Standing, lying, and sitting: translating building principles of the cell membrane to synthetic 2D material interfaces
Abstract
A striking number of problems in modern materials chemistry relate to controlling structure at scales 5–10 nm, important in applications ranging from nanoscale electronics to organic materials for energy conversion. Interfacial patterning is potentially valuable in establishing and stabilizing high-resolution structural features. While chemical patterning at such short length scales is unusually difficult using many traditional top-down approaches, it has been achieved with remarkable efficiency and chemical diversity in two seemingly unrelated areas: in the lipid bilayers that make up cell membranes, and in the noncovalent functionalization of 2D materials such as graphene. At the intersection of these two areas are lessons of significant utility for controlling synthetic material interface chemistry across a range of length scales.
- This article is part of the themed collection: 2018 Emerging Investigators