Issue 7, 2012

Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionationICP-MS (AF4-ICP-MS)

Abstract

Methods to detect, quantify, and characterize engineered nanoparticles (ENPs) in environmental matrices are highlighted as one of the areas of highest priority research needs with respect to understanding the potential environmental risks associated with nanomaterials. More specifically, techniques are needed to determine the size and concentration of ENPs in a variety of complex matrices. Furthermore, data should be collected at environmentally and toxicologically relevant concentrations. Both single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) and asymmetrical flow field flow fractionation (AF4) ICP-MS offer substantial advantages for detecting ENPs and assessing many of the above parameters in complex matrices over traditional characterization methods such as microscopy, light scattering, and filtration. In this study, we compared the ability of two emerging techniques to detect well characterized, monodisperse silver ENPs and examined their overall applicability to environmental studies specifically with respect to their: (A) size and concentration detection limits, (B) resolution and (C) multi-form elemental analysis. We find that in terms of concentration detection limit (both, on a mass basis and particle number basis) SP-ICP-MS was considerably more sensitive than AF4-ICP-MS (ng L−1vs. μg L−1, respectively), and offers the unique ability to differentiate dissolved and nanoparticulate fractions of total metal. With a variety of optimization parameters possible, AF4-ICP-MS can detect a much smaller NP size (2 nm vs. 20 nm for SP-ICP-MS), provides the possibility for greater size resolution.

Graphical abstract: Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS)

Supplementary files

Article information

Article type
Paper
Submitted
27 一月 2012
Accepted
12 四月 2012
First published
23 四月 2012

J. Anal. At. Spectrom., 2012,27, 1131-1142

Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS)

D. M. Mitrano, A. Barber, A. Bednar, P. Westerhoff, C. P. Higgins and J. F. Ranville, J. Anal. At. Spectrom., 2012, 27, 1131 DOI: 10.1039/C2JA30021D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements