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Buffon’s Brownian needles: harnessing thermal
motion for stochastic sampling

Charlie Maslen,a Luke Nicholsona and Juliane Simmchen *ab

We demonstrate a physical implementation of Monte Carlo sampling using the Brownian motion of

microscopic rods, applied to the classical Buffon’s needle experiment. In this way, a problem in

geometric probability is mapped onto a Monte Carlo method, with a physical system performing key

aspects of the computation. The experiment’s parameters are embedded directly: the rods length

encodes the probability integral, while their thermal motion supplies the sampling. Although only a toy-

model system, this approach illustrates how embedding probabilistic structure into soft matter can

provide a low-energy pathway for stochastic computation that exploits freely available thermal noise.

1 Introduction

According to the International Energy Agency (IEA) the global
energy consumption of computing, including data centers,
networks and individual devices make up a significant amount
of the total energy consumption. Data centers alone are
assumed to consume about 1–1.5% of the global electricity,
trends strongly increasing.1,2 To ensure energy security, not
only new sustainable energy sources, also new, more efficient
computing strategies are needed on all levels, from hardware
and architecture, to software based approaches, but also new,
emergent forms of computing are developing.3

Especially quantum-based computing has attracted scientific
interest in general,4,5 been awarded a very recent Nobel Prize and
received a high volume of investment capital.6,7 Alternative forms
of computing based on biological8,9 or chemical properties10

intrinsic to the systems have drawn attention over time. Colloidal
and active matter systems are increasingly attracting interest for
computing applications: colloidal solutions have been used in a
number of publications as a physical reservoir for reservoir
computing.11–13 The first realisation of a physical reservoir com-
puter using self-propelled active microparticles was based on a
nonlinear dynamical system due to time delays in retarded
interactions.14 Immense potential is also ascribed to the use of
inherent material properties to embody intelligence.15

Randomness plays a central role in modern computing.
From secure cryptographic protocols and gambling systems to
simulations and stochastic algorithms, the need for high-quality
random number generators (RNGs) has only grown with the
increasing complexity of computational tasks.16–19 However,

generating randomness is not without cost. Whether it is achieved
via deterministic, classical computer-based pseudo-RNGs; or spe-
cialized, hardware-based true-RNGs, producing randomness in
digital systems incurs significant energy costs – through both
computational cycles and memory operations.20,21

A notable application of RNGs is found in Monte Carlo
methods – a class of stochastic sampling techniques widely used
to solve problems in numerical integration, physics, finance, and
machine-learning.22–24 Monte Carlo methods rely, fundamentally,
on the generation of random sampling – the quality and quantity
of which can significantly impact the accuracy and efficiency of the
computation. As digital technology continues to progress, espe-
cially in the field of machine-learning, the energy cost of computa-
tional tasks is becoming highly scrutinized and alternative
paradigms of computing are now under exploration.25,26 Within
this scope, alternative, low-energy forms of random number gen-
eration demand investigation.

Thermal noise – the microscopic energy fluctuations caused
by the thermal motion of particles – is a ubiquitous and
naturally occurring form of randomness. It is a direct conse-
quence of the statistical nature of many-bodied, thermodynamic
systems in which the kinetic energies of bodies are distributed
following the Boltzmann distribution.27 In classical computing,
where results should be deterministic and non-probabilistic,
thermal fluctuations are suppressed by averaging results out.
Conversely, in quantum computing they are suppressed by
holding systems at low temperature in order to maintain
quantum coherence.28 Given that thermal noise is freely avail-
able at ambient temperature, a question arises: instead of
suppression, can thermal fluctuations be leveraged as a compu-
tational resource? This question has motivated research into
exploiting thermal noise for stochastic computing.29–31

An overtly physical manifestation of ambient thermal fluc-
tuations is Brownian motion. First described by Robert Brown
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in 1827 and explained by Einstein in 1905,† Brownian motion
describes the erratic movement of microscopic particles sus-
pended in a fluid, whose rheological properties and density of
the surrounding fluid influence the observed phenomenon.
The erratic motion of the micronscale objects is driven by
collisions with the surrounding molecules, which in turn are
driven by ambient thermal noise.33,34 Importantly, while the
underlying physics is deterministic, the macroscopic behaviour
is effectively unpredictable and thus serves as a potent physical
source of randomness.35

In this work, we present an experimental system of micro-
scopic rods in an aqueous medium which exhibit Brownian
motion and diffuse over a surface digitally patterned with evenly
spaced lines, creating a dynamic realisation of the classical
Buffon needle experiment. In the experiment, the probability
that a randomly dropped needle intersects a set of parallel lines
depends on the geometry of the system and the value of p
(Fig. 1).36,37 Buffon demonstrated mathematically that by know-
ing both the rods length and the separation of the parallel lines, p
could be estimated by simply counting the number of scattered
needles and the number of needle-line crossings. Specifically, by
setting l = 2d, then the probability of crossing is 1/p. Thus, p can
be estimated by counting the total number of needles and
dividing by the number of crossings. The accuracy of the estima-
tion can be increased by re-scattering the needles and increasing
the sample count, N. First posed as a question in geometric
probability, it embodies the same statistical principles of Monte
Carlo methods: drawing repeated random samples from a well-
defined probability space, recording the occurrence of a specific
event, and using the observed event frequency to estimate an
underlying constant or integral.38,39 In our system, re-scattering
of the needles, i.e., resampling, is realised entirely by thermal
fluctuations in a fluidic environment, driving the rods into new,
randomised positions and angles. Through this conceptual toy
model, we hope to demonstrate Brownian motion as a naturally
occurring, zero-energy-input source of stochasticity required for
solving probability integrals.

Similar uses of thermodynamic noise to generate ‘high-quality’
random numbers have been demonstrated previously,40–42 and
Brownian motion of colloids for RNG has been demonstrated by
others.35,43 We do not aim to compete with state-of-the-art physical
RNGs for the quality or frequency of random numbers generated.
Rather, we demonstrate a conceptual proof-of-principle by using
inherent properties of the physical systems to directly solve Monte
Carlo integrals. Specifically, the rod-shape geometry of the particle
naturally embodies variables of the Buffon needle experiment.

2 Results and discussion
2.1 Rod selection and experimental set-up

To reproduce Buffon’s needle experiment on the microscale,
the first step is the selection of rod-like particles which exhibit
both translational and angular Brownian motion in order to re-
scatter themselves. These motions are the engine of the sampling
within the Monte Carlo framework, continuously randomising
without any external input. Three species of rod-like particle,
spanning a range of sizes, were measured. These were: 1 mm long,
0.2 mm diameter SiO2 rods; 3 mm long, 0.5 mm diameter ZnO rods;
and 15 mm long, 2.5 mm diameter SiO2 rods. A measure for the
degree of Brownian motion can be obtained from the diffusion
coefficient of a particle, which in turn is strongly dependent on
both, the colloidal properties, but also the surrounding fluid. As
size decreases, both the angular and translational diffusion
coefficients of the rods increases according to the Stokes–
Einstein equation as well as equations describing rods derived by
Broersma.44,45 With physical stochastic systems, the timescales of
the processes are inherent to the components of the system.
Thus, to achieve faster ‘computation’ rates, smaller systems
which display faster kinetics are desirable. On the other hand,
larger particles can be more easily resolved in optical microscopy
and so can provide higher resolution data.

Using adapted Broersma relations46,47 we estimate decorre-
lation times t from the rotational diffusion coefficients Drot for
rods with length, l, and diameter, w.

tl;w �
1

2Drot

t1,0.2 B 0.1 s,

t3,0.5 B 2 s,

t15,2.5 B 300 s

These estimations indicate clearly the importance of particle
size on resampling rate, with decorrelation times spanning 4
orders of magnitude. They indicate that larger SiO2 rods would
be unsuitable for this experimental work, let alone a reasonable
random-number generator.

After dispersing the microrods in a dilute surfactant solution
on a plasma-cleaned glass slide to minimise aggregation and
sticking to the surface, the rods behaviour was observed by
optical microscopy. It was found that both the large and small

Fig. 1 (A) Schematic of Buffon’s needle experiment. Rods of uniform
length are randomly scattered on a surface of parallel lines with uniform
separation. (B) Probability of rod crossing a line depends on rod length, l,
line separation, d, and p. Thus, p can be estimated by counting the number
of rods and crossings. In (A), the estimate would be p̂ = 9/3 = 3.

† The mathematical formalism for Brownian motion predates its physical expla-
nation. In 1900, Louis Bachelier described similar stochastic processes in his
attempts to model the Paris stock exchange – underscoring the deep connection
between mathematical stochasticity and physical thermodynamic systems.32
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SiO2 rods were unsuitable for analysis. The large rods, as
predicted, were measured showing limited diffusion (D B
10�14 m2 s�1). Conversely, the small SiO2 rods were highly
dynamic, translating more than a body length on the order of
10 s of milliseconds. However, they had a sufficiently low
buoyant mass to show off-plane angular diffusion, resulting
in them coming in and out of focus and with a changing
projected shape (SI). This meant they could not be reliably
tracked and were unsuitable for the strictly two-dimensional
Buffon needle experiment. Balancing the need for resolvable
planar motion with a sufficient reorientation rate, we selected
3 mm � 0.5 mm ZnO rods as the optimal compromise for
further experiments. The ZnO rods showed clear Brownian
motion both translationally and rotationally, and with all
rotation being planar they were suitable for performing
Buffon’s test.

Measurements of their angle over time display a decorrela-
tion time (autocorrelation function (ACF) o 1/e) of 0.81 s with a
deviation of �0.34 s (Fig. 2C) – slightly lower than the Broersma-
estimated value which could be due to electrostatic effects or low-
level photocatalytic activity of the rods, both of which are neglected
in the Broersma estimation. Measurements of the mean-square-
displacements of the rods provide a measure for the translational
diffusion coefficient: Dtrans = 16.9 mm2 s�1. This means within 1 s
each rod can reposition a body length (3 mm) away from its initial
position. Thus, with every 2 s it can be assumed that the angle
and position of the rods has been sufficiently randomised, or
re-scattered as with the analogy to Buffon’s needle.

ZnO rods were dispersed as described and images were
recorded at 2 s intervals for just over 17 h (31 058 frames total).
The resulting video was binarised and processed using a
custom OpenCV platform (SI). A set of parallel lines, separated
by a distance 2� the median rod length, was digitally imposed
on the images and in each frame every rod as well as every rod-
line crossing was counted. For each frame, a p estimate was
measured from just rods and crossings in the frame as well as a
p estimate from the cumulative rods and crossings.

2.2 From Brownian dynamics to Pi

Fig. 3A shows the cumulative estimate of p, defined as the ratio
of the running-total numbers of rods and crossings. Superim-
posed on this are the single-frame estimates (plotted as red
crosses) which exhibit significant variability. These individual
estimates range from as low as 1.863 to as high as 7.0, reflecting
the stochastic nature of the process on short timescales (Fig. 3B).
Nonetheless, the cumulative estimate converges towards the true
value of p, displaying clear law of large numbers behaviour with

the absolute error scaling by e / 1
� ffiffiffiffi

N
p

(Fig. 3C and D). This
directly mirrors the statistical efficiency of digital Monte Carlo
sampling, confirming that passive Brownian sampling can, in
principle, achieve the same asymptotic accuracy without consum-
ing energy in re-sampling cycles. To quantify uncertainty in the
running estimate of p, we computed 95% Bayesian credible
intervals from the cumulative rod and crossing counts, treating
crossings as a Poisson-distributed variable. The intervals narrow

Fig. 2 (A) Schematic showing reorientation (Dy) and translation (Ds) of dynamic rods after a time Dt. (B) Optical and electron microscopy images of ZnO
rods sedimented on the surface. (C) Plot of the mean autocorrelation function of the angles (ACF) of rods over time (blue) and angles of rods over time
(red). Decorrelation time is measured as the lag time at which the ACF drops below 1/e, denoted with the dashed black line and the upper standard
deviation denoted with the grey dashed line.
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steadily over time, reflecting the increased statistical confidence
as more data accumulates.

To explore whether the convergence behaviour depended on
the temporal extent of the experiment, we re-analyzed the same
video starting from various frame indices (5000, 10 000, 15 000,
20 000 and 25 000) (SI). In all cases, the cumulative estimates
converge within p � 0.02 suggesting the long-term convergence
is robust. For example, over the original dataset, the estimate
follows an increasing trend which could be interpreted as a
physical effect – such as rod length gradually decreasing over
time due to dissolution. However, when the analysis is restricted
to a subset of the data beginning at later frames, the trend is
predominantly decreasing. This suggests that trends in the
cumulative estimate may result from statistical fluctuations,
rather than underlying changes in the physical system.

At the conclusion of the experiment, a total of 2 820 336 rods
and 898 483 crossings had been detected, yielding an estimate,

p̂ ¼ 2820336

898483
� 3:1389976;

and thus an absolute error, e, of

e = |p̂ � p| = 2.6 � 10�3.

Addressing the statistical uncertainty in our system, we
obtain

p̂ = 3.1390 � 0.0053(stat.)

where the statistical error is obtained from the 95% Bayesian
credible intervals. A systematic error exists for the estimate
which comes from setting d = 2 � hli. This is measured to be,

hli = 3.11 mm � 0.20 mm,

resulting in a systematic error of,

dp(syst.) = 0.21,

which renders the final p estimate as,

p̂ = 3.14 � 0.21.

This reflects the limitations of a physical system, specifically, the
polydispersity of the colloidal rods. Nonetheless, the much lower
statistical uncertainty, which decreases with increasing sample size
indicates that our system behaves as a Monte-Carlo solver. A more
experimentally precise system (e.g., by using a higher resolution
camera) would exhibit the same statistical behaviour.

At this total rod count, the number of crossings required to
produce an estimate closest to p would be 897 741, resulting in

p̂ ¼ 2 820 336

897 741
� 3:14159206;

e = 5.94 � 10�7.

This means at the conclusion of the measurement, there was
a deviation of 742 crossings from the ideal behaviour. As would
be expected, the magnitude of the deviation rate (in this case
742/898 483 E 8 � 10�4) is inversely proportional to the
magnitude of the loss of accuracy (in this case 10�3/10�7).

The closest approach to the true value of p occurred at frame
28 388, at which point 2 580 938 rods and 821 538 crossings had
been recorded. The resulting estimate,

p̂ ¼ 2 580 938

821 538
� 3:14159296:

Fig. 3 Results of p estimation by Brownian rods. (A) p estimate across the full set of frames with cumulative estimate (blue line) being calculated from the
running total numbers of rods and crossings. Individual frame estimates are shown as red crosses. The 95% credible interval is highlighted in blue.
(B) Same dataset as (A) but showing the full range of individual frame p estimates. The standard deviation of the individual estimates is highlighted in
orange. (C) Final 1000 frames of the dataset showing the estimation becoming stable within 3 significant figures of p. (D) log–log plot of the absolute
error (e) versus frames with a fitted linear regression line (coefficient B �0.5).
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This was the closest possible value at this rod count and
corresponds to an absolute error of

e = 3.09 � 10�7.

Interestingly, within the dataset we identified 13 separate
instances of four-frame sequences that recorded 355 rods and
113 crossings. These combinations yield

p̂ ¼ 355

113
� 3:14159292;

with an error of just

e = 2.67 � 10�7.

If the experiment had consisted of only such brief, 8 second
sequences, the estimates would have been extraordinarily accu-
rate. This would, of course, be cheating the system by using
approximations of p known since antiquity.48

As a comparison, we implemented an OpenCV video gen-
erator that created binary videos mimicking the videos of our
Brownian rods after pre-processing. The difference here was
that, instead of exhibiting Brownian motion, between every
frame the rods would be randomly distributed with a new angle
and position using the Numpy PCG64 pseudo-RNG. After run-
ning the Buffon experiment on this new video, we compared the
quality of p estimation finding that the Numpy based approach
yielded much stronger convergence towards p (SI). The cumula-
tive estimation for p remains stable within 3 significant figures
after only 5000 frames. Nonetheless, this method requires energy
consumption on the order of 4000 J min�1 whereas the Brownian
motion comes free.49

Notably, bands form in the scatter plots of frame-specific p
estimates, clustering around integers and common fractions (e.g.,
3, 3.5, 4). This pattern is a direct consequence of measuring a
discrete, physical system – especially when the sample size per
frame, N, is relatively small and the mathematical operations are
minimal. Because p̂ is computed as a ratio of two integers, it is
constrained to rational values. In essence, the inverse of our
estimates form a subset of Farey sequences FN for N A [58, 120].50

As with Farey sequences, values formed from integers with many
common divisors (e.g., 2, 3, 4, 5) appear with higher frequency.
For example, p̂ = 3 can be formed by many rod-crossing pairs
((60, 20), (63, 21), . . ., (117, 39), and (120, 40)). In contrast, less
common values like p̂ = 4.1 only occur in two specific combina-
tions: (62, 20) or (93, 30). A more detailed description and
visualisation can be found in SI.

This feature reflects a fundamental aspect of measuring
physical systems: such systems rely on discrete observations,
which inherently produce discretised outputs. As a result,
certain values are simply inaccessible. While increasing the
measurement resolution (e.g., by observing more events) or
performing more mathematical operations (i.e., increasing per-
mutations of event counts) can reduce this effect, a fundamental
limitation remains – tied to the discrete nature of counting and
observation. Notably, this limit is shared with electronic com-
putational methods using floating points but which must still

be embodied in a physical system, i.e., n-bit bytes are discretised
to 2n values. Interestingly, this limitation parallels that of
electronic computation, where floating-point numbers are con-
strained by finite bit-depth – n-bit registers can only represent
2n discrete states.

3 Conclusions

This microscale Buffon’s needle system is a proof-of-principle
that Brownian motion can perform unbiased Monte Carlo inte-
gration without digital computation or external energy input.
Here, the physical properties of the rods – length, orientation,
planar motion – directly map onto the variables of the Buffon
problem. The colloidal architecture of the system is inherently
parallel in which each unit randomises autonomously and
independently.

Currently, the set-up relies heavily on digital systems to do
both the measurement and mathematical operations. The next
fundamental step would be to encode processing power into the
physical system, for example through electrochemical signals
with capacitive sensing, or microfluidics with on-chip counting.

While the present system is a minimal demonstration, it
establishes a conceptual foundation for more complex physically
implemented Monte Carlo algorithms. By re-framing passive
Brownian motion as a computational engine, we link the physics
of soft matter to the mathematics of sampling, opening new
directions in alternative computing paradigms. Naturally, we do
not envision such systems as being advanced p-estimators. But by
careful selection of a colloidal system and a geometric probability
problem that can be mapped to stochastic-computations; they
may offer a zero-energy-input resource if an energy-friendly read-
out method is devised in the future.

4 Methods
4.1 Reagents

Zinc nitrate hexahydrate (ZnO(NO3)2�6H2O), hexamethylenete-
tramine (HMTA), polyvinylpyrrolidone (MW 40 000) (PVP40),
sodium citrate (NaCit), 1-pentanol, ethanol, NH3, and Tween-
20 surfactant were all purchased from Sigma-Aldrich. All chem-
icals were analytical grade and used as purchased without any
further purification.

4.2 SiO2 microrod synthesis

SiO2 microrods (1 mm long, 0.2 mm diameter) were synthesised
according to procedure.51 Briefly, 2.5 g PVP40 was dispersed in
25 mL 1-pentanol by ultrasonication in a 50 mL Falcon tube.
2.5 mL ethanol, 0.7 mL H2O and 0.25 mL 0.18 M NaCit were
added. After shaking, 0.5 mL of a fresh NH3 solution (25% in
H2O) was added, followed by shaking and the addition of
0.25 mL TEOS. The solution was allowed to rest for 14 h. The
obtained rods were separated by centrifugation for 20 min at
5000 rpm and washed three times with ethanol. Larger SiO2

glass micro rods with a diameter of 3 mm were purchased from
Nippon Electric Glass Co., Ltd.
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4.3 ZnO microrod synthesis

ZnO microrods (3 mm long, 0.5 mm diameter) were synthesised
according to procedure.52,53 Briefly, 0.594 g of ZnO(NO3)�6H2O
and 0.056 g of HMTA were dissolved in 150 mL of DI water in a
round-bottomed flask. The flask was closed with a rubber
stopper and syringe then heated under stirring in a water bath
at 90 1C for 30 minutes. After this the products were separated
by centrifugation for 5 in at 5000 rpm before and washed
3 times with DI water. The rods were characterised using
scanning electron microscopy (ZEISS Gemini SEM 300) and
optical microscopy (Zeiss Axioscope 5).

4.4 Rod measurement

ZnO rods were dispersed in 0.15% Tween-20 surfactant solution
and 20 mL were deposited into a well on a plasma-treated glass
slide, and the well was covered with a glass slip to prevent
evaporation. After sedimentation, the resulting number density
on the surface was approximately 3000 rods per mm2. The rods
were visualised in microscopy using a Zeiss Axioscope 5 upright
microscope equipped with a 50�/0.55 HD DIC lens. Images
were recorded in 8-bit grayscale (2048 px � 1536 px = 212 mm �
160 mm) using an Imaging Source DFK 33UX265 Camera. To
measure the angular autocorrelation function, the rods were
recorded diffusing at 120 fps and the autocorrelation was
measured with lags of 1/120 s. The autocorrelation of the rods
was measured using,

CðtÞ ¼ 1

ðn� tÞs2
Xn�t�1

t¼0
xðtÞ � mð Þ xðtþ tÞ � mð Þ;

where x is the variable (angle or position), t is the lag time, s2 is
the variance, n is the total number of time points, and m is the
mean of the time series, calculated as:

m ¼ 1

n

Xn�1

t¼0
xðtÞ:

To perform the Buffon’s needle experiment rods were
recorded at intervals of 2 s.

4.5 Rod tracking

All image processing and rod tracking was done using an
OpenCV-based python code.54 In summary, the 8-bit grayscale
videos were first binarised by thresholding to a fixed value such
that only rods were visualised as contours. OpenCV was then
used to measure the area of individual contours and perform
principal component analysis on each. The median contour
area was measured and if the area of a detected contour
exceeded 1.5� the median, then it was assumed to be the
measurement of two overlapping rods and was discounted from
analysis. The length of the rods was calculated as the furthest
distance between two points along the principal axis and the
angle was derived from these two points. A line connecting the
two points was generated to represent the 2D rod objects as 1D
lines. A series of vertical grid lines was imposed on the images,
separated by a fixed value equal to 2 times the median length of
the rods in the sample. This was performed based on the initial

frame of the measurement and remained fixed throughout.
Intersections between rod-lines and grid-lines were detected by
performing a counter-clockwise detection method on each rod
with the grid-lines. For every frame, the total number of rods in
the frame and the total number of intersections is counted and
added to a cumulative total for each. The cumulative p estimate
was calculated as the total number of rods divided by the total
number of crossings.
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and M. Dijkstra, et al., Soft Matter, 2025, 21, 4129–4145.

16 J. E. Gentle, Random number generation and Monte Carlo
methods, Springer, 2003, pp. 1–40.

17 T. E. Hull and A. R. Dobell, SIAM Rev., 1962, 4, 230–254.
18 S.-I. Kim, H.-J. You, M.-S. Kim, U.-S. An, M.-S. Kim, D. H.

Lee, S.-T. Ryu and Y.-K. Choi, Sci. Adv., 2024, 10, eadk6042.
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