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PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission

matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence

conforms to Beers Law, this process can lead to the mathematical identification and quantification of

independently varying fluorophores. However, many practical and analytical hurdles stand between

EEM datasets and their chemical interpretation. This article provides a tutorial in the practical

application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM)

fluorescence dataset. A new toolbox for MATLAB is presented to support improved visualisation and

sensitivity analyses of PARAFAC models in fluorescence spectroscopy.
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Introduction

PARAllel FACtor analysis (PARAFAC) is used in the chemical
sciences to decompose trilinear multi-way data arrays and
facilitate the identication and quantication of independent
underlying signals, termed ‘components’. In 2011–2012, 334
Scopus-indexed journal and conference papers were published
with keywords “PARAFAC” or “parallel factor analysis”. In the
subset of papers where PARAFAC was used primarily as a tool
for data interpretation (n ¼ 238, thus excluding 96 papers
concerned primarily with developing or comparing algorithms,
tools or statistical methodologies), PARAFAC was applied across
research elds (medical, pharmaceutical, food, environmental,
social, and information science) and to a wide range of data
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ment school at the University of
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View Article Online
types, including spectral, NMR, GC-MS, (HP)LC-DAD, EEG,
geospatial, radar, sensory, metabolomic and image data.
However, PARAFAC was applied more oen to uorescence
excitation emission matrices (EEMs) than to all other data types
combined. Thus, of the 238 studies in 2011–2012 involving
straight-forward applications of PARAFAC to real-world data-
sets, more than 70% were applications to uorescence EEMs,
and of these, more than 70% related to the study of natural
organic matter (NOM) uorescence. This result reects the
rapid and enthusiastic uptake of a technique that was intro-
duced to the organic matter research eld only ten years ago1

(Fig. 1).
This paper provides a tutorial in the practical application of

PARAFAC to uorescence data. For a comprehensive theoretical
description of PARAFAC and other multi-way models, including
tutorials in its application to a range of data types, the reader is
referred to earlier ref. 2–4. In consideration of current trends in
PARAFAC application, this tutorial is primarily intended to
Fig. 1 Number of Scopus-indexed articles (2003–2012) in which PARAFAC was
used to decompose fluorescence excitation emission matrices (EEMs) of dissolved
and natural organic matter samples.
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6558 | Anal. Methods, 2013, 5, 6557–6566
provide a deeper practical treatment of preparing, modelling
and interpreting uorescence datasets, particularly when
arising from environmental samples in which the number,
identity and behaviour of uorophores is not known at the
outset. A number of aspects of this tutorial are therefore
specically relevant to modelling uorescence datasets in
general and organic matter uorescence in particular, although
many aspects are broadly relevant to analysing multi-way
datasets, regardless of their type.

Many of the steps described in this tutorial were discussed in
the earlier tutorials. Others are new, particularly the demon-
stration of how hypothesis-testing might be incorporated into
PARAFAC analyses to increase insights into the robustness of a
PARAFAC model and its chemical interpretation. A demon-
stration of the application of PARAFAC to real-world data
accompanies this tutorial. The tutorial dataset consists of 224
samples collected during four surveys of San Francisco Bay and
Table 1 Summary of free MATLAB toolboxes supporting PARAFAC analysis of
fluorescence excitation emission matrices (EEMs)

Toolbox Descriptiona

N-way toolbox General multi-way analysis toolbox that
contains the PARAFAC algorithm

DOMFluor EEM-specic toolbox using the N-way
toolbox as an engine for PARAFAC

FDOMcorr EEM-specic toolbox for importing,
correcting and assembling EEM datasets
in preparation for statistical analysis

drEEM EEM-specic toolbox using the N-way
toolbox as a PARAFAC engine and
incorporating FDOMcorr. Extends the
DOMFluor toolbox to improve dataset
manipulation and visualisation and
support hypothesis-testing during
model validation

a See the main text for reference information.
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measured using excitation-emission matrix uorescence spec-
troscopy.5 PARAFAC analyses for the tutorial are implemented
in MATLAB using two free toolboxes distributed under the
terms of GNU General Public Licence: the N-way toolbox6 which
provides the PARAFAC engine, and the drEEM toolbox, which
supports the application, visualisation and interpretation of
PARAFAC when applied to EEM datasets, and is released in
conjunction with this tutorial (Table 1). The drEEM toolbox
combines and signicantly extends the capabilities of two
earlier toolboxes: DOMFluor7 and FDOMcorr.8,9 A detailed
tutorial in the application of drEEM covering all included
functions is provided as an Appendix† to this article. The
tutorial dataset together with up-to-date versions of the drEEM
and N-way toolboxes may be downloaded at http://
www.models.life.ku.dk/.
PARAFAC model

PARAFAC2,10 belongs to a family of so-called multi-way methods
applicable to data that are arranged in three- or higher-order
arrays. Examples of threeway arrays that can be analysed with
PARAFAC include uorescence EEMs (sample � excitation
wavelength � emission wavelength; Fig. 2), chromatographic
data (GC-MS: sample � elution time � m/z structure), sensory
data (sample � attribute � judge) and electroencephalography
(space � time � frequency).

PARAFAC of a three-way dataset decomposes the data signal
into a set of trilinear terms and a residual array:

xijk ¼
XF

f¼1

aif bjf ckf þ eijk (1)

where i ¼ 1, ., I; j ¼ 1, ., J; k ¼ 1, ., K
In eqn (1), x ijk is the data point corresponding to the ith

sample at the j th variable on mode 2 and at the kth variable on
mode 3, and eijk is the residual representing the variability not
accounted for by the model. In the case of a uorescence exci-
tation-emission matrix, the i, j and k correspond to the sample,
emission and excitation modes, respectively (Fig. 2). Each f
corresponds to a PARAFAC component and each such compo-
nent has I a-values (scores); one for each sample. Each
component also has J b-values; one for each emission wave-
length as well as K c-values; one for each excitation wavelength.
Fig. 2 EEM dataset arranged in a threeway structure and decomposed into five
PARAFAC components.

This journal is ª The Royal Society of Chemistry 2013
These model components have a direct chemical interpre-
tation in a valid model. The parameter aif is directly propor-
tional to the concentration of the f th analyte of sample i; the
vector bf with elements bjf is a scaled estimate of the emission
spectrum of the f th analyte. Likewise, the vector cfwith elements
ckf is linearly proportional to the specic absorption coefficient
(e.g. molar absorptivity) of the f th analyte.

Important assumptions for successfully decomposing a
multi-way dataset using PARAFAC include:

(1) Variability: no two chemical components can have
perfectly covarying uorescence intensities or identical spectra.

(2) Trilinearity: the same number of components underlies
the chemical variation in each mode (dimension) of the dataset.
For uorescence EEMs, this means that emission spectra are
invariant across excitation wavelengths, excitation spectra are
invariant across emission wavelengths, and uorescence
increases approximately linearly with concentration.

(3) Additivity: the total signal is due to the linear superpo-
sition of a xed number of components.

The second and third assumptions constitute Beers Law.11

PARAFAC components extracted from data which deviate
signicantly from Beers Law are neither physically nor chemi-
cally meaningful. When modelling real data, difficulties that
arise include the presence of strongly correlated components
with similar spectral properties, non-trilinear systematic error
structures resulting from e.g. light scattered off the sample
matrix, and concentration-dependent nonlinearity due to the
inner lter effect, described further below. Other issues that
may arise in some datasets andmakemodelling difficult or even
impossible are that spectral properties may vary due to chem-
ical reactions, quenching, interactions between uorophores,
or due to changes in the electronic environment of the uo-
rophores (e.g. with pH).
Approach

The overall approach to obtaining a PARAFAC model is illus-
trated in the schematic in Fig. 3. The basic steps are (1) import
and assemble the dataset; (2) preprocess; (3) explore the data
and develop preliminary models (4) develop a nal, validated
model containing the correct number of components, and (5)
export and interpret the results. These steps are detailed below.
Data import

The rst step is to transfer the data from the instrument to
soware supporting PARAFAC analysis. Analysis is frequently
performed with the commercial MATLAB (Mathworks, Inc.)
soware which efficiently handles data arrays. The PARAFAC
algorithms are available through third-party MATLAB tool-
boxes, including N-way6 and Tensorlab.12 Commercial plat-
forms not requiring MATLAB include SOLO (Eigenvector Inc.).
Recently, PARAFAC has been enabled for the free R platform,13

but uorescence applications remain to be demonstrated.
Commercial sowares typically allow a range of le types to be
imported. In the free soware domain, methods and code for
importing EEMs and related data (*.txt, *.csv and *.xls) to
Anal. Methods, 2013, 5, 6557–6566 | 6559
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Fig. 3 Schematic of the steps involved in PARAFAC analysis of fluorescence
excitation emission matrices (EEMs).
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MATLAB and assembling them into threeway data structures
are freely available via the FDOMcorr9 and drEEM toolboxes.
Preprocessing

Preprocessing steps are highly dependent upon the type of data
being analysed and the goal of the analysis, with some types of
data necessitating several preprocessing steps and others
requiring little or none. For more comprehensive accounts of
preprocessing the reader is referred elsewhere.14–17 In a practical
sense, it should be borne in mind that the best way to preprocess
a dataset may not be obvious from the outset, and modelling can
identify weaknesses in a dataset (e.g. unusual samples, correlated
components, residual scatter, systematic errors), which must be
dealt with before proceeding. Consequently, it is oen necessary
to iterate the preprocessing andmodelling steps in order to arrive
at stable and satisfactory solutions (Fig. 3).

The preprocessing phase in PARAFAC modelling has three
main aims: (1) correct any systematic biases in the dataset, (2)
remove signals unrelated to uorescence, and (3) normalise
datasets having large intensity differences between samples.
These are described in Preprocessing I–III below. Steps that do
not affect models include applying a linear calibration to
convert signals to a standard scale (e.g. Quinine Sulfate Equiv-
alents or Raman Units).9

Preprocessing I: data correction. For certain kinds of data
including uorescence EEMs, the rst step is to correct
6560 | Anal. Methods, 2013, 5, 6557–6566
systematic biases in the dataset. These can introduce spurious
interactions between the various data modes. Raw instrument
data are inherently biased due to imperfections in the optical
components or their alignment, and variations in the efficiency
at which different wavelengths of light are transmitted through
the monochromators. This results in distorted excitation or
emission spectra that must be countered through spectral
correction. The correction step involves element-wise multipli-
cation of the EEM by a correction matrix (excitation correction
vector x emission correction vector) specic to the instrument in
use. Methodologies for obtaining the correction vectors are
discussed in earlier ref. 18 and 19. Some commercial uorom-
eters can automatically apply one or both correction vectors to
measured EEMs;20 otherwise, this must be done by hand as
previously described.9 Tools for applying spectral corrections to
uorescence EEMs are included in the drEEM toolbox, and are
demonstrated in the Appendix† to this paper.

Linearity in the relationship between concentration and
uorescence intensity can be assumed only for very dilute
samples; in all other cases, data should be corrected for the so-
called “inner-lter effects (IFE)”. This occurs when radiation is
absorbed by the sample matrix on its way in or out of the
cuvette, ultimately reducing the amount of excitation light
absorbed by chromophores at center of the cuvette and the
amount of emitted light incident upon the detector. Chromo-
phores that do not uoresce also contribute to IFEs. As sample
absorbance increases, non-linearity between concentration and
uorescence intensity becomes increasingly severe, to the point
where further addition can actually cause a reduction in uo-
rescence. DOM absorbance spectra typically decrease approxi-
mately exponentially with increasing wavelength (Fig. 4A),
indicating that IFEs are most severe at short wavelengths. This
leads to distorted EEMs in which each emission spectrum
depends not only on the uorophores present, but also on the
excitation wavelength at which they are measured.

It is oen stated that inner lter effects only impact samples
with high optical densities, when in fact IFEs occur in all
samples where uorophores are present in measurable
concentrations. Modern uorometers typically use right-angle
excitation/emission geometries and a standard rectangular
cuvette with a 1 cm path length, for which it can be deduced
that IFEs exceed 6% at wavelengths where A > 0.05.11 In exper-
iments involving known uorophores having high quantum
yields (i.e. high efficiency at converting incident radiation to
emitted radiation), it may be possible to avoid signicant inner
lter effects by keeping concentrations low. However, in natural
samples where quantum yields are typically low, inner lter
effects are very likely to be signicant at least at short wave-
lengths (Fig. 4B). A recent survey determined that in more than
97% of Swedish lakes (n ¼ 554, D. Kothawala, pers. comm.),
uorescence intensities at 250 nm required correction for inner
lter effects (lakes with DOC $2.1 mg C L�1).

While there are several different ways to account for inner
lter effects, a simple and popular post-hoc method uses only
the sample's absorbance spectrum to calculate a matrix of
correction factors, with a separate correction factor corre-
sponding to each wavelength pair in the EEM (Fig. 4B).11 The
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 (A) Absorbance of a DOM sample from the tutorial dataset, and (B) calculated correction factors accounting for its inner filter effect.

Fig. 5 (A) Strongly correlated components violate the variability assumption of
the PARAFAC model; (B) normalising each EEM to its total signal improves
adherence to the variability assumption.
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EEM can simply be multiplied element-wise by the correction
matrix.9 Absorbance-based correction is typically reported to be
accurate within 5% when absorbance is below 2.0 (ref. 21–23) in
a 1 cm cell. For samples with absorbance approaching 2.0 or
exceeding the linear range of the spectrophotometer, the
sample must either be diluted rst, or else instrument-specic
geometric parameters must be taken into account using a
modied algorithm.21 Note that spectral correction prior to IFE
correction is always necessary to align the uorescence spectra
with the absorbance spectrum and with the theoretical
description of inner lter effects.

Preprocessing II: eliminating non-trilinear data. PARAFAC
modelling of EEMs is hindered by the presence of diagonal
scatter peaks caused by phenomena other than uorescence.24,25

Rayleigh and Tyndall scatter (referred to collectively herein as
Rayleigh scatter) occur at the same wavelength as the excitation
beam and are typically much greater in magnitude than uo-
rescence. Smaller Raman peaks occur at slightly longer wave-
lengths. Secondary Rayleigh and Raman peaks may also be
observed at two times the emission wavelength of the primary
peaks. The degree of scatter is generally less in ltered samples
and when measured with instruments that have double mono-
chromators and cut-off lters on the emission gratings, although
some scatter in EEMs is generally unavoidable. Scatter bands can
oen be reduced by subtracting a water blank from themeasured
sample, although traces remaining aer blank-subtraction may
still be sufficiently large to cause a problem for PARAFAC.

The typical treatment for scatter peaks is to excise the
affected data, replacing it by either with missing data2,7 or with
measurements interpolated from either side of the scatter
band.26,27 Primary Rayleigh scatter occurs in a region where
there are no chemical signals, so can be handled by setting the
scatter-affected region to missing values.4 Raman bands and
secondary Rayleigh scatter oen cut through uorescence
peaks; for these it is oen best to interpolate over the excised
area, since too much missing data within the chemical signal
region can slow down or prevent model convergence. Care must
be taken when interpreting signals bordering interpolated
bands since interpolation can broaden the apparent spectra of
narrow peaks that cross the edges of the scatter band (e.g.
tryptophan uorescence). Using the smootheem function in the
drEEM toolbox, the decision of whether to interpolate or excise
a scatter band can be made for each of the primary and
secondary Rayleigh and Raman bands independently.
This journal is ª The Royal Society of Chemistry 2013
Preprocessing III: normalising signals. PARAFAC is oen
implemented on EEMs without further preprocessing than
outlined above.15,28 However, further processing is needed for
datasets encompassing large concentration gradients, such as
oen occurs as a result of dilution (Fig. 5A). In this case,
samples with higher concentration exert higher leverage, and
uorescence from independent uorophores tend to covary
across the dataset, violating the variability assumption. Nor-
malising each EEM to its total signal gives high and low-
concentration samples similar weightings (Fig. 5B), allowing
the model to focus on the chemical variations between samples
rather than the magnitude of total signals. This also increases
the chance that minor peaks will be revealed. Note that for a
given number of components, the t represented by the percent
explained variance of a normalised dataset may be lower than of
the original dataset. However, this does not imply a weaker
model, because the ts are calculated relative to different data
and are not comparable.

Normalisation is done by scaling the data in the rst (sample)
mode to unit norm, i.e. dividing by the sum of the squared value
of all variables for the sample. Normalisation can be reversed
aer validating the model, by multiplying the scores by the same
values. The drEEM toolbox contains tools for normalising EEM
datasets and subsequently recovering the unscaledmodel scores.
Exploratory phase

The aim of exploratory data analysis is to settle upon the best
possible dataset for modelling and obtain a preliminary idea
Anal. Methods, 2013, 5, 6557–6566 | 6561
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about how many PARAFAC components it may contain. One of
the main goals here is to identify and remove unrepresentative
or poor quality data, as well as ‘outlier’ samples or variables
(wavelengths) that could otherwise prevent a satisfactory model
from being obtained. Outliers can result from sampling or
analytical errors, but could equally be unrepresentative of the
rest of the dataset for perfectly legitimate reasons. Either way,
outliers need to be examined individually to determine the
likely reason for their difference, and in extreme cases, it may be
necessary to eliminate data.

Determining the identity of outlier samples and variables is
part of the ‘art’ of PARAFAC modelling, and may need to be
revisited several times during model development. One way to
identify outliers is through examining the structure in the error
residuals (error ¼ data � model). Ideally, residuals will be
distributed approximately randomly, or at least will not contain
obvious structure (Fig. 6A). Another is to calculate the inuence
each sample and wavelength has on a model.29 The leverage is a
number between zero and one that expresses deviation from the
average data distribution. Samples/variables that are not very
different to others have leverages near zero, whereas very atyp-
ical samples have leverages near one (Fig. 6C–E). Ideally, the
samples and wavelengths in a dataset will exhibit roughly
similar leverages.
Model validation

The valid chemical interpretation of a PARAFAC model relies
upon the right number of components being tted. When
models are under-specied, fewer components are used in the
model than there are independently varying chemical moieties
responsible for the measured signal. When this occurs, the
Fig. 6 (A) Residuals for an adequately modelled sample with minor peaks along the
unusual samples (205, 208, 49); (D) emission wavelengths with high influence espe
250, 270 and 310 nm.
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model may approximate the combined signal of chemically
distinct components. When models are over-specied, too
many components are being tted. In this case, two or more
PARAFAC components may be used to represent a single
moiety, oen in combination with noise. There are many ways
to evaluate whether a PARAFAC model was specied with the
correct number of components. No single method is a “silver
bullet”, rather, several should be considered in combination
wherever possible. This is particularly important for real data-
sets, because different validation methods can produce con-
icting indications about the number of components in a
model. For this reason a certain level of subjectivity is
unavoidable; however, with careful investigation and reliance
upon a diverse range of tools, subjectivity can be minimised.
Randomness of residuals

When the correct number of PARAFAC components is chosen,
all of the signicant systematic variation in the dataset is
captured by the model, and the difference between the dataset
and the model, termed the residual, contains only random
error. In this situation, residual plots for each sample show no
consistent pattern. In practice for real datasets, systematic
variation is oen seen for at least some samples in the form of
peaks (representing signals not captured by the model) or
troughs (negative peaks). In the case of uorescence EEMs,
small peaks occurring along the diagonal due to incompletely
removed scatter can be ignored, since they are not trilinear and
should not feature in the model (Fig. 6A). However, adjacent
peaks and troughs in the residuals oen indicate a problem
(Fig. 6B) whereby a peak is modelled using two or more poorly-
tting components.
diagonal, and (B) a poorly modelled sample (no. 205). Leverage plots indicate: (C)
cially near 340 nm; (E) excitation wavelengths with high influence especially near
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Visualise spectral loadings

If the loadings of a PARAFAC model have a direct chemical
interpretation, it should be assessed whether they are physically
reasonable with respect to the chemical phenomenon being
studied. In the case where the dataset consists of EEMs of non-
interacting organic uorophores, the emission spectrum
should exhibit a pronounced shi relative to its excitation
spectrum, known as the ‘Stokes Shi’.11 This reects the fact
that the energy with which a molecule uoresces is lower than
the energy at which the molecule was excited, due to energy
losses occurring while it is in the excited state. The Stokes shi
depends on a uorophore's type and position within a macro-
molecule as well as its electronic environment.24 Typically,
however, the spectra of independent, non-interacting organic
uorophores in water exhibit the following characteristics:11,30

(1) Minimal overlap (usually <50 nm) between the excitation
and emission spectra.

(2) Excitation spectra may have multiple peaks, but emission
spectra exhibit a single distinct peak.

(3) When an excitation spectrum has two or more peaks
indicating consecutive excited state absorption bands, some
absorption (excitation) occurs between these peaks.

(4) Excitation and emission spectra do not exhibit abrupt
changes over very short wavelength distances.

Fig. 7 depicts the loadings of a ve-component PARAFAC
model derived from the tutorial dataset, noting atypical char-
acteristics for non-interacting organic uorophores.
Core consistency

An indication of the number of components in a PARAFAC
model can be obtained from the core consistency diagnostic,
which evaluates the ‘appropriateness’ of the model.31 When a
sequence of models is run with an increasing number of
components, the core consistency tends to start high (near
100%) then drop abruptly at the point when too many compo-
nents are selected. The number of components is determined to
equal the number in the largest model still having a high core
consistency.31 In practice for real-world non-ideal datasets, core
consistency is not always a reliable diagnostic of the number of
PARAFAC components needed. In the case of uorescence EEMs
derived from organic matter, published models having high core
Fig. 7 Five-component DOM-PARAFAC model exhibiting atypical spectral feature
multiple distinct emission peaks, (3) no evidence of excitation between consecutive a
light and dark curves represent excitation and emission spectra, respectively.
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consistencies tend to have two to four components and in many
cases, exhibit unusual spectra. Conversely, models with ve or
more components very oen have low or even negative core
consistencies even when there are otherwise strong indications
that the model is capturing real chemical phenomena.32–34

Overall, it seems that core consistency applied to organic
matter EEMsmay provide toomuch protection against over-tting
and not enough protection against under-tting. This may in part
reect the situation that there are likely to be many uorophores
present at low levels in organic matter, in which case there may be
no clear-cut number of PARAFAC components to capture them.31

Also, PARAFAC models of natural samples almost invariably
contain two or more strongly covarying components,34,35 chal-
lenging the variability assumption. Finally on the practical side, it
can be difficult or at least very time consuming to eliminate all
scatter in a dataset that impacts upon core consistency without
also eliminating useful chemical information.

Split-half analysis

One of the most powerful ways to conrm that a PARAFAC
model is appropriate is to produce identical models from
independent subsamples of the dataset.36,37 This is typically only
possible for relatively large datasets, because at some point the
number of samples becomes a limiting condition on the
number of components that can be identied.

Harshman37 proposed validating models using multiple split-
half tests, where various models are created and compared aer
dividing the dataset in half in different ways. In the version of this
method implemented in the DOMFluor toolbox,7 each sample is
rst assigned alternately to one of four splits, then the four splits
are assembled into four combined splits (where each combina-
tion contains half the samples in the dataset) to produce two split-
half comparison tests (Fig. 8). We will refer to this style of
validation as an alternating ‘S4C4T2’ (Splits: 4, Combinations: 4,
Tests: 2). The method can easily be extended in order to assemble
six different dataset ‘halves’ and produce three validation tests
‘S4C6T3’ (Fig. 8). Furthermore, the alternating procedure for
assigning the initial groups can be changed in order to keep
particular sets of samples together, for example replicates or
experimental groups. The drEEM toolbox that accompanies this
tutorial includes capability for assembling split-half datasets
according to a wide range of user-specied criteria.
s, including (1) excitation spectrum tailing well into the emission spectrum; (2)
bsorption bands; (4) abrupt spectral changes over short wavelength distances. The
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http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c3ay41160e


Fig. 8 Four quarter splits can be combined in six dataset halves to produce two
(S4C4T2) or three (S4C6T3) validation tests. See the ESI† for an elaboration of this
figure.
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It is oen assumed that the best way to split a dataset is via a
random process. Consider, however, that if dissimilar samples
are deliberately assigned to different splits, models should be
harder to validate because splits are less similar than they
would be if samples were grouped randomly, or evenly, as when
alternating splits are created from a samples ordered in space or
time. However, when identical models are obtained from
different non-random and non-even splits, this can provide
strong evidence of the robustness of the model. Further, when a
dataset consists of natural groups (corresponding to e.g.
particular sites, dates, sources, high versus low concentration,
etc.), then the model validation process can provide an oppor-
tunity to examine hypotheses about how sources of variability in
the dataset affect the underlying uorescence components.

The Appendix† to this paper works through the PARAFAC
analysis of an EEM dataset obtained from four surveys of San
Francisco Bay.5 During these surveys, particular sites were revis-
ited up to four times in February, April, July andOctober 2006. It is
interesting to ask whether there is any difference in PARAFAC
component spectra related to time of year. Fig. 9 shows S4C6T3
validations of a 6-component PARAFAC model of the tutorial
dataset, where the initial splits were created in two different ways.
In the rst case, groups of replicate samples were assigned
alternately to four splits. In the second, the initial splits consisted
entirely of samples from a single cruise. Each row of plots in Fig. 9
depicts a sensitivity analysis indicating which components and
parts of excitation or emission spectra are modelled more or less
consistently than others. The rst validation (Fig. 9 top row)
appears most successful in the sense that the components iden-
tied in each split combination are most similar. However, the
Fig. 9 Validation of the tutorial dataset with six dataset halves created in two differ
row: by-cruise S4C6T3 keeping all samples from the same cruise together.

6564 | Anal. Methods, 2013, 5, 6557–6566
second validation (Fig. 9 bottom row) is potentially more infor-
mative, because it provides reasonably strong evidence that the
major underlying components responsible for DOM uorescence
in the Bay dataset did not vary seasonally. One possible explana-
tion for the observed differences is that the split model which is
least similar to the others was derived from fewer samples (n¼ 68)
and fewer sites (n ¼ 12) than the other split models (n > 100 and
n ¼ 24, respectively).

A few comments are warranted on the topic of replication.
It is generally good experimental and statistical practice to
obtain replicate measurements of any phenomenon under
study.38 For example, subsamples can yield useful data related
to the precision of experimental measurements, repeated
sampling of the same phenomenon can help to quantify
sampling and experimental error, while measurements of
different substances, at different sites or over time each yield
different types of information that may be necessary to interpret
the behaviour of a chemical system. When validating a PAR-
AFACmodel as any other type of model, it is simply necessary to
be mindful of how the experimental design affects the conclu-
sions that can be drawn from any particular model validation.

The ultimate goal is to obtain a model that fairly represents
the problem at hand, i.e. the population of all possible samples
from which a particular set of actual samples were obtained.
When nearly-identical PARAFAC models are obtained from two
replicate halves of a dataset (or even two random halves, if the
dataset contains many similar samples) it is possible to
conclude only that the two halves of the dataset are spectrally
very similar. It does not prove the model is correct, since the
same erroneous solution may be located in two similar dataset
halves. To demonstrate that the model is representative of the
sample population, it must be possible to derive the same
PARAFAC components using completely independent data
subsets. Also, although replicate samples can be included when
modelling, if only some samples in a dataset are replicated,
these will inuence the model more than unreplicated samples.
For these reasons, when validating a model it is good practice to
keep replicate samples together in the same split, and eliminate
any sample that duplicates another.
ent ways. Top row: alternating S4C6T3 keeping replicate samples together; bottom
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Model renement

Creating a PARAFAC model of a real-world dataset is rarely a
linear process, so the exploratory and validation phases of
modelling may need revisiting, possibly several times in the
case of a large or complex dataset. Aside from any analytical
issues, the iterative PARAFAC algorithm itself can cause diffi-
culties.2 Thus, when datasets are difficult to t or contain a large
number of components, PARAFAC can fail to locate the true
solution, and repeated model runs may produce different
solutions. Unstable models can sometimes be improved by
applying appropriate constraints during modelling.4 For
example, it is common in uorescence applications that
concentrations and spectra are constrained to be non-negative.
It can also work well to constrain spectra to having no more
than a single peak (unimodality). The application of constraints
can assist PARAFAC in arriving at stable, chemically-sensible
solutions especially for real-world, noisy datasets. However, care
has to be taken to ensure that the process does not cover up
problems that would be better solved with other approaches.
Once the modelling constraints and criteria have been decided,
the best way to obtain models with the correct solution for any
given number of components is to repeat the modelling, each
time using a different random starting vector, ultimately
adopting only the model that represents the least-squares
(minimum error) solution.
Interpreting the results

When uorescence datasets conform to Beers Law, PARAFAC
components in validated models can be interpreted to
represent independent uorophores or possibly, groups
thereof sharing very similar spectra. If a component can be
attributed to a specic chemical analyte, it is possible through
the addition of known quantities of the analyte to determine
its concentration in each sample. However, if the identity of a
PARAFAC component is unknown, it is not possible to convert
uorescence intensities to concentrations. Instead, it is usual
to track the uorescence intensity at the maximum (“Fmax”)
for each component. The PARAFAC model loadings obtained
using the N-way toolbox are normalised so that all quantita-
tive information is contained in the model scores (“a” in eqn
(1)). Fmax is calculated by multiplying the maximum excita-
tion loading and maximum emission loading for each
component by its score, producing intensities in the same
measurement scale as the original EEMs. Because different
uorophores can have very different efficiencies at absorbing
and converting incident radiation to uorescence, if compo-
nent A has a higher uorescence signal than component B it
does not follow that A has a higher concentration than B.
Quantitative and qualitative information may however be
obtained from changes in the intensity of a given component,
or in the ratios of any two components, between samples in
the dataset. Also, changes in the relative abundance of a
component (Fmax/

P
Fmax) can indicate changes in its overall

importance, although this measure is sensitive to changes in
the relative abundances of all the components so must be
interpreted with care.
This journal is ª The Royal Society of Chemistry 2013
In the case of organic matter, the chemical interpretation of
PARAFAC components is not completely clear. It is notable, for
example, that two-thirds of NOM-PARAFAC studies published
between 2003 and 2010 identied fewer than seven PARAFAC
components,17 although the number of naturally occurring
uorophores present in natural systems is presumably much
greater. This probably results from several factors that vary in
importance between studies, including sample size17 and low
signal-to-noise ratios making it difficult to resolve all but the
most prevalent uorophores. In some published models,
combinations of protein-like and humic-like components are
modelled as single components, while others show clear signs
of over-tting. Overall, many larger PARAFAC models deviate
signicantly from Beers Law, as evidenced by the frequent
reports of low core consistencies for PARAFAC models validated
by residual and split-half analysis. Future work should formally
examine what kind and degree of deviation can be tolerated
without unduly impacting the chemical interpretation of NOM-
PARAFAC models.
Conclusions

Parallel factor analysis is a powerful tool for resolving under-
lying structures in multi-way datasets. Rapidly developing
technologies for capturing multi-way data are shiing the
scientic bottleneck from collecting data to its interpretation.
The use of PARAFAC to interpret uorescence EEMs has
expanded correspondingly in recent years. However, the task of
obtaining accurate and chemically-meaningful PARAFAC
models is not trivial, particularly when datasets contain
complex mixtures of highly-correlated components, as appears
to be the case for organic matter uorescence. A range of free
and commercial soware tools are available to implement and
support PARAFAC analyses of uorescence data; the drEEM
toolbox released with this tutorial representing the newest
addition. We hope this latest contribution will assist in pro-
gressing the understanding and implementation of PARAFAC in
uorescence spectroscopy.
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