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Learning-accelerated discovery of immune-
tumour interactions†
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We present an integrated framework for enabling dynamic exploration of design spaces for cancer immu-

notherapies with detailed dynamical simulation models on high-performance computing resources. Our

framework combines PhysiCell, an open source agent-based simulation platform for cancer and other

multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build

an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dy-

namics of stochastic tumour–immune contact interactions. We implement active learning and genetic al-

gorithms using high-performance computing workflows to adaptively sample the model parameter space

and iteratively discover optimal cancer regression regions within biological and clinical constraints.

Introduction
The translational dilemma in cancer

Immunotherapy—which retunes the body's immune system
to control cancer progression or eliminate it altogether—is
one of the most promising cancer treatment strategies to
emerge in the past ten years.1 In 2010, Hodi et al. reported
that some patients with metastatic melanoma had improved
survival time after potentiating anti-tumour T-cell response

(by targeting CTLA-4).2 Durable (and even complete) re-
sponses were observed in a significant fraction of those re-
ceiving the immune treatment.2 More recent immunother-
apies targeting PD-1 or PD-L1 have significantly improved
3-year overall survival and progression-free survival time in
melanoma.3 Similar advances have been reported in diverse
cancers such as non small-cell lung carcinoma, hepatocellu-
lar carcinoma, and renal carcinoma.4,5

However, cancer immunotherapies do not benefit all pa-
tients equally: only 10–20% of patients receiving immuno-
therapy experience durable, partial or complete responses,
and far more experience only temporary responses or none
whatsoever.4,5 Much work has focused on finding biomarkers
to identify the 20% who can best benefit from immunother-
apy,6 while many others have focused on improving
immunogenicity.4,5

This work has been complicated by the complex dynamics
of tumour–immune interactions that change through the
stages of immunoediting.7 In the elimination phase, the in-
nate and adoptive responses are effective in eliminating
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Design, System, Application

In this paper, we demonstrate how simulations, adaptive model exploration, and high-performance computing can be integrated into a computational pipe-
line to characterize design spaces for cancer immunotherapies and to engineer optimized therapeutic strategies within biological and clinical constraints.
In our pipeline, we build a detailed dynamical simulation model in PhysiCell, an open source agent-based simulation platform for cancer and other
multicellular systems. We then select biophysical parameters of interest and bound those parameters by biological and clinical constraints. We use
EMEWS—an open source platform for extreme-scale model exploration—to coordinate iterative investigations of the simulation model on high perfor-
mance computing systems. We use active learning to accelerate the investigations by adaptively choosing which simulations to run, as well as to rank the
impact of the design parameters on therapeutic performance. In the future, this computational pipeline could be used to help prioritize molecular engi-
neering efforts to tune the most important model parameters and subsequently implement the optimal therapeutic strategy. By design, this approach can
investigate the impact of biological and clinical constraints on therapeutic designs. Thus, the pipeline could help to prioritize future developments to shift
these constraints.
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cancer cells as they emerge. In the equilibrium phase, some
tumour cells escape, but the immune system keeps the over-
all tumour cell population under control. In the final escape
phase, tumour cells evolve to evade immune recognition or
even subvert immune processes (e.g., inflammation) to drive
further growth.7,8 Immune interactions can both harm and
help growing tumours, thus complicating efforts to develop
immunotherapy strategies. Moreover, even effective immuno-
therapeutic responses can follow an initial period of tumour
growth or pseudoprogression.9

Dynamical mathematical models can pierce the complex-
ity of tumour–immune interactions and inform our therapeu-
tic strategies.10–12 Due to the dynamical nature of individual
immune cells, the nuances of individual immune-immune
and immune-cancer cell interactions, and tumour cell hetero-
geneity, it is advantageous to use agent-based models (ABMs)
to mathematically model individual cancer and immune cells
(each with individual positions, states, and immune charac-
teristics), rather than simulate populations of cells with
blurred positions and properties.13

Numerous agent-based models have been developed to
study cancer-immune interactions and immunotherapy (see
the excellent recent review by Norton et al. 2019,14 and our
own recent work by Ghaffarizadeh et al.15 and Ozik et al.16).
By adjusting model parameters and simulation rules, we can
explore the characteristics of successful and unsuccessful
treatments, and learn how the “best policies” vary with a pa-
tient's tumour characteristics.16–18

If we can identify the “behavioural rules” of a successful
immunotherapy, we can seek molecular interventions to im-
plement those rules. For example, we could modify immune
receptor binding efficiencies and protein lifetimes to influ-
ence downstream behaviours such as contact-based
interactions,19–21 or introduce virotherapies that introduce
new genes to a system.22 Immune cells could be engineered
to secrete co-stimulatory ligands to modify differentiation, ac-
tivation, cell trafficking, and other critical multicellular be-
haviours.23 T-cell motility varies from random to strongly di-
rected to help balance exploration and exploitation, based in
part upon how well cells can detect gradients of chemotactic
signals.24–26 Chemotactic motility could potentially be modu-
lated by modifying chemotactic receptor expression, receptor-
ligand binding efficiency, or receptor trafficking characteris-
tics. Cancer immunotherapy could thus benefit from simulta-
neously employing molecular approaches (what medicinal
chemistry can be employed to target specific molecular
biology?) and multicellular systems-level approaches (what
immune cell rules lead to the best cancer control and
remission?).

Computational challenges: Scalability

However, the benefits that arise from ABMs being able to re-
produce the complexity of their referent biological systems
also present challenges to how they are used. Specifically,
one of the longstanding benefits of mathematical models of

biological processes is their ability to use power of abstrac-
tion to aid in the identification of fundamental principles
governing these systems and provide access to the entire
world of formal analysis to enhance understanding. Alterna-
tively, ABMs, as well as other types of complex, dynamic,
multi-scale models, are themselves highly complex objects
that are, to a great degree, not reducible to a formally analyti-
cal form. As a result ABMs are generally treated as experimen-
tal objects, used in simulation experiments similar to their
biological brethren, and their overall behaviour can only be
evaluated by the execution of very large numbers of simula-
tions, a multi-faceted process we refer to as model explora-
tion (ME). ME is a near-ubiquitous component in the devel-
opment of models and algorithms; as applied to ABMs and
other multi-scale models, it often involves an iterative
workflow where simulation experiments are carried out
across a large range of parameter values for purposes such as
model calibration, model optimization or model behaviour
characterization. Model outputs after one set of simulation ex-
periments are evaluated against some predetermined metric,
which informs the next iteration of simulation experiments.
Examples of ME algorithms include Active Learning (AL)27

and Genetic Algorithms (GA),28 both of which are used in ME
studies in this paper (see Table 1). While advances in high-
performance computing (HPC) can allow for the para-
llelization of certain aspects of this process, resulting in high-
throughput dynamic knowledge representation and hypothe-
sis evaluation to address a current bottleneck in the Scientific
Cycle,29,30 we propose that the ME process itself can be en-
hanced with a computational framework.31 The remainder of
this paper presents a ME workflow implemented via an inte-
gration between an existing toolkit for creating ABMs of can-
cer, PhysiCell, and an HPC ME workflow framework, Extreme-
scale Model Exploration with Swift (EMEWS); the developed
workflow investigates the characterization of the parameter
space of an abstract model of immunotherapy on a generic tu-
mour model to find optimal cancer regression regions.

Description of bio-ABMs and
PhysiCell
Agent-based modelling in cancer immunology

In agent-based models, each individual cell is a software
agent: an autonomous object with individual parameter
values, state, and methods (functions) to govern behaviour in
a virtual environment. In the context of simulated cancer im-
munology, the agents are cancer and immune cells, their pa-
rameters describe biological properties like birth and death
rates and immunogenicity, the state can include the cell's po-
sition and cell cycle status, the virtual environment is the tis-
sue microenvironment, and the methods can control entry
into the cell cycle, cell motility, and other key biological pro-
cesses. Introducing new cell types is a matter of defining
their individual functions and setting their parameters; thus,
modellers can readily build simulation models that can ex-
plore the emergent dynamics of various immune cell types as
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they interact with each other and cancer cells in 3-D tissue
microenvironments. This affords the possibility of identifying
key biophysical parameter constraints in improving cancer
immunotherapies.

To date, most mathematical modelling of cancer-immune
interactions have used non-spatial models (i.e., systems of
differential equations), molecular-scale models of signaling
dynamics, or lattice-based agent-based models that could not
readily investigate the impact of mechanical interactions be-
tween tumour and immune cells. See Norton et al.14 for a re-
view of agent-based simulation models of tumour immune
microenvironments, and Metzcar et al.13 for a broader over-
view of cell-based computational modelling in cancer biology.
In the work below, we focus on previously unexplored me-
chanical, spatial, and stochastic aspects of tumour–immune
contact interactions.

PhysiCell: a platform for multicellular systems biology

In Ghaffarizadeh et al.,15 we developed PhysiCell, a general
purpose simulation platform for multicellular systems biol-
ogy. In this C++ modelling framework, each cell is an off-
lattice agent with motion governed by the balance of adhe-
sive, repulsive, motile, and drag-like forces. Each cell has an
independent cell cycle state (including volume changes), can
perform biased random migration with user-programmed
functions, and can progress through apoptotic and necrotic
death processes. Modellers can attach customized data and
C++ functions to each agent, and dynamically modify these
data and functions in individual cells throughout the dura-
tion of a simulation. This allows the framework to be very
closely tailored to selected biological problems. Its modular
design allows further customization by open source contribu-
tors. For example, Letort et al. recently integrated Boolean
signalling networks into each cell agent to model molecular-
scale processes.32

In most models, cell behaviour is linked to the values and
gradients of diffusing substrates, such as oxygen-dependent
cell cycle entry and necrosis and chemotaxis towards signal-
ling factors. To facilitate this, PhysiCell uses BioFVM33 to
solve 3-D diffusion equations for one or many diffusible fac-
tors (typically 1–10 factors), with automated integration with
the cell agents. Each cell can readily secrete or uptake from
the chemical microenvironment, or sample the value or gra-
dient of any or all substrates.

PhysiCell is cross-platform compatible: models can be
compiled and run on Linux, macOS, Windows, and other op-
erating systems with little to no modification. The framework
has been parallelized with OpenMP and tuned to run 3-D
simulations of 106 or more cells on desktop workstations.

PhysiCell model of cancer-immune contact dynamics

In Ghaffarizadeh et al.,15 we introduced a simple model of
3-D immunosurveillance against heterogeneous tumours,
with a special focus on the spatial dynamics of stochastic tu-
mour–immune contact interactions. In the model, each can-

cer cell has a mutant “oncoprotein” p which drives prolifera-
tion: the greater the expression of p, the more likely the cell
cycles and divides. In the absence of other selective pres-
sures, the cells with the greatest p expression clonally expand
and dominate the dynamics of the tumour. Under the simpli-
fying assumption that a highly-expressed mutant protein
would be reflected as a more immunogenic peptide signature
on major histocompatibility complexes (MHCs),34 we
modelled each cell's immunogenicity as proportional to p.

To model immunosurveillance, after simulating 14 days of
growth we introduced generic immune cell agents that move
towards tumour cells by chemotaxis (a random biased migra-
tion towards a cell-released chemical factor), test for contact
with cells, stochastically form spring-like adhesions to any
cell in close contact, and then test for immunogenicity. While
adhered to a target cell, the immune cell agent attempts to
induce apoptosis (e.g., by the FAS receptor pathway35) with a
probability that scales linearly with immunogenicity. If suc-
cessful, the tumour cell undergoes apoptosis, while the im-
mune agent detaches and resumes its chemotactic search for
additional tumour cell targets. If the immune cell does not
kill the tumour cell, it remains attached while making further
attempts to induce apoptosis until either succeeding or
reaching a maximum attachment lifetime, after which it de-
taches without inducing apoptosis. See Ghaffarizadeh et al.15

(2018) for further technical and mathematical model details.
The model presented in this paper was implemented

using PhysiCell Version 1.4.1, and modified the model from
Ghaffarizadeh et al.15 and Ozik et al.16 to allow selection of
2-D or 3-D simulations. The full source code is available at
GitHub; see the link in the ESI.†

A 4 K-resolution video of the 3-D model was published as
part of Ghaffarizadeh et al. (2018), and can be viewed at
https://www.youtube.com/watch?v=nJ2urSm4ilU. Readers
can interactively run and explore the 2-D model at
https://nanohub.org/tools/pc4cancerimmune, built using
xml2jupyter.‡36

In Ghaffarizadeh et al.,15 we performed one large 3-D sim-
ulation of this model, finding that stochastic immune cell
migration had a major impact on this system by increasing
spatial mixing between tumour and immune cells, potentially
contributing to more successful immune responses. However,
to further understand this system would require hundreds or
thousands of additional simulations.

Preliminary model exploration

In Ozik et al.,16 we explored a three-dimensional parameter
space to further investigate the role of stochasticity in this
model. The parameters investigated consisted of:

• Immune cell attachment rate: the rate at which an im-
mune cell can form an adhesive bond with another cell in
close contact;

‡ A free nanoHUB registration is required to run the model.
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• Immune cell attachment lifetime: the mean time the im-
mune cell spends attached to a target cell before detaching
and resuming its search for targets; and

• Migration bias (with 0 ≤ bias ≤ 1). If the bias is 0, mi-
gration is purely Brownian, while a bias of 1 indicates deter-
ministic chemotaxis. Intermediate values give a biased che-
motactic random walk.

We discretized the parameter space into 27 parameter sets
(low, medium, and high values for each parameter), with
multiple simulation replicates (with different random seeds)
per parameter set. We found that both the attachment rate
and attachment lifetimes had threshold effects: once the pa-
rameters were sufficiently high, further increases did not sig-
nificantly improve the immune response. However, the bias
parameter was markedly non-monotonic: either decreasing
bias (leading to more exploration by immune cells by more
random tumour–immune mixing) or increasing the bias pa-
rameter (leading to more exploitation by immune cells by di-
rectly moving to the closest tumour cells) led to an improved
immune response compared to our original simulation.15

However, this work was only a first step: it did not further
explore the parameter space to find phase transitions in
model behaviour or to find optimal parameter sets to maxi-
mize and minimize the success of the immune response.
Moreover, it neglected many other important parameters.

Control and optimization problem

Building upon this work, we now seek to explore a fuller set
of design parameters, over a 6-dimensional design space:

• Immune cell apoptosis rate rapoptosis: this is the rate at
which immune agents undergo apoptosis. Decreasing this
could model immunoengineering to decrease immune ex-
haustion (d1 in the EMEWS investigations and in Table 2).

• Oncoprotein threshold pthreshold: immune agents ignore
cells with p < pthreshold. Modulating this parameter is analo-
gous to engineering immune cell sensitivity (d2 in Table 2).

• Immune cell kill rate rkill: the rate at which an adhered
immune cell can trigger apoptosis in the attached tumour
cell, with probability (in any time interval [t,t + Δt]) given by
rkill·p·Δt (d3 in Table 2).

• Immune cell attachment rate rattach: as described above,
the rate at which an immune cell can adhere to a cell in close
contact (d4 in Table 2).

• Immune cell attachment lifetime Tattach: as described
above, the mean time an immune cell maintains an attach-
ment before searching for another target (d5 in Table 2).

• Immune cell migration bias b: as described above, this
governs the randomness of immune cell chemotactic migra-
tion. This could potentially be tuned by altering chemorecep-
tor expression (d6 in Table 2).

We now consider two related sets of problems:
• Cancer control: can we divide the 6-dimensional design

space into “viable” and “non-viable” regions, where the viable
region is defined to be all parameter sets (designs) for which
the final cancer cell population Nfinal (after 21 days) did not

exceed the initial population Ninitial, computed over multiple
stochastic replicates (stable scenario: Nfinal ≤ Ninitial).

• Cancer regression: can we find regions of the design
space where the cancer population is reduced to 10% of its
initial size? (10% scenario: Nfinal ≤ 0.1 Ninitial) Can we find re-
gions of the design space where the cancer population is re-
duced to 1% of its initial size? (1% scenario: Nfinal ≤ 0.01
Ninitial) Can we minimize Nfinal? (minimized scenario).

To reduce the computational cost of our investigation, we
explored the model in 2D; future investigations will explore
optimal designs in the full 3-D model. To simulate in 2D, we
only require one change: the number of immune cell agents
introduced at the start of therapy (t = 14 days). We set the
number of immune agents at 125: approximately the number
of immune cells initially in the z = 0 plane in the full 3D
model in Ghaffarizadeh et al.15

We note that the edges of the hypercube represent biologi-
cal and clinical constraints: biological processes (e.g., cell at-
tachment rates) may be impossible to accelerate beyond a
physical limit, while side effects may impose other clinical
constraints on parameter values (e.g., if immune cells are too
sensitive, they may kill healthy cells as well).

Model exploration workflow solution:
EMEWS

As previously noted, the parameter spaces of complex ABMs,
coupled with the highly non-linear relationship between ABM
input parameters and model outputs, require heuristic ME
approaches that adaptively evaluate large numbers of simula-
tions. Here we give a brief overview of how the Extreme-scale
Model Exploration with Swift (EMEWS) framework31 enables
the creation of HPC workflows for implementing large-scale
ME studies (see ref. 37 for further details).

EMEWS is built on the general-purpose parallel scripting
language Swift/T,38 which provides the capability of running
multi-language tasks on anywhere from desktops to peta-
scale plus computing resources with a data-flow paradigm for
inter-task dependencies. Central to data-flow is the run-to-
completion pattern, where the outputs from completed tasks
are used as inputs to subsequent tasks. While this approach
for inter-task dependencies is sufficient for many applica-
tions, EMEWS introduced the ability to define resident, or
stateful, tasks to encapsulate the logic within iterating, state-
preserving algorithms, such as those used for ME.39 These
resident tasks can communicate with the rest of the workflow
and, in fact, allow for an Inversion of Control (IoC) scheme,
where the resident task can control the logical flow of the
workflow, rather than needing to implement the logic in the
workflow language itself. As such, an ME algorithm can be
expressed in Python or R with the only required modification
being that it uses the high-level queue-like interfaces, cur-
rently with two implementations EQ/Py and EQ/R (EMEWS
Queues for Python and R). The queue interfaces are used for
iteratively communicating parameter combinations generated
by the ME algorithm to the underlying workflow for
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concurrent model instance execution, and for retrieving the
results from those model runs. The rest of the ME algorithm
remains unmodified. This allows the direct use of the many
libraries relevant to ME that are being actively developed
and implemented as free and open source Python and R
software. We exploit this capability in the current work by
implementing a Python-based GA workflow and an R-based
AL workflow to explore our PhysiCell model.

The multi-language capabilities of Swift/T provide the abil-
ity to run external applications (with run to completion se-
mantics) through the shell, in-memory libraries accessed di-
rectly by Swift/T, or Python, R, Julia, C, C++, Fortran, Tcl and
JVM language applications. In this work we use the shell-
based approach for launching the individual PhysiCell model
runs.

Methods: description of
computational experiments
Description of PhysiCell and EMEWS integration

Our focus here is on delineating the shape of the parameter
space with respect to the final tumour cell count. To this
end, we have created two workflows: one in which the pa-
rameters to evaluate are produced by an AL algorithm27 and
one, as a consistency check on the AL results, in which the
parameters are produced by a GA.28 In the AL case, we em-
ploy a binary classification of regions within our space,
where we define an objective and find parameter subspaces
that are capable of meeting the objective (viable), versus
those that cannot (non-viable). More specifically, a viable
subspace contains parameters that produce final mean tu-
mour cell counts at or below a specified threshold, and a
non-viable subspace contains parameters that produce final
mean tumour cell counts above that threshold. The AL algo-
rithm trains a surrogate model (in the present case a random
forest40 classifier) such that the viability of unevaluated re-
gions of the parameter space can be determined without the
need for additional model runs and the overall structure of
the parameter space can be estimated. In contrast, the GA's
focus is on finding optimal parameters, that is, those that
produce the lowest final mean tumour cell counts. While the
GA is good at finding optima in complex spaces and there-
fore provides a useful consistency check of the AL results, un-
like the surrogate model produced by the AL algorithm, it
does not provide an estimate for the neighbourhood, and
hence the robustness, of the solutions that it finds. Table 1

provides a summary of the two model exploration approaches
we use and the types of outcomes they produce. The modu-
larity of EMEWS allows us to easily replace one model explo-
ration approach with the other while not affecting the rest of
the workflow.

In both AL and GA cases, we run 20 stochastic variations
of each parameter set, varying the random seed across the
runs, and take the mean final tumour cell count over those
20 as the value to evaluate with respect to the objective
threshold. Through earlier investigations we found that 20
stochastic variations provided a balance between computa-
tional effort and the stability of the evaluated outcomes.§

In the AL algorithm, implemented in R, our goal is to iter-
atively pick points (i.e., parameter sets) to sample, such that
we can exploit the results of previous evaluations, but balance
that with an exploratory component in order to investigate
undersampled regions. For the former, we use an uncertainty
sampling strategy where we fit a random forest40 classifier on
previously evaluated points, and then choose subsequent
samples close to the classification boundary, i.e., where the
uncertainty between classes is maximal. We cluster these can-
didate points of maximal uncertainty, and then select from
within the clusters, in order to ensure a level of diversity in
the sampled points and, therefore, a greater expected reduc-
tion of uncertainty.41 The exploratory component randomly
samples points in the parameter space. At each iteration of
the AL algorithm, all of the chosen points, i.e., exploit and ex-
plore points, are collected and evaluated in parallel. The re-
sults of those evaluations are gathered and the random forest
model is refit with the additional data, allowing for a new set
of points to be chosen for sampling. This process is contin-
ued until a convergence or, in the present case, a maximum
number of iterations is achieved.

Random forest classifiers can also produce measures of
relative importance of a space's dimensions. A random for-
est classifier is an ensemble of decision trees, where each
tree is trained on a subset of the data and votes on the clas-
sification of each observation variable. Importance can be
calculated from the characteristics of decision trees. A com-
monly used measure for importance is the mean decrease
in Gini, a measure of the weighted average of a variable's to-
tal decrease in node impurity (which translates into a partic-
ular predictor variable's role in partitioning the data into
the defined classes). Gini decrease is an effective measure
of the relative importance of a variable in classifying the tar-
get observation, across all of the decision trees in the forest.
A higher Gini decrease value indicates higher variable im-
portance and vice versa and we have ordered the dimensions
in our output plots accordingly (see Results, Fig. 2–4). De-
tails of the AL algorithm are further described in (ref. 37)

§ While not within the scope of the current study, future work will be able to ex-
amine the impacts of the number of stochastic variations on the estimated
shape of the parameter space boundaries, where variable stochastic replicates
could be used to account for heteroskedasticity.

Table 1 Model exploration methods used with the PhysiCell/EMEWS
workflows and their outcomes

Model exploration
method Outcomes in PhysiCell/EMEWS workflows

Active learning
(AL)

Surrogate models for characterizing the
parameter space structure based on different
viability thresholds

Genetic algorithm
(GA)

Optimal points producing the lowest final mean
tumour cell counts
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and the R code can be found in GitHub; see the link in the
ESI.†

In our GA algorithm, our goal is to iteratively evolve a
population of points to produce points that when evaluated
yield the lowest mean final tumour cell counts. We have
implemented this using the DEAP71 evolutionary computa-
tion Python framework, using the evolutionary algorithm
presented in chapter 7 of ref. 42. During each iteration, the
best points from the currently evaluated population are se-
lected using a tournament selection method to create a new
population. Each of these points is then mated with another
according to a crossover probability and, finally, each of the
resulting points is mutated according to a mutation probabil-
ity. At each GA algorithm iteration, the new population is
evaluated and the evaluation results are gathered. Here, as
with the AL case, we make use of the ability to concurrently
evaluate as many design points as the HPC resource alloca-
tion provides. Also similarly to the AL case, the workflow con-
tinues until the desired number of iterations are achieved.

Both the AL and the GA ME algorithms are integrated into
EMEWS workflows using EMEWS queues, EQ/R and EQ/Py, re-
spectively. The points to evaluate for each iteration are passed
from the ME algorithms to the Swift/T workflow for evaluation
via the queues. As mentioned earlier, each of these parameter
points is expanded into 20 stochastic variations and those vari-
ations are all run in parallel. When each individual run com-
pletes, the workflow executes a small script (written in Python)
to parse the final tumour cell count from the PhysiCell simula-
tion output file. The tumour cell counts for each of the 20 vari-
ations are collected and the mean is calculated using another
small script (written in R).¶ This mean tumour cell count is
then passed back to the ME algorithm as the result of the eval-
uation, again via the queues.

The PhysiCell simulation itself is a stand-alone command
line application that takes the path to an XML format file,
containing all the parameter input for a simulation run, as
an argument. The workflow launches the PhysiCell applica-
tion using a shell script, passing the path to a specially
constructed XML parameter file. This XML file is created for
each run by reading a base XML file that contains a default
set of parameters, replacing only the parameters of interest
with those produced by the ME, and writing the new XML to
a location where it can be read by the PhysiCell application.

This transformation is implemented in a small amount of Py-
thon code, executed by the workflow prior to launching a
simulation run.

Using the two EMEWS workflows, we performed the follow-
ing experiments. For the AL case, we ran 3 scenarios using 3
classification thresholds. In the first scenario, viable sub-
spaces were those that produced a stable tumour cell count,
i.e., non-progression of the tumour (stable scenario). Since the
initialized tumour size consists of 900 tumour cells, the AL
classified all runs where the final mean tumour cell count was
less than our simulation starting value of 900. The second sce-
nario examined a case where the immunotherapy resulted in
a reduction of the initial tumour to 10% of its size; this is the
10% scenario which classified those runs with <90 live tu-
mour cells. The third scenario examined situations where im-
munotherapy reduced the tumour to 1% of its original size;
this is the 1% scenario which captured runs with <9 live tu-
mour cells at their conclusion. For each scenario, the AL algo-
rithm was run for 20 iterations, sampling 25 points using the
maximal uncertainty strategy and 25 using the random strat-
egy, as described above. We performed 20 simulations for
each point, varying the random seed. The full parameter space
from which we sampled consisted of all the combinations of
our 6 parameters, with each parameter discretized across 9
different values (Table 2). Each AL algorithm was seeded with
an initial design, a pre-evaluated set of points. The stable sce-
nario was seeded with 707 evaluations whose points were
sampled using a Latin Hypercube Sampling (LHS) strategy.
The 10% and 1% scenarios were seeded with the 1000 evalua-
tions (i.e., 50 × 20 iterations) performed by the first scenario.

For the GA case, we ran two scenarios differentiated by
the composition of the initial population. In the “seeded”
scenario, the initial population consisted of 12 unique points
found by the first AL scenario (i.e., stable scenario) to be the
best (i.e., lowest mean tumour cell count) and 38 randomly
selected points. The second “unseeded” scenario consisted of
only randomly selected initial points. The space from which
points are selected is defined by the minimum and maxi-
mum values of our 6 parameters (see Table 2). Both scenarios
had population sizes of 50 and were run for 30 iterations.
The mutation probability was set to 0.2 and the crossover
probability to 0.5 for both scenarios.

Results

All experiment scenarios presented in the previous section
were performed on the Cray XE6 Beagle at the University of

¶ Here we note the capabilities that Swift/T provides in being able to integrate
multi-language components for different aspects of a workflow. We utilized Py-
thon and R for the different scripts purely for convenience.

Table 2 Workflow parameter space dimensions

Parameter (id) [dimensions] Min Max Increment

Immune cell apoptosis rate (d1) [1/min] 6.94 × 10−6 6.94 × 10−4 8.5882 × 10−5

Oncoprotein threshold (d2) [dimensionless] 0.1 1.0 0.1125
Immune cell kill rate (d3) [1/min] 0.1 1.0 0.1125
Immune cell attachment rate (d4) [1/min] 0.01 1.0 0.12375
Immune cell attachment lifetime (d5) [min] 10.0 90.0 10.0
Immune cell migration bias (d6) [dimensionless] 0.1 0.9 0.1
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Chicago, hosted at the Argonne National Laboratory. Beagle
has 728 nodes, each with two AMD Opteron 6300 processors,
each having 16 cores, for a total of 32 cores per node; the sys-
tem thus has 23 296 cores in all. Each node has 64 GB of
RAM. The workflows were run over 126 nodes, using 8 pro-
cesses per node. 8 PhysiCell simulations were concurrently
run on each node with 4 threads allocated to each simula-
tion, thus utilizing all 32 cores on a node. With a total of 126
nodes, we were able to run a maximum of 1005 (126 nodes ×
8 simulations per node − 3 processes for workflow and ME
overhead) simulations in parallel.

In the AL stable scenario, 1707 points in total were evalu-
ated (including the 707 seeded points), with 394 points
(23.1%) as viable and 1313 as non-viable. Out of the 531 441
total points that made up the discretized parameter space,
the final random forest model classified 102 369 points
(19.3%) as viable. In the 10% scenario, 2000 points in total
were evaluated (including 1000 seeded points), 297 (14.9%)
as viable, and 1703 as non-viable. Out of the 531 441 total
points, the random forest model classified 32 728 points
(6.16%) as viable. We note that 15 of the points classified as
viable in the 10% scenario were classified as non-viable in
the stable scenario, which points to the imperfection of the
random forest models. Indeed, one should not expect that a
surrogate model would replicate with full fidelity the more
complex stochastic simulation that is being approximated.
Nevertheless, this represents a very small misalignment
when considering the size of the full discretized space. In
the 1% scenario, 2000 points in total were evaluated (includ-
ing 1000 seeded points), 204 as viable (10.2%), and 1793 as
non-viable. Out of the 531 441 total points, the random for-
est model classified 9609 points (1.81%) as viable. Here all
of the viable points were also classified as viable by the sta-
ble scenario, although 3 of the points were classified as
non-viable by the 10% scenario. A Venn diagram illustrating
the relationships between the space classifications made by
the three AL scenarios, including their overlaps and dis-
agreements is shown in Fig. 1. The three AL scenarios each
took between 10–12 hours to run, accounting for 40–48 k
core-hours each, clarifying our need for employing an HPC
workflow approach.

A “slice” of the 6-dimensional parameter space after 20 it-
erations of all three AL scenarios is shown in Fig. 2 as a grid
of 2D plots. This visualizes regions of the parameter space
meeting the classification criteria in a fashion that incorpo-
rates the relative importance of each parameter based on
the dimension's Gini decrease value. The two most impor-
tant dimensions, immune apoptosis rate (d1) and
oncoprotein threshold (d2) are plotted against each other in
each of the individual subplots, which are laid out in a grid.
The next two important parameters, immune kill rate (d3)
and immune attachment rate (d4), are the axes along which
the grid of subplots are plotted; the immune kill rate for the
subplot grid rows and the immune attachment rate for the
subplot grid columns. The final two, least important dimen-
sions, immune attachment lifetime (d5), and immune mi-

gration bias (d6) are kept constant at d5 = 80 minutes and
d6 = 0.8.

The space is partitioned into different regions based on
the evaluation results of the 3 different random forest models
trained on the 3 different AL scenario data sets. The blue re-
gions were classified as non-viable by the stable scenario
model. The light orange colour marks all the points (both
evaluated and not) classified as viable by the stable scenario
model. The darker orange marks points classified as viable
by the 10% scenario model and the dark red are those classi-
fied as viable by the 1% scenario model. One can observe the
steeper changes of the parameter space characterizations
within each subplot in the d1 direction when compared to
d2, and slow changes along the d3 and d4 dimensions, pro-
viding support to the dimensional importance ordering we
are using. Individual parameter sets evaluated in the 1% sce-
nario can be seen as green (viable) and black (non-viable)
dots.

In the subplot labelled “A” (Fig. 2) we can see how the AL
algorithm is attempting to characterize the boundary of the
1% scenario space. The green and black dots along the
boundary are points produced by the AL algorithm as it tries
to resolve regions of maximum uncertainty and, in doing so,
delineate the boundary. The remaining black dot in the blue
region of the subplot is an example of the AL's random selec-
tion explore strategy. To provide a better sense of boundary
finding in all 6 dimensions, in Fig. 3 we expand our perspec-
tive to include the 4 × 4 subplots demarcated with a dashed
bounding box in the bottom right of Fig. 2, along with their
8 neighbours in the d5 and d6 dimensions. Here, d5 is varied
along the overall rows, with values of 70, 80 and 90 minutes,
and d6 is varied along the overall columns, with values of
0.7, 0.8 and 0.9. The original demarcated area from Fig. 2 is
placed at the centre. Fig. 3 shows neighbours of our original

Fig. 1 Venn diagram illustrating the total points, proportions, overlaps
and disagreements between the classifications of the PhysiCell model
parameter space made by the random forest models trained via the
three AL scenarios (stable, 10%, 1%).
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plot A (from Fig. 2), where we have identified subplots with
sampled points that are distance 1 neighbours (in Manhattan
distance) with B–F and those that are distance 2 neighbours
with G–K. While not visible in Fig. 2, we observe that points
are evaluated along the classification boundary across the d5
and d6 dimensions as well.

Lastly, Fig. 4 provides a zoomed-out view over the entire
space (full 6-dimensional space) characterized by the ran-
dom forest classifiers where, instead of fixing the d5 and
d6 parameter values, we vary them across the overall rows
(d5) and columns (d6). Each subplot in Fig. 4 displays a
sub-grid of 2D plots with the same axes as in Fig. 2: d1

Fig. 2 A 4-dimensional slice of the 6-dimensional parameter space after 20 iterations of all three AL scenarios. Immune apoptosis rate (d1) and
oncoprotein threshold (d2) are plotted against each other in each of the individual subplots. The immune kill rate (d3) is varied along the subplot
grid rows and the immune attachment rate (d4) along the subplot grid columns. The immune attachment lifetime (d5) and immune migration bias
(d6) parameters are set at d5 = 80 minutes and d6 = 0.8. The space is coloured based on the classifications of the three AL scenario random forest
models, where the blue regions were classified as non-viable by the stable scenario model (the tumour population grew), the light orange regions
were classified as viable by the stable scenario model (the tumour population did not increase), the darker orange regions were classified as viable
by the 10% scenario model (the final tumour population was under 10% of the initial value) and the dark red regions were classified as viable by
the 1% scenario model (final tumour population under 1% of the starting value). The green and black dots indicate points where simulations were
run, resulting in viable and non-viable outcomes for the 1% scenario, respectively. The yellow dots correspond to final GA population points from
the seeded GA scenario.
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and d2 plotted against each other with d3 and d4 varying
along each overall sub-grid row and column. The sub-grid
corresponding to Fig. 2 is highlighted by a dashed
bounding box.

We note that the characterization of the parameter space
in Fig. 2–4 is based on the use of the 0.5 probability thresh-
old between viable and non-viable classifications, as gener-
ated by the random forest models. The sample F-score values
obtained with the 0.5 probability threshold through 10-fold
cross validation at the end of the stable, 10%, and 1% scenar-
ios were 0.87 ± 0.04, 0.80 ± 0.05 and 0.64 ± 0.08, respectively.
Adjusting the classification threshold value, such that a
higher threshold would be required for classifying a point as

viable, could yield higher positive predictive values at the ex-
pense of increased false negatives, but may be worth consid-
ering from the point of view of the increased confidence
within the viable regions.

Our GA workflow was run as a consistency check against
the AL workflow results. Moreover, GA represents a more
traditional approach to this type of optimization problem,
when lacking the AL approach and resources to characterize
the full parameter space. In the first scenario where the ini-
tial population was seeded with the 12 best results from the
stable AL scenario, the final GA population, after 50 itera-
tions, consisted of 16 unique points with an average mean
tumour count of 0.764, a standard deviation of 1.112, a

Fig. 3 An expansion of the 4 × 4 subplots demarcated with a dashed bounding box in the bottom right of Fig. 2, here also shown with a dashed
bounding box, to include variations along the d5 (overall rows) and d6 (overall columns) dimensions. The space and dot colours are defined as in
Fig. 2. Subplots B–F are those that contain sampled points and are Manhattan distance 1 neighbours of subplot a, and subplots G–K are the same
but at Manhattan distance 2.
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minimum value of 0 (the optimal solution) and a maximum
value of 4.75. The unseeded scenario consisted of 41 unique
points with an average mean tumour count of 1.411, a stan-
dard deviation of 2.352, a minimum of 0 and a maximum of
14.05. The final seeded population while better than the
unseeded has less breadth likely due to the initial con-
straints on the population. In Fig. 2, the yellow dots corre-
spond to 4 points from the final seeded scenario population,
and are all located within the AL 1% boundary, as would be
expected. In contrast to the AL workflow, the GA, while good
at finding optimal points, does not help in delineating the
parameter space nor provide an estimate of the robustness
of the produced solutions. Furthermore, it does not generate
a model, such as the AL's random forest classifier, that can
be used to classify points without running any additional
simulations.

Discussion and future directions

This work extended our prior proof-of-concept implementa-
tion16 to demonstrate the utility of integrating the PhysiCell
and EMEWS frameworks to iteratively explore a high-
dimensional therapeutic design space and optimize a com-
plex cancer immunotherapy model. In particular, we were
able to investigate highly relevant clinical problems in cancer
immunotherapy: given a therapeutic design space with bio-
logical and clinical constraints, can we identify optimal de-
signs to minimize the remaining number of tumour cells,
can we characterize the robustness of those optimal designs,
and can we determine the most important design parameters?

As in more traditional approaches, we applied GAs to find
the treatment optima within the space. Interestingly, there
were multiple parameter sets (therapeutic designs) that were

Fig. 4 A full 6-dimensional view of the design space, where the space colours are defined as in Fig. 2 and the location of the slice of the space
shown by Fig. 2 is illustrated by a dashed bounding box. d5 and d6 vary along overall rows and columns, and d3 and d4 vary along the sub-grid
rows and columns, and d1 and d2 vary along x and y axes within the individual sub-grids.
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able to completely eliminate the live cancer cells by the end
of the simulated treatment, which matches clinical observa-
tions that immunotherapies can lead to complete responses
in some patients.2,43,44

We found that these optimal designs were on and near
the boundary of the design space hypercube. When optima
are found within the interior of a design space, it indicates
that finding the ideal balance between design parameters is
most important to improving the design. When optima are
found on the boundary of a constrained design space rather
than the interior, it indicates that the optima could be im-
proved by relaxing the constraints on one or more design pa-
rameters. In the case of the immunotherapy design problem,
these constraints are primarily biological (e.g., biological
limits on immune cell lifetimes and killing rates) and clinical
(e.g., limits imposed by toxicity). This suggests that improv-
ing these constraints—e.g., reducing toxicity by improving
the specificity of immune-cell targeting—may be key to im-
proving therapeutic response in more patients.

While finding optima on the constraint boundaries may
have been expected due to the lack of explicit negative model
feedbacks (e.g., de novo cancer cell mutations), the result was
by no means certain for the highly nonlinear model. For in-
stance, Ozik et al.16 found that the migration bias (d6) had a
nonmonotonic influence on the treatment success in the full
3-D model: large and small values of d6 (corresponding to
highly exploitative or highly exploratory immune cell migra-
tion) gave improved responses over more mixed exploitation-
exploration migration strategies.

Even with knowledge of the individual design constraints,
it is the interaction between the parameters that drives the
success or failure of any given design. While the optima were
near the boundaries of most of the dimensions in the design
subspace, they were in the interior of d4. Hence, the balance
between d4 and the other parameters was important in
achieving these optima. It would have been difficult to antici-
pate the specific interactions between the parameters and
constraints based upon single-parameter data a priori.

Moreover, the integrated PhysiCell-EMEWS framework—
combined with HPC resources—enabled previously infeasible
investigations. By using AL to guide our sampling of the de-
sign space, we were able to move beyond finding optima to
understand the topology of the design space by characterizing
increasingly aggressive treatment goals. The stable design
space—where the cancer was kept in control—included just
20% of our initial constrained design space. Increasing the
goal to eliminating 90% of cancer cells drastically shrank the
viable therapeutic designs to 6% of the space. The decreasing
marginal utility can be seen when moving to the goal of elim-
inating 99% of cancer cells: the viable design space is now
under 2% of the original tested design space. This characteri-
zation of the therapeutic design space would not have been
possible without using active learning to guide the sampling
of parameter space, even on HPC resources. Our model find-
ings are qualitatively consistent with the performance of clin-
ical trials, where far fewer patients experience a complete

response than those whose cancers are controlled by immu-
notherapies. For example, Carretero-González et al. reported
that in a meta-analysis of twelve anti-PD1/PD-L1 trials, only
2.19% patients achieved a complete response, while an addi-
tional 44.56% of patients achieved partial response or stable
disease.44

We note that this approach supports a bootstrapping in-
vestigation: identifying the viable control designs can seed
the search for the 90% cell kill regime, which in turn can
seed the search for more aggressive treatment goals. The dis-
tance between the edges of these identified treatment sub-
spaces helps to characterize the robustness of the designs.

The optima (identified by the GA) lie within the extremely
small 99% cell kill regime, showing that they may not be par-
ticularly robust to engineering variability and evolution of the
cancer cells. Missing this narrow design regime could have
negative long-term clinical consequences: eliminating 99% or
90% of cancer cells would place a strong selective pressure
on the cancer cells, encouraging the development of thera-
peutic resistance. It may well be wiser to target the control
case, to improve the patient survival times.6 Such results have
similarly been suggested by evolutionary game theory.45,46

As an additional benefit of the AL-based model explora-
tion over GA workflows, the random forest classifier can rank
the importance of the parameters in determining the success
or failure of treatment designs. The most important parame-
ter was d1: the immune cell death rate. Minimizing d1 is
equivalent to maximizing the immune cell life time, and thus
its maximum number of cell kills. Minimizing d1 is analo-
gous to reducing T cell exhaustion and increasing T cell kill-
ing capacity, one of the most active areas of research in can-
cer immunology.47–49 The second most important parameter
was the immune cell detection floor (d2): decreasing d2 cor-
responds to increasing immune cell sensitivity. Increasing
immune cell recognition is also an extremely active area of
work in cancer therapy. Interestingly, the optimal therapy pa-
rameters occurred along the minimum allowed values of d1
and d2, and hence the simulated treatments were limited by
biological constraints (d1) and clinical constraints (d2). The
minimum value of d2 could only be reduced further by in-
creasing the specificity of immune cell response.5,50 It is also
interesting that varying d5 (tumour–immune attachment
time) was identified as having little impact on the treatment
success. Interestingly, discussion with cancer immunologists
has suggested that tumour-T cell contact times are relatively
brief. However, detailed experiments have found both fast
(<200 min) and slow (>200 min) contact times for cell
kills,51 while other work suggests that extended contact times
can improve cytotoxic responses.52 It is likely that if we re-
fined our constraints on rkill (d3) to reflect such detailed mea-
surements, longer contact times (d5) would be required to
achieve effective responses.

It is striking that the model identified rankings of the im-
portant and unimportant design parameters based solely on
a model of physical interactions, without explicitly modelling
the molecular biology of the system. This validates the
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approach of using iterative, high-throughput simulation in-
vestigations of physics-inspired models to understand and
optimize the behavioural rules. Once optimal rules are identi-
fied, the focus can turn to identifying molecular mechanisms
that can be linked to the cell behaviours.

For instance, the immune cell lifetime (corresponding to
1/d1), immune cell sensitivity to detecting an adhered cell as
immunogenic (d2), and the immune cell killing rate (d3)
were the three most important design parameters. Future
agent-based models could include more detailed models of
immune cell signalling, including stimulatory pathways (e.g.,
receptors that prime immune cells) and inhibitory pathways
(e.g., receptors that suppress cytotoxicity, suppress cycling, in-
crease apoptosis, or otherwise contribute to exhaustion).
Mathematical models of receptor pathways have found that
the sensitivity, rate of activation, and duration of response
depend upon key rate parameters for receptor-ligand binding,
dimerization, internalization, turnover, synthesis, and decay
(e.g., see ref. 53–55). With detailed models of immune recep-
tor dynamics, we could tune and balance these parameters as
determined by the earlier ABM investigations, and hence “im-
plement” the rules for d1, d2, and d3. Future models could
incorporate such models in each individual immune cell
agent to engineer their activation across space of the tumour,
and perhaps even to maximize their activation near tumours,
rather than in adjacent tissues where immune cell activation
could contribute to immunotherapy toxicity.

There are limitations in the current work. First, while the
abstract “immune cell” PhysiCell agents allowed us to focus
on the physical limits of tumour–immune contact interac-
tions, we must improve the biofidelity by explicitly modelling
key immune cell types, particularly T cells and dendritic cells.
This would facilitate more direct comparisons with known
cancer immunology. Molecular-scale biology, such as im-
mune receptor binding dynamics, should be incorporated
into the individual cell agents to better incorporate current
molecular-scale hypotheses on immune cell function and tu-
mour cell recognition. Moreover, this investigation did not
include interactions with the stroma, particularly fibroblasts
and matrix remodelling, the vasculature and angiogenesis,
and inflammatory processes.56–58 These should be included
to better understand the dynamics of cancer-immune interac-
tions in 3-D environments that more closely resemble pri-
mary and metastatic tumours in patients. These higher-
fidelity models could be tailored to specific clinical trials and
experiments, allowing more direct, quantitative comparison
between simulation predictions and clinically observed tu-
mour–immune interactions.

Rather than starting with an initial distribution of cancer
phenotypes, models should account for continuous genetic
and epigenetic variability in cancer cells that can drive treat-
ment failure and unexpected tumour–stroma interactions.
Relatedly, future models should include normal tissue com-
ponents to better model adverse effects of highly cytotoxic
immune therapies; these would shift the optimization
landscape.

Lastly, we know that there are artefacts associated using
2-D simulations to investigate 3-D problems; these artefacts
could produce misleading rankings of the influence of vari-
ous parameters. For example, the randomness of migration
(d6) may have more benefit in exploring space to find tumour
cells in 3-D than in 2-D. However, high-throughput 2-D simu-
lation investigations as in this paper could be used to help
focus subsequent 3-D investigations.

The current study was limited to 2D rather than 3D in
part because PhysiCell—as most current ABM platforms for
complex multicellular problems—is optimized for fast com-
putation on shared memory architectures such as desktop
workstations or single HPC nodes (via OpenMP59), whereas
most HPC platforms are optimized for distributed memory
applications. Thus, individual model instances cannot cur-
rently be accelerated by extending them onto multiple HPC
nodes (e.g., via MPI60). Moreover, most biological ABMs inte-
grate molecular-scale models using standards such as the
systems biology markup language (SBML), and by coupling
with SBML solvers such as libRoadrunner.61 However, these
ABM+SBML models have generally not been tested on large-
scale HPC platforms.

Future ABMs will need to be redesigned for HPC architec-
tures, such as combining HPC-tailored ABM engines (e.g.,
RepastHPC62) with the APIs and syntax of existing biology-
focused ABMs. This is especially needed for future ABMs that
will model not just multiple immune cell types, but also addi-
tional dynamics in the microenvironment and (receptor) sig-
nalling dynamics in each cell agent, which will require simu-
lating tens of nonlinear ordinary differential equations at
small time steps.

Ideally, ABMs will be co-designed with upcoming exascale
platforms, to not just incorporate hybrid OpenMP-MPI archi-
tectures (to efficiently parallelize single simulations over mul-
tiple HPC nodes), but to also leverage the unique memory
architectures and onboard GPU and other accelerators
that could facilitate the molecular-scale detail in these
models.63–65 Co-design focused on challenging cancer immu-
nology problems could drive cutting-edge technological ad-
vances in multi-scale, multi-physics, and discrete-continuum
modelling software and benchmark exascale computing
platforms.

Now that we have fully demonstrated the learning-
accelerated PhysiCell-EMEWS platform, we will turn our at-
tention to improving the model. In particular, we will work
closely with cancer immunologists to refine the immune cell
models and more explicitly model T cells, dendritic cells,
and other immune players in cancer immunotherapy, as
discussed above. We will also investigate the role of continu-
ing tumour variability in driving T cell exhaustion and related
immune escape processes.

We plan further refinements to the model exploration
pipeline as well. The increased model detail will come at the
cost of even higher-dimensional parameter and design
spaces. We will explore the possibility of using the simulation
runs to build surrogate models that map from the model
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parameters to the simulation metrics (thus far total live cell
population, but potentially including entropy measures of tu-
mour heterogeneity,66,67 emerging measures of the tumour
ecology,68 and measures of impact on nearby non-tumour
cells). We could apply dimensionality reduction techniques69

to the surrogate model to eliminate redundant parameters
and refine our investigation of the original model. These
surrogate models could also incorporate heteroskedastic
stochastic variance.70 We will also explore extensions of
PhysiCell to HPC to enable higher-fidelity simulations that
more closely mirror real biological systems. Such higher-
fidelity models could be explored in high throughput (and
potentially in 3D) on current and emerging Top500 HPC
systems.

Conclusions

The use of simulation is an integral component of the mod-
ern engineering workflow. While the ability to determine the
sufficient level of fidelity for simulations of biological pro-
cesses is still an open area of investigation, we believe that
developing simulation-based methods for potentially engi-
neering mechanism-based biomedical interventions should
not wait until the former situation is “solved.” In fact, we
contend that investigating the modes and methods of
simulation-aided biomechanistic engineering can aid in the
determining of how detailed biosimulations “need” to be.
Even at the current level of abstraction, the ME and optimiza-
tion examination presented herein identifies non-intuitive in-
sights that may help guide concurrent work on improving
one of the most currently promising emerging cancer
therapies.
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