(NMR) spectroscopy. For the rotational chiral tag method, the derivatization uses noncovalent
interactions to install the new chiral center and avoids complications due to possible racemization of
the analyte when covalent chemistry is used. The practical success of this method rests on the ability to
attribute assigned rotational spectra to specific geometries of the diastereomeric homochiral and
heterochiral tag complexes formed in the pulsed jet expansion that is used to introduce samples into
the microwave spectrometer. The assignment of a molecular structure to an experimental rotational
spectrum uses quantum chemistry equilibrium geometries to provide theoretical estimates of the
spectrum parameters that characterize the rotational spectrum. This work reports the results of a high-
sensitivity rotational spectroscopy study of the complexes formed between (3)-butyn-2-ol and
verbenone. The rotational spectra of four homochiral and four heterochiral complexes are assigned. In
addition, the 14 distinct, singly-substituted **C isotopomer spectra of five of these species are assigned
in natural abundance. Analysis of these spectra provides direct structural characterization of the
complexes through determination of the carbon atom position coordinates. This data set is used to
benchmark quantum chemistry calculations of candidate equilibrium geometries of the chiral tag
complexes. The quantum chemistry calculations are limited to methods commonly used in the field of
rotational spectroscopy. It is shown that the accuracy of the structures from quantum chemistry
provides a high-confidence assignment of cluster geometries to the observed spectra. As a result, a
high-confidence determination of the analyte (verbenone) absolute configuration is achieved.

molecule - called the “chiral tag.”'"® The geometries of the
chiral tag complexes, which are formed in a pulsed jet expan-

This work examines the ability to assign the absolute con-
figuration of a molecule through identification of the structure
of a complex formed between an analyte and a small, chiral
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sion where the analyte and tag molecule are added to the inert
carrier gas, are analyzed using broadband molecular rota-
tional spectroscopy. The goal of this approach is to develop
a generally useful analytical chemistry methodology that can
assign the absolute configuration of a molecule with high
confidence and without the need of a reference sample of the
analyte with known configuration. This application extends
significant previous work on the structures of weakly bound
complexes of chiral molecules in vibronic,”*° vibrational,***?
and rotational spectroscopy.’**® The goal of developing an
analytical chemistry methodology places additional demands
on quantum chemistry structure determination. Specifically,
there is a need for rapid quantum chemistry geometry opti-
mizations so that the computational analysis does not lead to
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unacceptably long times to make the absolute configuration
determination.

The physical chemistry community continues to develop
spectroscopy methods to assign the absolute configuration
of molecules.’®?" Spectroscopy methods ultimately require
quantum chemistry predictions of the spectrum for analysis.
Perhaps the most successful technique is vibrational circular
dichroism (VCD) and its related method of Raman optical
activity.*>** The keys to its success are an underlying spectro-
scopy method - vibrational spectroscopy - that has good
chemical selectivity and the development of quantum chemis-
try methods to calculate the VCD spectroscopy with sufficient
accuracy to make high-confidence determinations of the
configuration.”*?* This spectroscopy technique has been vali-
dated in many experiments and has now been accepted as an
analysis method in the U.S. Pharmacopeia (Chapters (782) and
(1783)). Photoelectron circular dichroism (PECD) has seen
rapid development in the past few years from both the experi-
mental and theoretical sides and continues to expand its scope
of application.?*™*° Nuclear magnetic resonance (NMR) spectro-
scopy has unrivaled chemical selectivity and generality and
there are many applications of NMR in chiral analysis.***"
However, the task of assigning absolute configuration still
poses challenges. A common approach in NMR spectroscopy
is to convert the enantiomers into diastereomers by adding an
additional chiral center of known configuration and of high
enantiopurity. This chiral center can be added through covalent
chemistry - chiral derivatization - or through creation of long-
lived complexes with the chiral discrimination agent in
solution - chiral solvation. The challenge for assignment of
absolute configuration is attributing the now distinguishable
NMR resonances to a specific diastereomer structure. Methods
to make this spectroscopic assignment using theoretical spec-
tra from quantum chemistry, and to assess the confidence of
the assignment, are under development.*3?

The application of rotational spectroscopy to chiral analysis
is considered in this work.**® Rotational spectroscopy has
important advantages as an analytical chemistry method. It has
high chemical selectivity and the spectroscopy parameters - the
rotational constants - are directly connected to the molecular
geometry through the principal moments-of-inertia. As a result,
the analysis only requires accurate geometries of the analyte
from theory. Spectrometers for molecular rotational spectro-
scopy have unmatched spectral resolution.>’*° As a result,
analysis can be performed on mixtures. In the case of chiral
analysis, it is possible to analyze multiple species in a
sample.”*° In contrast, spectroscopy techniques with lower
resolution, such as VCD, face difficulty in identifying low
abundance species in a sample and generally require samples
of high purity for analysis. Rotational spectroscopy also faces
challenges as a general analytical chemistry method. These
include the need to volatilize the sample to introduce it in
the pulsed molecular beam, the physical requirement of a
dipole moment, and decreasing sensitivity as molecular size
increases due to the rapid increase in the rotational partition
function.
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Two approaches to chiral analysis using rotational spectro-
scopy have been developed recently. Interest in chiral analysis
by rotational spectroscopy was sparked by the report of the
microwave three-wave mixing techniques by Patterson, Schnell,
and Doyle in 2013.""** The microwave three-wave mixing
technique has similarities to chiroptical measurements. Two
resonant microwave pulses are used to create a time-dependent
quantum state that coherently emits at the sum or difference
frequency of the preparation pulses.”**” The phase of the
emission signal is determined by the sign of the products of
the dipole moment components in the principal axis system
and these differ for the two enantiomers. The chiral signal,
therefore, occurs at the same frequency, but with a different
sign for the left- and right-handed version of the molecule as in
other chiroptical spectroscopies. If the sample has an enantio-
meric excess (EE), the absolute configuration of the dominant
enantiomer can be assigned from the measured phase. However,
despite an early claim that this phase could be measured in an
absolute manner,* there has been no subsequent report of an
instrument design that can make absolute configuration determi-
nations without the use of reference samples of known configu-
ration. In its current state of development, microwave three-wave
mixing cannot meet the challenge of assigning the absolute
configuration of a new analyte.

The second approach to chiral analysis follows the strategy
of NMR spectroscopy to convert enantiomers (with identical
rotational spectra) into diastereomers (with distinguishable
rotational spectra) by adding an additional chiral center of
known configuration. In the rotational spectroscopy implemen-
tation, this additional chiral center is added using noncovalent
interactions via cluster formation in a pulsed molecular
beam.'® Noncovalent attachment of the “chiral tag” avoids
any possible racemization of the analyte during the chiral
derivatization process. One advantage of a chiral derivatization
approach is that spectrometer signals associated with the
two enantiomers now occur at different frequencies (i.e., the
rotational transitions of the resulting diastereomers are fully
resolved in the spectrometer). This contrasts with circular
dichroism and three-wave mixing approaches where the transi-
tion frequencies are the same for the enantiomers and only
differ in phase or sign. The practical result is that chiral tag
rotational spectroscopy can also be used to make quantitative
measurements of the enantiomeric excess of the analyte with-
out the need of a reference sample of known EE to calibrate the
instrument response.

The conceptual basis of chiral tag rotational spectroscopy is
obvious, and the major challenges are to determine the prac-
tical limits of using this technique. The rotational spectroscopy
community is just beginning to explore the scope of the
method including the important issues of measurement sensi-
tivity and the practical size limits for analytes. For the assign-
ment of absolute configuration, there are important issues
about the ability of quantum chemistry to guide the structural
analysis of the rotational spectra of chiral tag complexes so
that high-confidence enantiomer identification is possible.
Quantum chemistry must be able to identify the lowest energy
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isomers of the chiral tag complexes that are likely to be present
in the seeded pulsed jet expansion. Theoretical estimates of the
molecular parameters used to predict a rotational spectrum
must be accurate enough to assign specific isomers of the
complexes to observed spectra. Finally, the theoretical calcula-
tions required to support the spectroscopic analysis need to be
computationally efficient so that the absolute configuration can
be determined on a reasonable time scale. These issues are
explored in this work through an analysis of the rotational
spectrum of verbenone complexed with butynol.

Experimental

The chiral tag complexes in this work are formed through the
1:1 complexation of verbenone with the small chiral molecule
(3)-butyn-2-ol (butynol). A single (1S)-(—)-verbenone sample
is used in all measurements and was obtained from Sigma-
Aldrich (Product 218251 with a reported EE = 53.6 on the
certificate of analysis). Three samples of the chiral tag were
used: a racemic sample (CAS number: 2028-63-9), a high
enantiopurity sample of (R)-butynol (CAS number: 42969-65-3),
and a high enantiopurity sample of (S)-butynol (CAS number:
2914-69-4). The two enantioenriched samples have EE ~ 98 as
verified by chiral gas chromatography prior to the measurements.
The rotational spectroscopy of both verbenone®® and butynol*®
have been reported previously. Over the course of experiments
using butynol as a tag, we have observed that butynal builds up in
the sample even when refrigerated. To avoid this complication,
freshly distilled butynol samples are used in the measurements.

Rotational spectra were recorded on a 2-8 GHz chirped-
pulse Fourier transform microwave (CP-FTMW) spectrometer
with the instrument design and technique previously
described.”®" The introduction of the analyte uses the reser-
voir nozzle design from NIST.>> The sample of verbenone was
heated to 60 °C to achieve optimum sensitivity on the monomer
spectrum. The butynol tag was introduced into the neon gas
stream using an external reservoir system. A 50 mL beaker was
loaded with 100 pL of butynol and placed into a stainless-steel
reservoir with an inlet port for pure neon and a pressure
regulated outlet for introduction of the butynol/neon mixture
into the spectrometer. The neon input pressure was adjusted to
produce an approximate 0.1% mixture of the butynol vapor
pressure in neon (about 2.3 atm of neon in the external
reservoir). The output pressure of the reservoir was set to about
1.5 atm.

Spectra were taken using enantiopure (R)-(+)-butynol, enan-
tiopure (S)-(—)-butynol and racemic butynol with (1S5)-(—)-
verbenone. One goal for this study is to identify as many
isomers of the chiral tag complex as possible. The deep average
measurements used 2 million time-domain free induction
decay (FID) traces for enantiopure tag samples and 1 million
averages for the racemic sample. For the enantiopure mea-
surements, this gave spectra with better than 500: 1 signal-to-
noise ratio for the strongest chiral tag complex spectra. Based
on experience with the University of Virginia CP-FTMW
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spectrometer, an order-of-magnitude estimate of the analyte
consumption is 1 nmol per FID. The 2 million average mea-
surements with enantiopure butynol are, therefore, estimated
to consume 300 mg of verbenone. The spectrometer acquires
approximately 100 000 FID per hour (8 FIDs collected on each
sample injection cycle occurring at 3.3 Hz repetition rate) so
that the enantiopure tag measurements require about 20 hours.
The broadband rotational spectra were fit using JB95,>?
Pickett’s SPCAT/SPFIT,”*® and Kisiel’s PROSPE program
package.’” The Kraitchman analysis”®*® of the *C isotopomer
spectra used Kisiel’s program that includes Costain estimates
of the coordinate errors.”®

The quantum chemistry calculations were performed using
Gaussian 16.°° All geometry optimizations were performed
using the keyword output = Pickett to calculate the rotational
constants, electric dipole moment components, and atom
positions in the principal axis system.

Results

A. Optimized chiral tag complex geometries from
quantum chemistry

One challenge for chiral tag rotational spectroscopy is identify-
ing candidate geometries for the tag complexes because there is
the potential for a large number of isomers for the 1:1 com-
plexes between analyte and tag. Several computational chem-
istry tools for this search have been reported and used in
rotational spectroscopy studies.®’®* However, the search for
candidate structures in this work has used chemical intuition
because there is a clear hydrogen bond formation position that
is expected to dominate the noncovalent interactions. The
general structural chemistry considerations are illustrated in
Fig. 1. There are two distinct sites for hydrogen bond formation
that are defined by the butynol -OH group attaching to posi-
tions where high electron density is expected for lone pairs in
an sp’>-hybridized oxygen atom. In the nomenclature used in
this work, these two sites are designated as E - for approach
from the ethylene side of carbonyl - or B when the butynol
approaches from the side of the bridged structure of verbe-
none. It is found that there are generally two positions of
butynol that are distinguished by the dihedral angle around
the O---O axis of the hydrogen bond. These are simply desig-
nated as D1 and D2 where the D1 structure has lower energy in
the quantum chemistry calculation. In all cases, the lower
energy dihedral position, D1, places the acetylene group of
butynol near the verbenone.

A second structural issue is that butynol has conformational
flexibility. The relaxed potential energy surface for butynol is
shown in Fig. 2. There are two low energy conformations. The
lowest energy monomer conformation, denoted C1, has the OH
anti to the methyl group. The conformation with the hydroxyl
anti to the C-H bond is the second lowest energy conformer,
C2. Both butynol conformations are found in low energy
isomers of the chiral tag complexes identified by quantum
chemistry and observed experimentally. The potential energy
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Fig. 1 The structural characterization of the lowest energy isomers of the
1:1 complexes formed between verbenone and butynol is illustrated. The
two hydrogen bond positions are shown in the top panel (A). Most
quantum chemistry methods identify two equilibrium geometries for the
dihedral angle around the O---O axis of the hydrogen bond as shown in
panel (B). The structures shown in this figure are equilibrium geometries
from the B3LYP GD3BJ def2TZVP calculation set.
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Fig. 2 The conformational potential energy surface (PES) for butynol is
shown. The relaxed PES is calculated using the B3LYP GD3BJ 6-
311++G(d,p) model chemistry. The structures for the three stable con-
formers are also shown.

surface suggests the possibility for a third conformer with the
—-OH anti to the acetylene, but this conformation is expected
to be high energy. This conformation is not observed in the
reported gas phase rotational spectrum of butynol.*” Isomer
searches starting from this butynol conformation were not
considered.
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With these structural features defined, an example of the
naming convention for isomers in the quantum chemistry
calculations is HOMEC1D2. This name would indicate that
the complex is formed between (S)-verbenone and (S)-butynol,
designated a homochiral complex. The butynol attaches from
the ethylene side of the carbonyl with the lowest energy mono-
mer conformation of butynol and with the second lowest
energy dihedral orientation about the O-.-O hydrogen bond
axis. Also note, the rotational spectrum would be identical for
the enantiomer of this complex that is formed between (R)-
verbenone and (R)-butynol.

Quantum chemistry results are only reported for a small set
of quantum chemistry methods. The model chemistries used in
this work are ones that are frequently used in the analysis of
rotational spectra. These methods all include treatment of the
dispersion interaction from correlated electron motion.
Two methods are density functional approaches: B3LYP with
Grimme’s D3 dispersion corrections (with Becke-Johnson
damping)®® and the higher-level B2PLYPD3 method.®® In a
previous benchmarking study of quantum chemistry methods
and rotational spectra of isolated compounds, these two
approaches were shown to give good accuracy in the prediction
of rotational constants.®”” MP2 calculations are also reported.
Finally, two basis sets of comparable size are used. The Pople
basis set (6-311++G(d,p)) is a common basis set used in rota-
tional spectroscopy analysis. The more recent def2TZVP basis is
also evaluated in this work.’® The equilibrium geometry struc-
tures in the principal axis system, rotational constants derived
from these structures, and dipole moment vector components
in the principal axis system for the B3SLYP GD3B] def2TZVP
model chemistry are reported in the ESL{ To reduce the
manuscript length, figures that compare experimental and
theoretical results are only shown for calculations with the
def2TZVP basis set. The analogous figures using the Pople
6-311++G(d,p) basis set are available in the ESL.t The tables
reporting computational results show results from both basis
sets. A summary of the relative energies for the isomers
identified in the geometry search for the quantum chemistry
methods selected for this work is presented in Table 1.

The importance of using methods that treat the dispersion
interactions is illustrated in Fig. 3. Although the dispersion
forces may be weak, they can produce large atom displacements
when they act on a coordinate with a weak force constant. For
verbenone-butynol complexes, the dispersion interactions can
strongly affect the dihedral angle about the O---O hydrogen
bond. Density functional calculations without dispersion cor-
rection produce equilibrium geometries that yield rotational
constants with extremely poor agreement with experiment.

B. Assignment of rotational spectra for the chiral tag
complexes

The analysis of the rotational spectra is guided by the quantum
chemistry results. Assignments were performed using the
theoretical estimates of the rotational constants and principal
axis system dipole moment components starting from the
lowest energy theoretical structure. The analysis is slightly

This journal is © the Owner Societies 2022


https://doi.org/10.1039/d2cp04060c

Published on 09 2022. Downloaded on 2024/7/19 04:24:39.

PCCP

Table 1 The relative equilibrium energies (kJ mol™?) for the homochiral
and the heterochiral isomers of the verbenone-butynol complex identi-
fied in the geometry search are listed for the quantum chemistry model
chemistries examined in this work

def2TZVP 6-311++G(d,p)
B3LYP- B3LYP-

Isomer B2PLYPD3 GD3B] MP2 B2PLYPD3 GD3B] MP2
HOMEC2D1 0 0 0 0.39 0 0.45
HOMBC2D1  0.19 0.52 0.04 0 0.10 0

HOMBC1D1 0.44 0.63 1.44 0.69 0.58 1.83
HOMEC1D1 1.29 2.05 0.67 1.73 2.06 1.31
HOMBC1D2 “ “ 3.21 ¢ “ “

HOMEC1D2 5.57 6.24 4.75 5.64 6.35 4.24
HOMBC2D2  6.44 6.62 7.83  6.69 6.48 8.96
HOMEC2D2  7.33 8.02 8.39 9.98
HETEC1D1 0 0 0 0.65 0.12 0.99
HETBC1D1  0.10 0.29 0.07 0 0 0

HETBC2D1  0.86 0.27 1.81 1.02 0.15 2.17
HETEC2D1  1.56 1.55 0.65 1.78 1.54 1.42
HETBC1D2  4.87 4.75 4.25 4.55 4.63 3.27
HETEC2D2  6.65 6.78 7.62 7.8 6.68 8.96
HETEC1D2  7.41 8.20 @ “ “ “

HETBC2D2  7.57 7.60 8.27 7.98 7.42 9.08
AEgsestencrey .14 —0.26 0.08 0.14 —-0.26  0.11

% For these calculations, the geometry optimized to the lower energy
isomer in the dihedral angle about the O- - -O axis of the hydrogen bond
(the associated D1 isomer).

A) DFT with Dispersion Correction

5

Dlhedral Angle 94.5°

Rotational Constant Comparison

B) DFT without Dispersion Correction

| Dihedral Angle: 119.8°|

No Correction:
A = 849.99 MHz
B = 267.11 MHz
C = 260.62 MHz

Experiment:
A = 836.94 MHz
B = 314.41 MHz
C = 299.50 MHz

Dispersion:

A = 835.03 MHz
B = 324.00 MHz
C = 307.75 MHz

Fig. 3 This figure (A) illustrates the need to include dispersion corrections
in the geometry optimization calculations of the verbenone—butynol chiral
tag complexes. The dispersion interactions are important in determining
the dihedral angle about the O---O axis of the hydrogen bond formed
between the hydroxyl group of butynol and the carbonyl group of
verbenone. The DFT calculation without dispersion correction, shown to
the right in (B), has poor agreement between the experimental rotational
constants and those calculated from the equilibrium geometry. Calcula-
tions were performed with B3LYP and the def2TZVP basis set and GD3BJ
dispersion correction.

complicated by the low enantiopurity of verbenone (EE = 54)
which leads to significant amounts of both homochiral and
heterochiral chiral tag complexes even when the high enantio-
purity butynol samples are used. Two spectra were used to
identify the complexes. One spectrum was acquired using
(S)-butynol as the tag and this spectrum is dominated by
homochiral tag complexes. The second spectrum used
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(R)-butynol so that the heterochiral complexes dominate. Rota-
tional spectra for four isomers of the butynol-verbenone
complex were identified for both the homochiral and hetero-
chiral complexes. The rotational constants for these assigned
spectra are compared to the rotational constants of the quan-
tum chemistry equilibrium geometries in Table 2. The two
experimental spectra are shown in Fig. 4. These spectra also
show the residuals after the rotational transitions from all eight
assigned spectra are cut from data set. Any other complexes
present in the pulsed jet expansion are estimated to be less
than 1% of the total number density of 1:1 complexes of the
analyte and tag.

In addition, the measurement sensitivity was sufficient to
assign the 14 distinct singly-substituted *>C isotopomers in five
of the eight complexes. These assignments are used to obtain
direct structural information using Kraitchman’s method.?®°
The carbon atom positions from Kraitchman analysis are
reported in the ESLt The full results of the spectroscopy fit
using the S-reduction of the Watson Hamiltonian can also be
found in the ESL* >”% The ESI,t does not include the assigned
transition frequencies. A major strength of rotational spectro-
scopy is that the Watson Hamiltonian provides a quantitative
model with transition frequencies predicted to a fraction of the
experimental line width. The full fit results and the dipole
component information in Table 4 are sufficient to generate an
accurate representation of the 78 assigned spectra in this work.
Line lists are available on request.

C. Isomer composition analysis

The relative abundances of the chiral tag complex isomers are
estimated from the transition intensities in the broadband
rotational spectrum. This analysis determines a scale factor
between a theoretical spectrum and the experimental spec-
trum. The theoretical spectrum is calculated using SPFIT
and uses the experimental rotational constants, the quantum
chemistry estimates of the dipole moment components, and
assumes thermodynamic equilibrium of the rotational energy
levels at a temperature of 1 K. This temperature is chosen based
on comparisons between observed and calculated spectra in
many measurements in the CP-FTMW spectrometer. The aver-
age scale factor using the 25 strongest transitions in the
spectrum is used to determine the fractional isomer composi-
tion. This process is illustrated in Fig. 5 which shows how the
average transition intensity scale factor for the four chiral tag
complex isomers varies as the number of transitions included
in the average increases. As can be seen, the average scale factor
shows approximately a 10% variation as the number of transi-
tions increases up to 30. Based on this behavior, we estimate
that the scale factors (and, therefore, the relative abundance of
the isomers) have a measurement precision of 10% of the value.
There is no way to determine the accuracy of the composition
determination because there is no orthogonal, validated
measurement method for determining the cluster composition.
However, in a separate study this analysis approach was tested
on the diastereomer content of menthone/isomenthone
samples where the composition could be determined by
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Table 2 The experimental and theoretical rotational constants for the eight observed verbenone—butynol chiral tag complex spectra are reported with
the rotational constant percent error for the quantum chemistry methods used in this work

B2PLYPD3 B3LYP GD3B]j B2PLYPD3 B3LYP GD3B] MP2
def2TZVP def2TZVP MP2 def2TZVP 6-311++G(d,p) 6-311++G(d,p) 6-311++G(d,p)
Experiment® Theory % Theory % % Theory % Theory % Theory %

Isomer Constant (MHz) (MHz) error (MHz) error Theory (MHz) error (MHz) error (MHz) error (MHz) error
HOMBC1D1 A 948.88846(67) 952.28 —0.36 951.42 —0.27 958.79 —1.04 949.34 —0.05 948.59 0.03 953.82 —0.52
B 295.40012(29) 299.72 —1.46 301.22 —1.97 302.90 —2.54 297.94 -0.86 300.30 —1.66 299.58 —1.42

C 260.85724(28) 265.02 —1.60 265.94 —1.95 267.82 —2.67 263.84 —1.14 264.89 —1.55 266.73 —2.25

HOMBC2D1 A 859.1653(14) 863.35 —0.49 861.45 —0.27 869.77 —1.23 858.99 0.02 858.43 0.09 861.86 —0.31
B 306.20216(43) 309.70 —1.14 309.84 —1.19 315.94 —3.18 308.79 -—0.85 309.87 —1.20 312.64 —2.10

C 291.24858(49) 294.96 —1.27 294.91 —1.26 300.61 —3.21 293.94 -0.92 294.73 —1.20 297.61 -—2.18

HOMEC2D1 A 836.9427(16) 839.18 —0.27 835.03 0.23 842.55 —0.67 830.88 0.72 831.61 0.64 813.95 2.75
B 314.41418(43) 320.14 —1.82 324.00 —3.05 328.48 —4.47 322.13 -—2.45 324.04 —-3.06 341.11 -8.49

C 299.49708(44) 304.93 —1.81 307.75 —2.75 310.84 —-3.79 305.79 -2.10 307.22 —2.58 319.39 -6.64

HOMEC1D1 A 986.1931(10) 992.43 —0.63 994.36 —0.83 994.34 —0.83 987.11 —-0.09 991.19 -0.51 983.24 0.30
B 276.80869(37) 279.38 —0.93 279.33 —0.91 288.62 —4.27 279.34 —-0.91 278.35 —-0.56 288.38 —4.18

C 261.96346(37) 264.50 —0.97 263.87 —0.73 273.19 —4.28 264.73 —1.06 262.53 —0.22 272.67 —4.09

HETBC1D1 A 905.3497(13) 906.31 —0.11 905.49 —0.02 912.40 —0.78 903.26 0.23 903.57 0.20 905.61 —0.03
B 286.52860(41) 291.62 —1.78 291.83 —1.85 297.38 —3.79 290.46 —1.37 291.16 —1.62 295.29 -3.06

C 276.45786(43) 280.92 —1.61 281.29 —1.75 285.80 —3.38 279.73 —1.18 280.68 —1.53 283.28 —2.47

HETEC1D1 A 905.85816(81) 911.96 —0.67 912.05 —0.68 914.10 —0.91 906.64 —0.09 909.39 —-0.39 888.73 1.89
B 286.90405(35) 290.87 —1.38 292.30 —1.88 298.87 —4.17 290.81 —-1.36 291.87 —1.73 305.44 —6.46

C 278.45467(34) 282.80 —1.56 283.78 —1.91 287.70 —3.32 282.07 —-1.30 282.74 —1.54 291.31 —4.62

HETBC2D1 A 879.94543(84) 881.39 —0.16 876.62 0.38 890.50 —1.20 878.09 0.21 873.07 0.78 887.28 —0.83
B 320.34351(36) 325.57 —1.63 328.75 —2.62 327.73 —-2.30 323.64 —1.03 328.12 -—2.43 323.36 —0.94

C 279.56130(38) 284.01 —1.59 286.22 —2.38 286.05 —2.32 282.54 —1.06 285.61 —2.16 282.95 -—1.21

HETEC2D1 A 913.4767(27) 919.95 —0.71 918.12 —0.51 921.38 —0.87 912.71 0.08 917.20 —0.41 907.26 0.38
B 300.39373(78) 304.07 —1.22 305.54 —1.71 312.79 —4.13 304.57 —-1.39 304.42 -1.34 313.89 —4.49

C 278.01924(75) 281.21 —1.15 282.58 —1.64 289.53 —4.14 281.63 -—1.30 280.73 —0.98 290.03 —4.32

% The values in parenthesis are the 10 errors in the last two digit.

GC/MS analysis.”® In that case, the accuracy of the diastereo-
mer composition was better than 5% of value. The isomer
composition of homochiral and heterochiral complexes in the
three chiral tag measurements are reported in Table 3.

D. Dipole moment component analysis

The analysis approach described for determining the isomer
composition of the chiral tag complexes is also used to deter-
mine the relative contributions of the a-, b-, and c-type con-
tributions to the full rotational spectrum. In rotational
spectroscopy, the relative intensities of these three spectrum
components are proportional to the squares of the dipole
moment vector components in the principal-axis system and
provide another connection to the quantum chemistry
calculations.” In this analysis, three separate theoretical spec-
tra are generated for each isomer that have only one nonzero
dipole moment component (with the non-zero component set
to 1D). The scale factors for these three spectra are then
determined. A normalized ratio of the a-, b-, and c-type spec-
trum component intensities is reported in Table 4 where the
largest scale factor (most 