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Hopper flows of deformable particles

Yuxuan Cheng,∗a John D. Treado,b Benjamin F. Lonial,c Piotr Habdas,d Eric R. Weeks,c

Mark D. Shattuck,e and Corey S. O’Hernab f g

Numerous experimental and computational studies show that continuous hopper flows of granular
materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w:
Q ∼ (w/σavg − k)β , where σavg is the average particle diameter, kσavg is an offset where Q ∼ 0,
the power-law scaling exponent β = d − 1/2, and d is the spatial dimension. Recent studies of
hopper flows of deformable particles in different background fluids suggest that the particle stiffness
and dissipation mechanism can also strongly affect the power-law scaling exponent β . We carry
out computational studies of hopper flows of deformable particles with both kinetic friction and
background fluid dissipation in two and three dimensions. We show that the exponent β varies
continuously with the ratio of the viscous drag to the kinetic friction coefficient, λ = ζ/µ. β = d−1/2
in the λ → 0 limit and d −3/2 in the λ → ∞ limit, with a midpoint λc that depends on the hopper
opening angle θw. We also characterize the spatial structure of the flows and associate changes in
spatial structure of the hopper flows to changes in the exponent β . The offset k increases with particle
stiffness until k ∼ kmax in the hard-particle limit, where kmax ∼ 3.5 is larger for λ → ∞ compared to
that for λ → 0. Finally, we show that the simulations of hopper flows of deformable particles in the
λ → ∞ limit recapitulate the experimental results for quasi-2D hopper flows of oil droplets in water.

1 Introduction

Silos and hoppers are used frequently in the agriculture1, phar-
maceutical2, and food industries3–7 to store fluids and granular
materials. Materials confined within silos and hoppers are dis-
charged using vertical or slanted walls that lead to an orifice at
the bottom of the device. Microfluidic devices also incorporate
flow constrictions to control the pressure and flow rate of com-
plex fluids, such as bubbles and emulsion droplets8–13. Cell sort-
ing devices14–16 and cell analysis tools17–19 also utilize hopper
structures. Despite the fact that hopper and silo flows are ubiqui-
tous in industry, we do not yet have a fundamental understanding
of the outflow properties from hoppers and silos. For example, it
is difficult to predict the outflow rate of particulate materials from
hoppers and silos as a function of the device geometry, orifice size,
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and particle properties.

For inviscid fluid flows from hoppers, the volume flow rate Q is
proportional to the orifice area (w2 in three dimensions, where w
is the diameter of the circular orifice) times the characteristic fluid
velocity vc at the orifice, Q = w2vc

20. For pressure-driven flows,
vc ∼

√
∆P/ρ, where ∆P is the pressure difference and ρ is the

mass density of the fluid. For viscous fluid flows, the volume flow
rate Q =Cdw2vc includes a discharge coefficient Cd that depends
on the hopper geometry and viscosity of the fluid21.

Unlike ordinary fluids, granular materials consist of macro-
sized grains that interact via dissipative forces, which can give rise
to intermittency and clogging during hopper flows in the limit of
small orifice sizes. Beverloo and co-workers22 carried out seminal
experimental studies of hopper flows of a wide range of granular
materials in air and proposed an empirical form for the flow rate
that allows flow arrest to occur at nonzero orifice width:

Q(w) =C(w/σavg − k)β , (1)

where C is a constant with units of flow rate, σavg is the aver-
age diameter of the particles, Q(kσavg) = 0, and k depends on the
particle properties, such as the stiffness, shape, and friction coef-
ficient. Another key difference between hopper flows of ordinary
fluids and granular materials is that the power-law scaling ex-
ponent β = d − 1/2, where d is the spatial dimension, is not an
integer for hopper flows of granular materials. This relation has
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been verified in 2D and 3D, for spherical23,24 and non-spherical25

particles, and for frictionless26 and frictional27 particles.
Numerous researchers have provided heuristic arguments for

the β = d − 1/2 scaling exponent for hopper flows of granular
materials. For example, Brown and Richards proposed a model
for the regime w ≫ kσavg where transient arches form and break
in a region above the orifice, creating a free-fall region below
with a height proportional to the orifice width w28. Because of
shielding by the transient arches, the grains move at low velocities
until they enter the free-fall region. Thus, the discharge velocity
vc ∼

√
gw when grains reach the orifice, and Q∼w2vc ∼w5/2 in 3D

or Q ∼ wvc ∼ w3/2 in 2D. Cutoffs for the finite size of the particles
can be added to these expressions to recover Eq. 1.

The original studies of Beverloo et al. involved hopper flows of
hard grains in air22. Recent studies of hopper flows of spherical
glass beads submerged in water have found that the scaling expo-
nent β ∼ 1 does not obey β = d −1/2 from the original Beverloo
equation29,30. In addition, studies of qausi-2D hopper flows of
air bubbles immersed in water have found β ∼ 0.531, again devi-
ating from the exponent in the original Beverloo equation. Thus,
from these previous results, it is not clear whether the dissipa-
tion mechanism (i.e. particle-particle or background fluid dissi-
pation), particle stiffness or other particle properties control the
power-law scaling exponent in Eq. 1.

In this article, we carry out computer simulations of hopper
flows of deformable particles in two (2D) and three dimensions
(3D), including both interparticle kinetic friction and viscous dis-
sipation with the background fluid. We employ two computa-
tional models of particle deformation: 1) the “soft particle" model
that describes particle deformation as overlaps between pairs of
particles and therefore does not conserve particle volume in 3D
(area in 2D) and 2) the deformable particle model that includes
a shape-energy function for changes in particle volume (area in
2D), surface area (perimeter in 2D), and surface bending, as well
as an interaction energy that prevents particle overlaps. Studying
these two models allows us to assess the importance of volume
conservation in determining the flow properties and provides the
ability to tune the particle stiffness, static and kinetic friction co-
efficients, and background viscous drag and quantify their effects
on the flow rate.

We find several important results. First, the power-law scaling
exponent β relating the volume flow rate Q and orifice width w
is controlled by the dissipation mechanism, i.e. the ratio of the
viscous damping coefficient to the kinetic friction coefficient, λ =

ζ/µ. We find that the exponent varies continuously between β =

d − 1/2 in the λ → 0 limit and d − 3/2 in the λ → ∞ limit, with
a midpoint λc that depends on the hopper opening angle θw. In
contrast, the exponent β is only weakly dependent on the particle
deformability and surface roughness. Second, we show that the
spatio-temporal dynamics for flows with the two exponents, β =

d−1/2 and d−3/2, are different. In particular, the velocity profile
varies more strongly with the orifice size for flows with β = d −
1/2 in the λ → ∞ limit. Third, the offset kσavg at which Q →
0 decreases with particle deformability, and increases with the
static friction coefficient. Finally, we show that the simulations of
hopper flows using the soft and deformable particle models in the

λ → ∞ limit are able to recapitulate the experimental results for
quasi-2D gravity-driven hopper flows of oil droplets in water.

The remainder of the article is organized as follows. In Sec-
tion 2, we describe the simulation methods including the soft
particle and deformable particle models, the equations of motion,
and simulation protocol that we employ to generate continuous
flows. In Section 3, we describe the experimental system, in-
cluding the hopper geometry and method to generate emulsion
droplets and flows. In Section 4, we show results for the volume
flow rate (area flow rate in 2D) Q versus the orifice width w for
the soft particle model and the deformable particle model as a
function of ζ/µ and particle deformability in both 2D and 3D.
We characterize the spatial structure of the flows by measuring
the velocity as a function of distance from the orifice and we as-
sociate changes in the spatial structure of the flows to changes
in the power-law scaling exponent β . In Section 4, we discuss
the implications of our results, and propose future research direc-
tions, such as developing an improved deformable particle model
that includes surface tension, which would allow more quanti-
tative comparisons between the simulations and experiments on
hopper flows of oil droplets in water. We also include three Ap-
pendices. In Appendix A, we describe the details of the friction-
less, deformable particle model. In Appendix B, we show more
detailed comparisons of the flow rate for the soft particle and de-
formable particle models in the compressible and incompressible
particle limits. In Appendix C, we show that the system size ef-
fects on the flow rate are small in the simulations. In Appendix D,
we show the relationship between particle softness and the pref-
actor C for both the soft particle and deformable particle models.

2 Simulation Methods

In this section, we describe the methods for simulating gravity-
driven hopper flows of bidisperse particles in 2D and 3D. We first
illustrate the hopper geometry. We then describe the two meth-
ods for modeling the particle shape and interactions: 1) the soft
particle model, which treats each spherical particle as a single
degree of freedom located at its center of mass and mimics par-
ticle contact interactions by allowing overlaps between pairs of
particles and 2) the deformable particle model that uses a shape-
energy function to penalize changes in particle volume (area in
2D), surface area (perimeter in 2D), and surface bending. The de-
formable particle model can be implemented such that the parti-
cles are nearly frictionless or the model can include surface rough-
ness. For each model, we describe the forces that result from the
shape-energy function, particle-particle interactions, and dissipa-
tive forces arising from interparticle kinetic friction and drag from
the background fluid, and then we write down the resulting equa-
tions of motion for each particle. Finally, we discuss the initializa-
tion of the particle positions and velocities and the method used
to generate continuous flows.

2.1 Hopper Geometry

In 2D, the hopper is constructed from two infinitely long straight
(top and bottom) walls separated by a distance W ∼ 60σs (where
σs is the diameter of the small particle), which connect to the
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Fig. 1 Snapshot from simulations of hopper flows of bidisperse mixtures in a gravitational field using the (a) soft particle (SP) and (f) deformable
particle (DP) models in 2D. The hopper geometry can be slanted with variable tilt angle θw, e.g. θw = 45◦ in (a) and 90◦ in (f). g⃗ indicates the
direction of the gravitational acceleration, W is the separation between the straight walls far from the orifice, h indicates the distance from the hopper
orifice, and w is the width of the orifice. (b) Close-up of hopper flow using the SP model with N/2 large particles and N/2 small particles with diameter
ratio 1.4, highlighting overlapping particles m and n with separation rmn < σmn, where σmn = (σm +σn)/2. (c) Illustration of the method to calculate
the closest separation between frictionless, deformable particles m and n. δm is the width of the edges of particle m and δ

n, j
m,i is the shortest distance

between edges i and j on particles m and n, respectively. (See Appendix A.) (d) Close-up of hopper flow using the DP model with surface roughness
with N/2 large particles, N/2 small particles, and area ratio 1.96. am is the area and pm is the perimeter of deformable particle m. Both small and large
particles have Nv = 16 vertices. (e) Illustration of the interactions between deformable particles m and n with surface roughness. δm is the diameter of
each circular vertex on particle m and δ

n, j
m,i is the distance between vertices i and j on particles m and n, respectively.

right wall at an angle θw as shown in Fig.1 (a). The gravitational
field points from left to right. The orifice is centered and has
width w < 12σs, so that W/w > 5, which ensures that the top and
bottom walls are sufficiently separated such that they do not in-
fluence the flow. In 3D, the hopper is an infinitely long cylinder
with diameter W ∼ 30σs, and the long axis of the cylinder is ori-
ented in the direction of gravity. The hopper in 3D has a flat base
(θw = 90◦) containing a circular orifice with diameter w that is
centered on the long axis of the cylinder.

In 2D, we focus on systems containing N = 1600 particles, but
we also considered systems over a range from N = 800 to 3200
to assess system size effects. In 3D, we focus on systems with
N = 6400 particles. To mimic continuous flows, particles that exit
the hopper orifice are replaced on the left side of the hopper near
the leftmost flowing particles and given the same speed as neigh-
boring particles. The distance between the hopper orifice and the
leftmost flowing particle is L ∼ 20-30σs.

2.2 Soft Particle Model

For gravity-driven hopper flows, there are typically four contri-
butions to the total potential energy: 1) the shape-energy func-
tion U s

m, 2) the gravitational potential energy Ug
m, 3) the particle-

particle interaction energy Uint, and 4) the particle-wall interac-
tion energy Uw

m . For the SP model, U s
m = 0. Purely repulsive inter-

particle forces are generated by allowing overlaps between pairs

of spherical particles32–35, as shown in Fig.1 (b). The pairwise
interaction energy of the SP model is given by

Uint =
N

∑
m=1

N

∑
n>m

εsp

2
(1− rmn/σmn)

2
Θ(1− rmn/σmn). (2)

In Eq. 2, σmn = (σm +σn)/2 is the average diameter of particles
m and n, rmn is the separation between particles m to n, and εsp

is the characteristic energy scale of the repulsive interaction. The
Heaviside step function Θ(·) ensures that the pair forces are non-
zero only between overlapping particles.

We consider a similar repulsive interaction between the hopper
walls and each particle m that is in contact with the walls:

Uw
m =

εw

2
(1−2dw/σm)

2
Θ(1−2dw/σm), (3)

where dw is the distance between the center of particle m and
the hopper wall and εw is the characteristic energy scale of the
particle-wall interaction. Thus, the total potential energy of the
system is given by

U =
N

∑
m=1

(U s
m +Ug

m +Uw
m )+Uint, (4)

where Ug
m =−Mmgh, h is the height of the center of mass of parti-

cle m, g is the gravitational acceleration, Mm = ρVm,0 is the mass
of particle m with mass density ρ and volume Vm,0 = πσ3

m/6. (In
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2D, Mm = ρam,0 is the mass of particle m with areal mass density
ρ and area am,0 = πσ2

m/4.)

We include two types of dissipative forces on the particles.
First, we consider viscous drag forces on particles moving in a
background viscous fluid:

F⃗ζ
m =−ζ v⃗m, (5)

where ζ is the drag coefficient and v⃗m is the velocity of particle m.
The second dissipative force arises from kinetic friction between
contacting particles. The kinetic friction force is proportional to
the relative velocity between contacting particles36:

F⃗µ
m =−µ

N

∑
n̸=m

(⃗vm − v⃗n)Θ(1− rmn/σmn), (6)

where µ is the kinetic friction coefficient. The dimensionless
parameter λ = ζ/µ determines whether the energy dissipation
arises mainly from viscous drag (λ ≫ 1) or from kinetic friction
(λ ≪ 1). We measure the kinetic friction and drag coefficients
in units of µ0 = ζ0 = ρσd−1

avg gt0, where t0 =
√

σavg/g. For the SP
model, the equation of motion for each particle m is

Mm
∂ 2⃗rm

∂ t2 =−∇⃗rmU + F⃗ζ
m + F⃗µ

m . (7)

We integrate Eq. 7 using a modified velocity Verlet integration
scheme with time step ∆t = 10−3t0. The flow rate Q is measured
in units of Q0 = σd

avg/t0.

For the SP model, we focus on bidisperse systems in 2D and
3D composed of half large particles and half small particles with
diameter ratio α = σl/σs = 1.4 to avoid crystallization37. The
average diameter of particles in the bidisperse system is σavg =

(σl +σs)/2 = 1.2σs. Two important dimensionless energy scales
are the ratios of the characteristic particle-particle and particle-
wall repulsive energy scales to the gravitational potential energy,
i.e. Esp = εsp/(gρσd+1

avg ) and Ew = εw/(gρσd+1
avg ), where d = 2, 3

in two and three dimensions, respectively. We set Ew = 104 to
minimize overlaps between the particles and hopper walls and
will vary Esp to determine the effect of particle softness on the
flow rate Q(w).

2.3 Deformable Particle Model

To explicitly model changes in particle shape, we recently devel-
oped the deformable particle (DP) model in both 2D38,39 and
3D40. In 2D, the particles are modeled as deformable polygons
composed of Nv vertices. We can achieve deformable particles
with nearly smooth surfaces by modeling the vertices as circulo-
lines as shown in Fig.1 (c) or achieve deformable particles with
nonzero surface roughness by modeling the vertices as small disks
as shown in Fig.1 (d) and (e). We consider the following shape-
energy function for particle m:

U s
m =

ka

2
(am−am,0)

2+
klNv

2

Nv

∑
i=1

(lm,i−lm,0)
2+

kb

2Nv

Nv

∑
i=1

(
l̂m,i − l̂m,i+1

lm,0

)2

,

(8)

which includes three terms. The first term imposes a harmonic
energy penalty for changes in particle area am from the preferred
value am,0 and ka controls the fluctuations in particle area. The
second term imposes a harmonic energy penalty for deviations in
the separations lm,i between adjacent vertices i and i+1 from the
equilibrium length lm,0 and kl controls fluctuations in the sepa-
rations between adjacent vertices. The third term is the bending
energy that favors particle shapes with l̂m,i and l̂m,i+1 in the same
direction. kb is the bending rigidity that controls fluctuations in
the angle between l̂m,i and l̂m,i+1. The factor of Nv in the numer-
ator of the second term and in the denominator of the third term
of Eq. 8 ensure that U s

m does not depend on Nv.

We focus on hopper flows of N = 1600 bidisperse deformable
particles in 2D with half large particles and half small particles.
We define effective diameters σl =

√
4a0,l/π and σs =

√
4a0,s/π

for the large and small particles, respectively, and set the diam-
eter ratio σl/σs = 1.4. We choose Nv = 16, which gives an ef-
fective friction coefficient µeff ∼ 0.6 for the DP model with sur-
face roughness41. For the nearly smooth DP model, we find that
Nv ≥ 16 does not affect the properties of the hopper flows. From
a0,s and l0,s, we can define the dimensionless shape parameter in
2D, A0 = (Nvl0,s)2/4πa0,s. We study systems composed of nearly
circular particles with A0 = (Nv/π) tan(π/Nv)∼ 1.013, which is the
value for a regular polygon with Nv = 16 sides.

For the DP model with surface roughness, each vertex in parti-
cle m is represented by a disk with diameter δm = lm,0 and the total
interaction energy Uint is calculated by summing up all the repul-
sive interactions between overlapping circular vertices on differ-
ent particles:

Uint =
N

∑
m=1

N

∑
n>m

Nv

∑
i=1

Nv

∑
j=1

εc

2
(1−δ

n, j
m,i/δmn)

2
Θ(1−δ

n, j
m,i/δmn), (9)

where δmn = (δm + δn)/2 is the average vertex diameter on par-
ticles m and n, εc gives the characteristic energy scale of the re-
pulsive interactions between vertices, and δ

n, j
m,i is the separation

between vertex i on particle m and vertex j on particle n. For the
nearly smooth DP model, we represent edges of the polygon as
circulo-lines with width δm = 0.1lm,0 and length lm,i. The interpar-
ticle repulsive interactions still follow Eq.9, but δ

n, j
m,i represents the

distance between edges i and j on particles m and n, respectively.
See Appendix A for more details on implementing the nearly fric-
tionless DP model in 2D.

The wall interaction between vertex i on particle m and the
hopper wall is

Uw
m,i =

εw

2
(1−2dw/δm)

2
Θ(1−2dw/δm), (10)

where dw is the minimum distance between vertex i on particle
m and the hopper wall. The total potential energy U is again the
sum of the shape-energy function U s

m, the gravitational potential
energy Ug

m, and the particle-wall interactions Uw
m over all particles

plus the potential energy from particle-particle interactions Uint,
as given in Eq. 4.

As for the SP model, we consider two types of dissipative forces
acting on the deformable particles. Since we will write equations
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of motion for each vertex, we consider dissipative forces acting
on the individual vertices. First, the viscous drag force on vertex
i on particle m is:

F⃗ζ

m,i =− ζ

Nv
v⃗m,i, (11)

where v⃗m,i is the velocity of vertex i on particle m. The kinetic
friction force on vertex i on particle m arising from an overlap
with vertex j on particle n is

F⃗µ

m,i =−µ

N

∑
n̸=m

Nv

∑
j=1

(⃗vm,i − v⃗n, j)Θ(1−δ
n, j
m,i/δmn). (12)

Thus, for the DP model, the equation of motion for vertex i on
particle m is

Mm,i
∂ 2⃗rm,i

∂ t2 =−∇⃗rm,iU + F⃗ζ

m,i + F⃗µ

m,i, (13)

where Mm,i = Mm/Nv is the mass of vertex i on particle m. From
Eqs. 8, 9, and 10, we can obtain five dimensionless energy
scales for the DP model in a gravitational field in 2D: Ka =

kaσ2
avg/(gρ), Kl = kl/(gρ), Kb = kb/(gρσ4

avg), Ew = εw/(gρσ2
avg)

and Ec = εc/(gρσ2
avg), where σavg = (σs + σl)/2. We choose

Ka > 104 so that the fluctuations in the particle areas are negli-
gible. We also set Kc = Kw = 104 to minimize vertex-vertex and
vertex-wall overlaps. We will vary Kl and Kb to determine their ef-
fects on the flow rate. The time t and flow rate Q are measured in
units of t0 =

√
σavg/g and Q0 = σd

avg/t0. The equations of motion
are integrated using a modified velocity Verlet algorithm with a
time step of 10−3t0.

2.4 Simulation Initialization

For the DP model, we initialize the particles as regular polygons,
and set the edge lengths to be equal to their equilibrium values
lm,0 =

√
4am,0Nv tan(π/Nv)/Nv. For both the SP and DP models,

we randomly place the particles within the hopper with zero ve-
locity. Initially, gravity is turned off, and energy minimization
(using FIRE42) is carried out to ensure no overlaps between the
particles and the particles and the walls. After the removal of
overlaps, gravity is turned on and the particles begin to fall to-
ward the orifice. To achieve continuous flow, particles that exit
the hopper orifice are placed back into the left side of the hopper
in contact with one of the bulk particles with the same velocity
as the particle it is touching. A particle is considered outside of
the hopper (and does not contribute to the flow rate) when it first
exits the orifice. However, particles are put back into the hopper
only after they fall at least two particle diameters past the orifice.

3 Experimental Methods
Below, we will compare the simulation results for hopper flows
using the SP and DP models in 2D to experimental studies of
quasi-2D hopper flows of oil droplets in water. In this section,
we describe the details of the experimental studies. We consider
silicon oil-in-water emulsions undergoing gravity-driven hopper
flows in narrow channels.

The oil-in-water emulsions are prepared through the aid of a
Micronit focused-flow microfluidic device. This device is capable
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Fig. 2 Area flow rate Q (in units of Q0 = σ2
avg/t0) versus orifice width

w/σavg for hopper flows in 2D using the SP and DP models with
(a) kinetic friction only, µ/µ0 = 10

√
10, and (c) viscous drag only,

ζ/ζ0 = 1/
√

10. We consider the SP model with Esp = 102 (asterisks)
and 104 (squares), the frictionless DP model with Kl = 10 and Kb = 10−1

(crosses) and Kl = 10 and Kb = 10 (circles), and the DP model with sur-
face roughness with Kl = 10 and Kb = 10−1 (triangles). The solid curves
in (a) and (c) are fits to the power-law scaling relation in Eq. 1. In (b)
and (d), we show log10(Q/C) versus log10(w/σavg − k) for the data in (a)
and (c), and the dotted and dashed lines have slopes of 1/2 and 3/2,
respectively. Journal Name, [year], [vol.],1–15 | 5

Page 5 of 15 Soft Matter



2 4 6 8 10 12
0

5

10

15

0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

(a)

(b)

slope = 3/2

slope = 5/2

Fig. 3 (a) Volume flow rate Q (in units of Q0 = σ3
avg/t0) versus orifice

diameter w/σavg for hopper flows in 3D using the SP model with Esp = 102

and either kinetic friction only, µ/µ0 = 10
√

10 (circles), or viscous drag
only, ζ/ζ0 = 1/

√
10 (crosses) for the dissipative forces. The solid curves

in (a) are fits to the power-law scaling relation in Eq. 1. In (b), we show
log10(Q/C) versus log10(w/σavg − k) for the data in (a), and the dotted
and dashed lines have slopes of 3/2 and 5/2, respectively.

of producing hundreds of droplets with volumes set by the rela-
tive flow rates between the continuous and dispersed phases43,44.
To stabilize the emulsions, the droplets are suspended and created
in a 5% Tween 20 nonionic detergent solution45. The density of
the droplets is ρoil ∼ 0.936 g/ml, and they are suspended in water
with density ρwater ∼ 0.997 g/ml.

The oil-in-water emulsions produced by the flow-focused mi-
crofluidic device are then injected between two 75×50 mm2 mi-
croscope slides separated by a thin sheet of either a glass cover-
slip or laser-cut plastic, ranging in thickness from 180 to 220
µm, in accordance with prior work on the clogging of emulsion
droplets34. In both cases, the thickness of the sheet is suffi-
ciently small (smaller than the smallest droplet diameter) to keep
droplets from stacking. Hence, the thickness of the spacer, which
also doubles as the hopper itself, confines the droplets to nearly
two-dimensions46. The chambers are sealed with Norland Op-
tical Adhesive 68 and placed under ultraviolet light to harden.
Inside the chambers, the droplets generally have polydispersity in
size between 6-15% (where the polydispersity is defined by the

standard deviation of the droplet diameter divided by the mean).
The mean diameter of the droplets ranged from 250-400 µm be-
tween different experiments. However, the mean diameter was
always larger than the chamber thickness, which ensures that the
droplets are quasi-two-dimensional. Across all experiments, the
average droplet diameter is σavg ∼ 315 µm. Occasionally, the oil
droplets coalesce into larger droplets with diameters significantly
greater than 400 µm; however, these larger droplets are either
among the last droplets to pass through the opening, thus acting
solely as sources of pressure, or the very first, thus contributing
nothing to the subsequent flow.

Two hopper geometries were used for these experimental stud-
ies: the first has two walls oriented at 45◦, and the second has one
45◦ wall facing a 0◦ wall (that is, a wall parallel to the direction
of droplet motion). The 45◦/0◦ geometry is made with cover-slip
glasses. The 45◦/45◦ geometry uses thin sheets of plastic that are
laser cut into the desired shapes. The length and width of the
glass and plastic hoppers are chosen to appropriately fit the mi-
croscope slide, ensuring room for hundreds of droplets, but small
enough to ensure that the droplets have enough space to clear
the orifice unimpeded by droplets that had gathered outside of
the hopper. The range of the hopper openings is w/σavg ∼ 2.0 to
12.3.

To initialize the experiments, a large air bubble is introduced
into the sample chamber to clog the opening. This allows droplets
to stack against the bubble and create a well-packed initial con-
dition. We then press the sample chamber which induces the air
bubble to exit, thus initiating the oil droplet flow. To observe the
flow we rotate a microscope 90◦, aligning the stage parallel to
the direction of gravity and viewing the sample with a horizon-
tally directed microscope objective (1.6×). An external lamp is
used for illumination and images are taken with a digital cam-
era recording at 0.75 fps. Using image analysis, we obtain the
droplet positions and areas, and use standard methods to track
the droplet motion47.

Similar to the simulations, the time and area flow rate units in
the experiments are defined as t0 =

√
σavg/geff and Q0 = σ2

avg/t0.
We use the mean diameter across all of the experiments, σavg ∼
315 µm, and geff = g(ρwater −ρoil)/ρoil is the acceleration imposed
by oil-in-water buoyancy and g ∼ 9.8 m/s2 is the gravitational
constant.

4 Results
In this section, we describe the results of our numerical simula-
tions of hopper flows of the soft particle model (SP) in 2D and 3D
and the deformable particle (DP) model in 2D. We investigate the
scaling of the flow rate Q versus the orifice width w as a function
of the ratio of the viscous drag and kinetic friction coefficients,
particle deformability, surface roughness, and spatial dimension.
We find that the flow rate Q scales as a power-law in the orifice
width w/σavg with a cutoff k, Q = C(w/σavg − k)β . The power-
law scaling exponent β depends strongly on the ratio of the vis-
cous drag and kinetic friction coefficients λ = ζ/µ, but it does
not depend on the particle deformability or surface roughness. In
particular, if the particles only experience kinetic friction, with-
out viscous drag, β = d − 1/2, as found by Beverloo and others
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for hopper flows of granular materials. However, if the particles
only experience viscous drag, without kinetic friction, β = d−3/2.
Further, we show that the scaling exponent β varies continuously
with λ between β = d − 1/2 in the λ → 0 limit and d − 3/2 in
the λ → ∞ limit, with a midpoint λc that decreases with decreas-
ing hopper opening angle θw. We show that the change in the
power-law scaling exponent β is associated with changes in the
spatio-temporal dynamics of the flows. In particular, the gradient
in the velocity profile varies more strongly with the orifice size w
for flows with β = d −3/2 than those with β = d −1/2. We then
show that the offset k at which Q(kσs) = 0 decreases from values
above 3 to below 1 as the particle deformability increases. We
also find that both the soft and deformable particle models in the
λ → ∞ limit are able to recapitulate Q(w) obtained from experi-
mental studies of quasi-2D hopper flows of oil droplets in water.
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Fig. 4 Power-law scaling exponent β from Eq. 1 plotted versus the
ratio of the viscous drag and kinetic friction coefficients λ = ζ/µ for
hopper flows in (a) 2D and (b) 3D. In 2D, we consider the SP model
with Esp = 50 (triangles) and 103 (diamonds), frictional DP model with
Kl = 10 and Kb = 10−1 (stars), and the frictionless DP model with Kl = 10
and Kb = 10−1 (crosses), Kl = 10 and Kb = 102 (squares), and Kl = 103

and Kb = 10−1 (asterisks), all with hopper opening angle θw = 90◦. In 3D,
we consider the SP model with Esp = 102 (circles). In (a) and (b), the
solid curves are fits to the sigmoid in Eq. 14 and the horizontal dashed
lines indicate β = 5/2, 3/2, and 1/2.

In Fig. 2 (a), we show the area flow rate Q versus the orifice
width w/σavg for the soft particle and deformable particle models

with kinetic friction only (i.e. µ/µ0 = 10
√

10 and ζ = 0) in 2D
for hopper opening angle θw = 90◦. We compare results for the
SP model with Esp = 102 and 104, the frictionless DP model with
Kl = 10 and Kb = 10−1, Kl = 10 and Kb = 10, and Kl = 103 and
Kb = 10−1, and the frictional DP model with Kl = 10 and Kb = 10.
Q(w) for all of these systems can be fit to the power-law scal-
ing relation in Eq. 1. While C and k for these systems vary, the
power-law scaling exponent β = 3/2 is the same for all models
as shown in Fig. 2 (b). (Note that both the SP and DP models
can be studied in the rigid-particle limit, i.e. Esp → ∞ for the SP
model and Kb → ∞ for the DP model. In this limit, Q(w) is the
same for both models as shown in Appendix B.) Since we com-
pared systems with different values of Ksp, Kb, and Kl and with
different values of surface roughness and obtained the same val-
ues of β , these results emphasize that β does not depend strongly
on particle deformability and surface roughness.

In Fig. 2 (c), we show similar results for Q versus w/σavg for
same 2D models, but for systems with viscous drag forces only
(i.e. µ = 0 and ζ/ζ0 = 1/

√
10) for the dissipative forces. All of

the data can also be fit to the power-law scaling relation in Eq. 1.
Again, C and k vary, but the power-law scaling exponent β = 1/2
is the same for all models, as shown in Fig. 2 (d). Clearly, the
power-law scaling exponent β does not depend on particle de-
formability and surface roughness, but it depends strongly on the
type of dissipative forces that are included.

In Fig. 3 (a), we show similar results for the volume flow rate Q
versus orifice width w/σavg for the SP model in 3D with Esp = 102

and either kinetic friction forces only (µ/µ0 = 10
√

10, ζ = 0) or
viscous drag forces only (µ = 0, ζ/ζ0 = 1/

√
10). Q(w) for both

systems can be fit by Eq. 1 and have power-law scaling exponents
β = 5/2 and 3/2 in the limits λ → 0 and ∞, respectively, as shown
in Fig. 3 (b). Figs. 2 and 3 illustrate that β = d−1/2 in the λ → 0
limit and β = d −3/2 in the λ → ∞ limit.

What is the value of the power-law exponent β at intermediate
values of λ? In Fig. 4, we show β from fits of Q(w) to Eq. 1 for
the SP and DP models in 2D (for hopper opening angle θw = 90◦)
and the SP model in 3D versus the ratio of the viscous drag and
kinetic friction coefficients λ . β varies continuously with λ in
both 2D and 3D and can be described by a sigmoidal function:

β =
1
2

(
d − tanh

[
log10 (λ −λc)

1/b
])

, (14)

where λc ∼ 0.05 and ∼ 0.07 in 2D and 3D is the characteristic
value at which the power-law scaling exponent reaches the mid-
point βc = d − 1 and 0 < 1/b < 1 is the stretching exponent. We
show explicitly in 2D that β (λ ) does not depend on particle de-
formability and surface roughness. Further, these results do not
depend on the number of particles N > 800 as shown in Appendix
C. We find similar results for β (λ )in 3D.

What is different about the spatiotemporal dynamics of the
hopper flows with different values of the power-law scaling ex-
ponent β? To address this question, we calculate the velocity
profiles in systems with different values of β . In Fig. 5, we
show (for the SP model in 2D with θw = 90◦) the average speed
of the particles in the direction of gravity at the center of the
hopper vg as a function of the distance above the hopper orifice

Journal Name, [year], [vol.],1–15 | 7

Page 7 of 15 Soft Matter



0 2 4 6 8
0

0.05

0.1

0.15

0.2

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a)

(b)

(c)

Fig. 5 Average speed of the particles in the direction of gravity at the
center of the hopper vg as a function of distance h/σavg above the hopper
orifice in 2D using the SP model with Esp = 102 and dissipative forces (a)
with λ → 0 that yield β = d −1/2, (b) with λ ∼ λc that yield β ∼ d −1,
and (c) with λ →∞ that yield β = d−3/2. The arrows indicate increasing
orifice diameters from w/σavg = 4.0 (blue) to 10.6 (red).

h/σavg for three ratios of the dissipative forces, λ → 0, λ ∼ λc,
and λ → ∞. To smooth the velocity profile, we define vg at
location r⃗ as vg(⃗r) = ∑

N
i=1 vgiφ (⃗r − r⃗i), where r⃗i and vgi are the

position and speed in the direction of gravity of particle i and
φ (⃗r− r⃗i) = (

√
2πσavg)

−2 exp(−|⃗r− r⃗i|2/2σ2
avg) is a Gaussian coarse-

graining function48,49. For systems with λ → 0 and β = d − 1/2,
vg(h = 0) ∼ wβ /wd−1 ∼ w1/2, and thus vg(h = 0) increases with
the orifice diameter w, as shown in Fig. 5 (a). For systems with
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Fig. 6 (a) Power-law scaling exponent β versus the ratio λ of the viscous
drag and kinetic friction coefficients for the frictionless DP model in 2D
with Kl = 10 and Kb = 10−1 for hopper opening angles θw = 90◦ (crosses),
60◦ (circles), 30◦ (asterisks), and 20◦ (triangles). The solid lines are fits
to Eq. 14. The horizontal dotted and dashed lines indicate β = 3/2 and
1/2. (b) Ratio of the average magnitude of the drag force on a particle to
the average magnitude of the kinetic friction force on a particle |F⃗ζ |/|F⃗µ |
plotted versus θw for the systems in (a) at λ = 10−2.

λ → ∞ and β = d − 3/2, vg(h = 0) ∼ wβ /wd−1 ∼ w−1/2, and thus
vg(h = 0) decreases with increasing w, as shown in Fig. 5 (c). In
contrast, the average speed in the direction of gravity far from the
hopper orifice, vg(h → ∞) ∼ wβ /W ∼ wβ , increases with w for all
values of λ , as shown in Fig. 5 (a)-(c). Because of the difference
in how vg(0) and vg(∞) depend on the orifice width w for different
values of λ , the gradient of the velocity profile dvg/dh can easily
distinguish flows with small versus large values of λ . As shown in
Fig. 5 (a), for λ → 0, dvg/dh does not depend strongly on w, sug-
gesting a weak variation of the pressure profile on w. However,
for λ → ∞, dvg/dh decreases strongly with increasing w, indicat-
ing large pressure profiles in systems with small w. In this limit,
the large differences in viscous drag forces caused by the velocity
difference v(0)− v(∞) are balanced by overlap forces, which give
rise to the large pressure profile. As expected, vg near the orifice
for the intermediate case λ ∼ λc possess very weak dependence
on w.

We have shown that β (λ ) does not depend on particle deforma-
bility and surface roughness, but it does depend strongly on the
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Fig. 7 (a) The offset k obtained from fits of the area flow rate Q(w) to
Eq. 1 versus Esp (with θw = 90◦) using the 2D SP model in the λ → ∞

limit (stars) and λ → 0 limit (circles). The offset k for the 2D frictionless
DP model on a color scale (b) from 0 (blue) to 1.7 (red) in the λ → 0
limit (with θw = 90◦) and (c) from 1 (blue) to 3.5 (red) in the λ → ∞

limit (with θw = 90◦) as a function of the perimeter Kl and bending Kb
energy scales.

nature of the dissipative forces (i.e. whether viscous drag or ki-
netic frictional forces dominate) and the resulting velocity profile
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slope = 1/2

Fig. 8 Oil-in-water emulsions flowing through a plastic hopper with orifice
diameter w ∼ 180 µm and (a) 45◦/45◦ and (b) 45◦/0◦ wall geometries.
The droplets have an average diameter σavg ∼ 304 µm with a polydis-
persity ∆σ/σavg ∼ 7%. (c) Area flow rate Q (in units of Q0 = σ2

avg/t0)
plotted versus orifice diameter w. The solid line provides a fit to Eq. 1
with β ∼ 0.49, k ∼ 1.47, and C ∼ 1.6 × 10−4. (d) Q/C plotted versus
log10(w/σavg − k) for the data in (c). The dashed line has a slope of
1/2. In (c) and (d), we show data for both 45◦/45◦ (circles) and 45◦/0◦

(crosses) wall geometries.

in the hopper. These results suggest that β (λ ) can be altered by
varying the hopper opening angle θw since changes in θw mod-
ify the velocity profile. In Fig.6 (a), we show β (λ ) from hopper
flows using the frictionless DP model in 2D with θw = 90◦, 60◦,
30◦, and 20◦. Over this range in θw, the characteristic λc at which
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β reaches its midpoint decreases from 5× 10−2 to 6× 10−3. As
the hopper wall angle θw decreases (i.e. the hopper walls become
more aligned with the direction of gravity), in the regime λ ∼ λc,
the ratio of the average force stemming from the viscous drag to
that stemming from the kinetic friction |F⃗ζ |/|F⃗µ | increases (Fig.6
(b)), and thus λc must decrease with decreasing θw. In the low-θw

limit (i.e. θw ≤ 30◦), the ratio stops increasing and λc reaches a
plateau value, ∼ 5× 10−3. Note that the time required to reach
steady-state diverges as θw → 0, and thus we are limited in the
values of θw that we can study.

In contrast to the power-law scaling exponent β , the offset k at
which Q(kσavg) = 0 depends on particle deformability and surface
roughness. Previous studies have shown that k varies from ∼ 1.3
to 2.9 as the static friction coefficient increases22,50. In Fig. 2, we
show similar results that k increases with surface roughness for
the DP model. How does the offset k depend on particle deforma-
bility? In Fig. 7 (c), we show k as a function of the perimeter Kl

and bending Kb energy scales for the frictionless DP model in 2D
in the λ →∞ limit (for θw = 90◦). At small Kl , k increases from ∼ 1
to ∼ 3.5 as Kb increases from 10−2 to above 102, suggesting the
formation of transient multi-particle arches in the rigid-particle
limit. (Note that we have shown in Appendix B that the DP model
reaches the hard-particle limit for Kb > 102.) We find similar re-
sults for the 2D SP model for λ → ∞ (Fig. 7 (a)): the offset k
increases from k ∼ 1 to 3.5 as Esp approaches the rigid-particle
limit. At small Kb for the DP model, k increases, but only from
k ∼ 1 to 2 as Kl increases from 1 to 103, suggesting the formation
of small arches and increased particle rigidity. However, Kl ≫ 103

is required to reach k ∼ 3.5 as found in the rigid-particle limit for
the DP model when increasing the bending energy. In addition,
we find that the prefactor in Eq. 1 (with N = 1600) C ∼ 0.42 for
all Kb and Kl for the DP model and all Esp for the SP model in the
λ → ∞ limit, emphasizing that C is weakly dependent on particle
deformability in this limit. However, C decreases by a factor of ∼ 2
over the range of stiffnesses that we consider in the λ → 0 limit
as shown in Appendix D. We show the system size dependence of
the prefactor in Appendix C.

For hopper flows with λ → 0, the increase in the offset k is much
less pronounced. (See Fig. 7 (a) and (b).) For example, for the
2D DP model, k < 1 for Kb = 10−2 and k ∼ 1.5 for Kb = 102 in the
rigid-particle limit. Thus, large multi-particle arches do not form
frequently in λ → 0 hopper flows. Again, C ∼ 0.15 for all Kb, Kl

and Esp values (for N = 1600).
As discussed in the Introduction, numerous experimental stud-

ies have shown that hopper flows of granular materials with static
and kinetic frictional forces posses β = d − 1/2 and can be mod-
eled quantitatively using the SP model. Here, we present the re-
sults from quasi-2D experiments of hopper flows of oil droplets in
water. (See Fig. 8 (a) and (b).) Unlike the simulations where the
number of particles in the hopper is kept constant (by replenish-
ing them when particles exit), the number of particles in the hop-
per experiments decreases with time. The hopper flow is driven
by hydrostatic pressure, which scales with the height hmax of the
droplet pile pushing out of the opening. Given the triangular ge-
ometry, this distance can be related to the number of droplets N
that have yet to exit, hmax ∼

√
N. Hence, the droplet flux can be

written as
dN
dt

= c0
√

N, (15)

where c0 has units of inverse time. This relation is experimentally
observed for a large range of N, with slight deviations as the first
∼ 100 and last ∼ 100 droplets flow out due to transient effects.
Fitting the steady-state data gives values for c0, which we non-
dimensionalize as Q = c0

√
σavg/geff. Fig. 8 (c) and (d) show the

results for the area flow rate Q versus the orifice width w/σavg.
While we have two experimental geometries, the results for the
area flow rate Q are identical. Q(w) can be fit by the power-
law scaling relation in Eq. 1 with β ∼ 0.49 and k ∼ 1.5. These
values of β and k are consistent with the simulation results for
λ → ∞ and Esp ∼ 102 for the SP model and the k ∼ 1.5 contour for
the frictionless DP model in Fig. 7 (c). These results emphasize
that the kinetic frictional forces are weak relative to the viscous
drag forces in hopper flows of oil droplets in water. The exper-
imental uncertainty in measurements of the area flow rate Q is
∼ ±2× 10−5σ2

avg/t0, which is slightly larger than the symbol size
in Fig. 8(c). This uncertainty is due to slight differences in the
droplet size distributions and in the initial conditions (how the
droplets are stacked into the hopper) for each w/σavg.

5 Discussion and Conclusions
In this article, we carried out extensive numerical simulations of
gravity-driven hopper flows of particulate media in 2D and 3D
using the soft (SP) and deformable particle (DP) models. We
found several important results. First, we showed quite gener-
ally that the flow rate Q versus orifice width w obeys the power-
law scaling relation: Q(w) = C(w/σavg − k)β . While k depend on
the particle deformability and surface roughness, the exponent
β does not. Instead, β is controlled by the ratio of the viscous
drag to the kinetic friction coefficients λ and β varies continu-
ously from β = d − 1/2 in the λ → 0 limit to β = d − 3/2 in the
λ → ∞ limit. The midpoint βc(λc) can be tuned by varying the
hopper opening angle θw since it can alter the ratio of the aver-
age viscous drag force to the average kinetic friction force. The
spatiotemporal dynamics of the flows differ for systems with dif-
ferent power-law exponents. In particular, the gradients of the
velocity and pressure profiles vary more strongly with the orifice
width for β = d−3/2 than those with β = d−1/2. We also found
the offset k increases with particle stiffness until k ∼ kmax in the
hard-particle limit, where kmax ∼ 3.5 in λ → ∞ limit and kmax ∼ 1.6
in λ → 0 limit. In addition, we showed that both the SP and DP
models are able to recapitulate the flow rate Q(w) from experi-
mental studies of quasi-2D hopper flows of oil droplets in water.

These results suggest a number of promising future research
directions. First, the current studies focused on nearly spherical
particles. How does the power-law scaling exponent β (λ ) depend
on particle shape? By changing the reference shape parameter A0

in the DP model, we can determine β (λ ) as a function of the par-
ticle shape. Second, in the current studies, we included viscous
drag and kinetic friction forces between particle pairs, but we did
not include kinetic friction forces between the particles and the
side walls with kinetic friction coefficient ν . How does the power-
law scaling exponent vary with the dimensionless ratios ζ/ν and
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Fig. 9 Schematic of the frictionless DP model to illustrate the contact
distance δ

n, j
m,i between vertex i on particle m with position r⃗m,i and vertex

j on particle n with position r⃗n, j. l⃗m,i is the vector pointing from r⃗m,i to
r⃗m,i+1 and n̂m,i · l⃗m,i = 0. The definition of δ

n, j
m,i depends on the location

of the intersection point P of the line along l⃗m,i and the line that is
perpendicular to l⃗m,i that includes r⃗n, j. If point P is between r⃗m,i and
r⃗m,i+1, δ

n, j
m,i = r⃗ n, j

m,i · n̂m,i as shown in (a), otherwise δ
n, j
m,i = |⃗r n, j

m,i | as shown
in (b).

µ/ν that quantify the dominant dissipative forces? Third, in the
current studies, we found that both the SP and DP models are
able to recapitulate Q(w) in the experimental studies of hopper
flows of emulsion droplets. However, in future studies, we seek
a more quantitative approach where the simulations can recover
the particle shapes during the hopper flows in experiments. To
do this, we will refine the model for surface tension in the DP
model. In addition, we will simulate hopper flows of emulsion
droplets in the intermittent and clogging regime for w ∼ kσavg. In
this regime, we expect qualitatively different results for the SP
and DP models, since truly deformable particles can significantly
change their shapes, but maintain their volume, to alleviate clogs
in hopper flows.

Appendix A
In this Appendix, we include more details concerning the detec-
tion of contacts between frictionless deformable particles in 2D.
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Fig. 10 Area flow rate Q (in units of Q0 = σ2
avg/t0) versus orifice width

w/σavg for hopper flows in 2D using the SP model Esp = 102 (circles) and
105 (squares) and the frictionless DP model with Kl = 10 and Kb = 10−1

(crosses) and Kl = 10 and Kb = 102 (asterisks) with (a) kinetic friction
forces only (µ/µ0 = 10

√
10, ζ = 0) and (b) viscous drag forces only

(ζ/ζ0 = 1/
√

10, µ = 0). The solid curves are fits to the power-law scaling
relation for Q(w) in Eq. 1. In the hard-particle limit, we find (a) C ≈ 0.14
and k ≈ 1.6 for λ → 0 and (b) C ≈ 0.42 and k ≈ 3.4 for λ → ∞.

For frictionless deformable particles, the ith vertex on a given par-
ticle m is modeled as a circulo-line made up of a rectangular re-
gion with length lm,i plus a pair of half-circular end caps with ra-
dius δm . Here, we describe how to calculate the closest distance
δ

n, j
m,i between vertex i on particle m and vertex j on particle n as

shown in Fig.9. We first find the line L that includes the point r⃗n, j

and is perpendicular to l⃗m,i. If line L intersects the line along l⃗m,i

at a point between r⃗m,i and r⃗m,i+1, the closest distance between
vertices i and j is the distance between r⃗n, j and the line along
l⃗m,i, i.e. δ

n, j
m,i = r⃗ n, j

m,i · n̂m,i as shown in Fig.9 (a). In this case, the
repulsive pair force from Uint is in the direction of n̂m,i (perpendic-
ular to the surface of particle m), and therefore it is a frictionless
interaction51.

If line L does not intersect the line along l⃗m,i at a point between
r⃗m,i and r⃗m,i+1, the closest distance between vertices i and j is
δ

n, j
m,i = |⃗r n, j

m,i | as shown in Fig.9 (b). Again, in this case, the gradient

of Uint is along r̂ n, j
m,i , and thus the repulsive interaction force is

frictionless.
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Fig. 11 (a) Power-law scaling exponent β plotted versus the ratio of the
viscous drag to the kinetic friction coefficients λ from the data in Fig. 4
(a) for the SP and DP models in 2D with θw = 90◦. We also show data
for the SP model in 2D with Esp = 20 (circles). (b) Schematic of the
2w×w rectangular region in 2D over which the particle number density
ρn is measured. (c) The power-law scaling exponent β

′
(λ ) obtained by

fitting the corrected area flow rate, Q
′
= Qaeff/aavg to Eq. 1.

Appendix B
In this Appendix, we show results for the area flow rate Q(w) in
the rigid-particle limit for both cases λ → 0 and λ → ∞. We also
show that conservation of total particle area is important for ac-
curately modeling the area flow rate in hopper flows of soft and

deformable particles in 2D. (Similar results are found in 3D.) As
discussed in Sec. 2, the SP model does not explicitly model par-
ticle shape change, but instead mimics particle deformability by
allowing overlaps between neighboring particles. As a result, the
SP model does not conserve total particle area. In contrast, the
DP model includes a term in the shape-energy function to con-
serve particle area as particles change their shapes. (See Eq. 8.)
However, in the large-Esp limit for the SP model, where particle
overlaps in SP model are small, and in the large-Kb limit for the
DP model, the area flow rate Q(w) is same for these two models.
As shown in Fig.10, Q(w) is nearly identical for the SP model with
Esp = 105 and for the frictionless DP model with Kb = 102 in the
λ → 0 and λ → ∞ limits. For λ → 0 with β = 3/2, the offset k ≈ 1.6
in the hard-particle limit, in close agreement with experiments of
hopper flows of frictional grains. For λ → ∞ with β = 1/2, the
offset k ≈ 3.4 in the hard-particle limit. Note that the offset k has
different values for λ → 0 and λ → ∞ in the hard-particle limit,
which suggests that k is controlled by the flow dynamics and can-
not be determined by the hopper geometry alone29,30.

For extremely soft particles, the overlaps that occur in the SP
model are sufficiently large that they influence the hopper flow
dynamics. For example, in Fig.11(a), we show the power-law ex-
ponent β as a function of λ for the SP model with Esp = 20 in
addition to all of the data in Fig.4(a). For this data, the area flow
rate Q was calculated by counting the number of mass points that
flow past the orifice opening per unit time divided by the particle
areal mass density ρ. The power-law exponent β (λ ) for the SP
model with extremely large overlaps (Esp = 20) deviates from all
of the other data. We can correct Q(w) for the SP model with
large particle overlaps by determining the true particle area flow-
ing through the hopper orifice. To do this, we consider a 2w×w
rectangular region near the hopper orifice as shown in Fig.11(b)
and measure the number density ρn = N/A in this region. The
effective particle area in this region is aeff = 1/ρn, and the cor-
rected area flow rate is Q′ = Qaeff/aavg, where aavg = (as + al)/2.
In Fig.11 (c), we show the power-law scaling exponent β ′ ob-
tained from fitting Q′ to Eq. 1. We find that the data from Fig.4(a)
(where the particle overlaps are small) do not change and β

′
= β .

However, β
′

for the SP model with Esp = 20 shifts so that it falls
on the rest of the data from Fig.4(a).

Appendix C

In this Appendix, we investigate how the power-law exponent
β (λ ) obtained by fitting Q(w) to Eq. 1 depends on system size
for the SP model in 2D. In Fig. 12 (a), we show β (λ ) for the 2D
SP model with Esp = 102 and θw = 90◦ for N = 800, 1600, and
N = 3200. We find that β is very weakly dependent on system
size for the 2D SP model, and we expect similar results for the
SP model in 3D. Based on our recent studies of jamming of de-
formable particles, we expect similar weak system size depen-
dence of β for the 2D DP model38,39. We also show the system
size dependence of the prefactor C in Eq. 1 for the 2D SP model
in Fig.12 (b). C grows roughly linearly with system size, but the
slope is much weaker for systems with λ → ∞.
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Fig. 12 (a) Power-law scaling exponent β versus the ratio of the viscous
drag and the kinetic friction coefficients λ for the SP model in 2D with
Esp = 50, θw = 90◦, and N = 800 (crosses), 1600 (circles), and 3200 (as-
terisks). The horizontal dashed lines indicate β = 3/2 and 1/2. The solid
line is a fit to Eq. 14. (b) Prefactor C in Eq. 1 normalized by the value
at N = 800 versus the system size N for the 2D SP model for both λ → 0
(circles) and λ → ∞ (stars).

Appendix D

In this Appendix, we investigate how the prefactor C obtained by
fitting Q(w) to Eq. 1 depends on the stiffness Esp for the SP model
and the contractility Kl and bending stiffness Kb for the DP model
in 2D. In Fig. 13 (a), we show C as a function of Esp for the SP
model in 2D in both the λ → ∞ and λ = 0 limits. We find that C is
very weakly dependent on Esp in the λ → ∞ limit, but decreases
with increasing Esp until it reaches a plateau at C ≈ 0.15 in the
λ = 0 limit. We show that the flow rate for different values of Esp

can be collapsed by plotting Q/C versus w/σavg − k, as shown in
Fig. 13 (b) and (c). We find similar results for the DP model for
different values of Kl and Kb. C is weakly dependent on Kl and
Kb in the λ → ∞ limit, but decreases with increasing Kl and Kb

for λ = 0. (See Fig. 14 (a) and Fig. 14 (c).) Again, the flow rate
can be collapsed by plotting Q/C versus w/σavg − k as shown in
Fig. 14 (b) and (d) for the DP model in 2D.
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Fig. 13 (a) Prefactor C in Eq. 1 versus Esp (with θw = 90◦) for the SP
model in 2D in the λ →∞ (stars) and λ = 0 limits (circles). Area flow rate
Q (in units of Q0 = σ2

avg/t0) collapsed by plotting Q/C versus w/σavg − k
in the (b) λ → ∞ limit for the SP model with Esp = 70 (crosses), 200
(circles), 600 (asterisks), and 1600 (triangles) and the (c) λ = 0 limit for
the SP model with Esp = 50 (crosses), 100 (circles), 200 (asterisks), and
500 (triangles).
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