Antimicrobial and Breathable Membranes with Printed Carbon Nanotube-Silver Composite Conductive Layers for Electronic Sensing
Abstract
With the accelerating advancement of wearable electronics, electronic skin (e-skin) has emerged as a promising technology for applications in health monitoring, prosthetics, and human-machine interfaces. Nonetheless, achieving simultaneous breathability, antibacterial properties, and high sensing fidelity presents a formidable challenge. In this study, we report a multifunctional electronic skin (e-skin) constructed from a modified Tecoflex (thermoplastic polyether-based polyurethane) electrospun nanofiber membrane (T-eNFM), integrating breathability, antibacterial activity, and high-fidelity sensing capabilities. The T-eNFM substrate promotes wearer comfort via its innate breathability while simultaneously inhibiting bacterial colonization through robust antimicrobial functionality. A composite of multi-walled carbon nanotubes (MWCNTs) and silver paste (Ag powder) was printed onto T-eNFM-3 to form a conductive, mechanically compliant sensing layer. The fabricated strain sensor exhibited a gauge factor of 5.81, while the multilayer pressure sensor displayed a sensitivity of 2.83 kPa⁻¹, rendering it ideally suited for monitoring cardiovascular physiological signals. This work outlines a blueprint for next-generation electronic skin devices by addressing the critical challenges of comfort, safety and multifunctionality.
- This article is part of the themed collection: 15th anniversary: Chemical Science community collection