Mesoporous Co–Mo–S nanosheet networks as cathode materials for flexible electrochemical capacitors
Abstract
Molybdenum-based oxides possess high theoretical capacity and excellent cycling stability. However, the poor conductivity limits their wide applications. A simple vulcanization strategy can be employed to improve their electrochemical activity. In this study, we synthesized many Co–Mo–S nanosheet networks as electrode materials by a two-step hydrothermal strategy. These networks delivered a specific capacity of 510 C g−1 at 1 A g−1. An asymmetric supercapacitor was assembled using the as-prepared product as the cathode. It possesses an energy density of 72.25 W h kg−1 at 2700 W kg−1. It still retains 83.4% of initial capacity (2 A g−1) after 9000 cycles. In addition, the device shows outstanding mechanical stability at different folding angles, demonstrating its promising applications in portable micro/nano storage energy devices.
- This article is part of the themed collection: Crystal Engineering Techniques