Core–shell Cu1.94S–MnS nanoheterostructures synthesized by cation exchange for enhanced photocatalytic hydrogen evolution
Abstract
Nanoheterostructures synthesized by cation exchange present the integration of synergetic designs into high-quality, well-defined catalysts for enhanced photocatalytic hydrogen evolution. In this study, we synthesise core–shell Cu1.94S–MnS nanoheterostructured photocatalysts using a cation exchange reaction by employing djurleite Cu1.94S nanospheres as starting templates. Under simulated sunlight, the heterostructures exhibit a hydrogen evolution efficiency as high as 878.1 μmol h−1 g−1, representing 60-fold and 41-fold enhancement compared with pure Cu1.94S and MnS, respectively. As verified by photoelectrochemical characterization, the improved hydrogen production activity of the Cu1.94S–MnS nanoheterostructures can be attributed to their stronger light response characteristics and more effective charge transfer ability, which opens up opportunities to promote the photocatalytic performance using rationally designed nanostructures.
- This article is part of the themed collection: Nanomaterials