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Layered two-dimensional (2D) transition-metal chalcogenides (TMCs) attract substantial interest across

multiple disciplines due to their unique properties. In perovskite solar cells (PSCs), researchers have

extensively explored the integration of 2D TMCs to enhance device power conversion efficiency (PCE)

and stability. However, there is a research gap in understanding their impact on inverted (p–i–n) PSCs,

especially at the perovskite/electron-transporting layer (ETL) interface. This study addresses this gap by

investigating the effect of inserting InSe, MoSe2, and SnS2 nanosheets at the perovskite/ETL interface in

inverted PSCs. The introduction of 2D TMC interlayers induces a downward shift in perovskite energy

levels, optimizing the energy level alignment at the perovskite/ETL interface and substantially increasing

the PCE. The SnS2-incorporating PSCs exhibit the highest relative improvement of 5.05% (InSe and

MoSe2 nanosheets yield 3.37% and 2.5% PCE increase, respectively). This enhancement results in an

absolute PCE of 18.5% with a fill factor exceeding 82%. Furthermore, the incorporation of InSe

nanosheets eliminates the burn-in phase enhancing the long-term stability (T70 of 250 h) of

unencapsulated devices. This study underscores the significant improvement in PSCs' PCE and stability

by selectively incorporating suitable TMCs at the perovskite/ETL interface. This research offers insights

into the potential role of TMCs in advancing PSCs.
Introduction

Transition metal chalcogenides (TMCs) represent a highly
promising class of materials with a wide range of applications.
These materials exhibit exceptional optical, electrical, catalytic,
and mechanical properties, making them suitable for
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numerous elds, including batteries,1,2 supercapacitors,3,
(photo)catalysis,4–8, (photo)transistors9–11 and other optoelec-
tronic devices.12–17 One feature of TMCs is their band gap
tunability, which makes them ideal for adjustable light
absorption, e.g., serving as the photoactive layer in photovoltaic
applications. However, photovoltaic devices using TMC-based
photoactive layers currently exhibit insufficient power conver-
sion efficiency (PCE) just above 5%.18,19 When integrated with
other photoactive layers as interlayers or additives, TMCs have
been reported to enhance the performance of solar cells by
nely tuning specic device characteristics, ultimately
improving the overall performance.20 For instance, MoS2 has
been successfully integrated into both Si-based21,22 and organic
solar cells,23 improving signicantly the cell performance. The
role of TMCs depends specically on photovoltaic technologies,
for each of which a systematic investigation of the role of TMCs
is required for reliable advancements in this eld.24

In this context, the incorporation of TMCs, typically in their
two-dimensional (2D) forms (i.e., nanosheets), in perovskite solar
cells (PSCs) has been investigated in various studies.24–26 In
particular, MoS2 was deposited on the perovskite in normal (n–i–
This journal is © The Royal Society of Chemistry 2024
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p) PSCs, acting as an interlayer between the perovskite and the
hole-transporting layer (HTL) to enhance the device PCE and
stability by improving the hole extraction processes and offering
a physical barrier against ion migration from the metal contact to
the perovskite and vice versa.27–29 In a similar study, MoSe2
nanosheets were also screened together with MoS2 ones to form
thin interlayers between the perovskite and the HTL in normal
PSC structures, enhancing the performance of reference
devices.30–32 MoS2 was also used in combination with graphene-
incorporating electron transporting layers (ETLs) and MXene-
incorporating perovskites, testifying the effectiveness of 2D
material interface engineering.33,34 Also, TMCs have been
proposed as charge-transporting layers to completely replace
conventional materials of PSCs.24,35 Specically, MoS2 and WS2
were used as HTLs in inverted PSCs showing similar PCEs to the
references based on poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS).36,37

SnS2 was used as the ETL in PSCs, improving the PCE up to
20%.38 Despite its n-type behavior, MoSe2 was used as an HTL in
an inverted PSC,39 showing a high PCE of 18%. The mixing of
PEDOT:PSSwithMoS2, as well as other dichalcogenides, was used
to increase the PCE of inverted PSCs.40–42 Dichalcogenides,
includingMoS2, but also other TMCs, have also been proposed to
modify the electron-transporting layer (ETL)/metal electrode
interface, aiming at creating favorable energy level alignments to
efficiently collect photogenerated electrons.26,43–45

Despite the tremendous progress recently achieved by
incorporating MoS2 in PSCs, including the realization of the
world's rst perovskite solar farm operating for several
months,46 other representative TMCs for photovoltaic applica-
tions, based on the above consideration, are SnS2, MoSe2, as
well as monochalcogenides, e.g., InSe.24 While MoS2 is mainly
used to improve the hole extraction efficiency in n–i–p PSCs,
there are other TMCs that may play a relevant role in promoting
the electron extraction from the perovskite to the current
collectors. In particular, SnS2 is an n-type layered semi-
conductor with a tunable band gap ranging from 2.1 to 3.4 eV,
depending on the number of its layers. In its bulk form, SnS2
has already been established in photovoltaic applications.47

Meanwhile, the exfoliation of SnS2 into 2D few-layer nanosheets
has been achieved through both chemical48 and physical
methods.49 Extensive characterization of SnS2 has revealed that
its monolayer possesses an indirect bandgap equal to 2.033 eV,
while its eld-effect transistor (FET) mobility was estimated to
be in the range of 5 cm2 V−1 s−1 to 250 cm2 V−1 s−1,50 enabling
the realization of ultrathin FETs and logic gates.49 Also, SnS2
shows a high electron density of ∼6 × 10−19 cm−3,48 justifying
its use as an effective dopant for PC70BM in inverted PSCs.51 In
this context, the high conductivity of 2D SnS2 has been lever-
aged for the fabrication of ultra-thin ETLs in PSCs.38,52 The
valence band maximum (VB) and conduction band minimum
(CB) of 2D SnS2 have been estimated through ultraviolet
photoelectron spectroscopy (UPS) to be −6.54 and −4.24 eV,
respectively, indicating their potential ability to collect electrons
from common perovskite active layers.38

MoSe2 shows a similar structure to that of MoS2 (2H phase).
MoSe2 is a semiconductor with an indirect band gap of
This journal is © The Royal Society of Chemistry 2024
1.41 eV.53 However, few-layer MoSe2 exhibits a direct band gap
of 1.58 eV (ref. 53 and 54) and a FET electron mobility of 50–250
cm2 V−1 s−1.55 Thin-lms of 2D MoSe2 have been used in
photovoltaics,56,57 catalysis for the hydrogen evolution reac-
tion,58,59 and energy storage systems.60,61

Finally, InSe is a III–VI layered compound made of stacked
quaternary layers of Se–In–In–Se atoms that are held together by
van der Waals interactions. Consequently, bulk InSe can be
exfoliated into 2D forms by means of various methods,
including scalable liquid-phase exfoliation (LPE)
techniques.62–64 InSe is generally considered as an n-type semi-
conductor and it was shown through experimental and theo-
retical studies that a band gap transition from direct to indirect
occurs when InSe layer thickness reduces below 6 nm.65 Also, its
bandgap can increase from ∼1.2 eV for the bulk to 1.4 eV for
few-layers InSe66 and up to 2.1 eV for a monolayer of InSe.67 The
electron affinity was found to be−4.55 eV and the work function
(WF) to be 5.1 eV for bulk InSe.68 The Hall mobility of InSe
nanosheets was estimated to be ∼103 cm2 V−1 s−1 at room
temperature (RT)69 and the carrier density was measured to be
∼1013 cm−2.70 Pioneering studies also demonstrated n-type
FETs based on 2D InSe, with an electron mobility at room
temperature (RT) on the order of 103 cm2 V−1 s−1.71 This elec-
tron mobility is higher than those achieved by other high
mobility 2D semiconducting materials, including MoS2. Based
on its properties, 2D InSe has been used in photovoltaic
devices,72,73 as well as for (photo)electrochemical water splitting
reactions,64 photodetectors,63,74 sensors,75 thermoelectric
devices,76 and spintronic devices.77

Overall, the above discussed TMCs represent interesting 2D
materials for the engineering of the perovskite/ETL interface,
aiming at improving the device PCE. Most studies on incorpo-
rating TMCs in PSCs have been focused on the optimization of
the perovskite/HTL interface. To the best of our knowledge,
there is no systematic work on engineering the perovskite/ETL
interface with TMCs. In this study, we aim to ll this research
gap by studying representative TMCs, i.e., SnS2, MoSe2 and InSe,
to optimize the perovskite/ETL interface in inverted PSCs.
Selected TMCs, exfoliated through LPE, were deposited over the
perovskite layer using solution processing, ensuring the scal-
ability and industrialization feasibility of our interface engi-
neering approach. The insertion of TMCs between the
perovskite layer and the PC70BM effectively aligns the energy
levels of the materials, enabling an efficient electron extraction
from the perovskite to the current collector. This research aims
to contribute to the extension of current 2D material interface
engineering strategies to PSCs, providing new insights into the
application of TMCs in inverted PSCs. The ndings of this study
have implications on the development of high-performance
solar cells and can boost the utilization of TMCs in large-scale
solar energy production, as already demonstrated for 2D
MoS2.46

Results

The methods of bulk TMC synthesis and exfoliation, and those
for characterization of the exfoliated TMCs, are reported in the
Sustainable Energy Fuels, 2024, 8, 2180–2190 | 2181
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ESI.† In particular, bulk 2H-MoSe2, 2H-SnS2 and b-InSe were
exfoliated through ultrasonication-assisted LPE in isopropyl
alcohol (IPA),78,79 followed by sedimentation-based separation
(SBS) to remove unexfoliated crystals from the exfoliated
material.59,80 Fig. 1a, d and g show the transmission electron
microscopy (TEM) images of representative nanosheets of
MoSe2, SnS2 and InSe, respectively. Fig. S1† reports the statis-
tical analysis of the lateral size of the nanosheets. The lateral
size data approximately follow log-normal distributions, with
modes of 52.9 nm, 99.1 nm, and 143.9 nm for MoSe2, SnS2 and
InSe nanosheets, respectively. Fig. 1b, e and h report the XRD
patterns recorded for MoSe2, SnS2 and InSe nanosheets,
respectively, comparing them with those measured for the bulk
counterparts. The positions of the diffraction peaks of the
exfoliated samples resemble those of the bulk counterparts,
well-matching with the patterns of their hexagonal phases, i.e.,
Fig. 1 TEM images, XRD patterns and Raman spectra measured for (a–
Raman spectra of bulk counterparts are also shown for comparison.

2182 | Sustainable Energy Fuels, 2024, 8, 2180–2190
2H-MoSe2, P�6m2 space group, JCPDS card no. 029-0914; 2H-
SnS2, P63mc space group, JCPDS card no. 023-0677; b-InSe
structure, P63/mmc space group, JCPDS card no. 034-1431. Bulk
crystals show the diffraction peaks belonging to the {00l} family,
which means that they are aligned along the (001) plane
perpendicular to the c axis. Compared to the bulk materials,
MoSe2 and InSe nanosheets exhibit additional XRD peaks, likely
due to their disordered arrangements. SnS2 nanosheets,
instead, preserve a placement perpendicular to their c axis. The
broadening of the XRD peaks in the exfoliated materials indi-
cate that their crystal sizes decreased aer the LPE process.
Fig. 1c, f and i report the Raman spectra of the bulk and exfo-
liated materials, exhibiting the characteristic Raman modes
expected for each material by the group theory.81–83 In MoSe2
nanosheets, the redshi of the A1g peak compared to the same
peak of the bulk counterpart is explained by the soening of the
c) MoSe2, (d–f) SnS2 and (g–i) InSe nanosheets. The XRD patterns and

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Percentage relative change of PCE, FF, Voc, and Jsc of 2D TMC-
incorporating PSCs compared to reference (without 2D TMCs) PSCs.

Table 1 Energy level values of the perovskite without 2D TMCs
(reference) and the with 2D TMC interlayers at the perovskite/PC70BM
interface. The CBO and VBO values are defined in the text and are
calculated from eqn (1) and (2). D is the size of the interface dipole at
the perovskite interface

Perovskite WF (eV) D (eV) VB (eV) CB (eV) CBO (eV) VBO (eV)

Reference −4.15 −5.41 −3.82 −0.08 −0.01
InSe −4.46 0.31 −5.49 −3.9 0.00 −0.09
SnS2 −4.82 0.67 −5.47 −3.88 −0.02 −0.07
MoSe2 −4.73 0.58 −5.52 −3.93 0.03 −0.12
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vibrational mode with decreasing the crystal thickness.84,85 The
Raman spectrum of bulk SnS2 shows two phonon modes at
∼313 cm−1 (A1g) and ∼203 cm−1 (Eg), as well as a weak two-
phonon scattering signal of A1g-LA (M) (Fig. 1f).86 Aer exfolia-
tion, additional peaks appear and are likely associated with by-
products, e.g., oxides.87 Finally, bulk and exfoliated InSe exhibit
various Raman peaks at similar positions, i.e., A1

1g at∼116 cm−1,
E2
1g at ∼177 cm−1, E1

2g at ∼199 cm−1, A2u at ∼208 cm−1, and
A2
1g at ∼227 cm−1, which is consistent with previous studies.63,64

The deposition of TMC nanosheets was carried out by spin
coating their dispersion (formulated in chlorobenzene) onto the
perovskite layer. Successive spin coating steps were applied to
optimize the interlayer of TMC nanosheets at the perovskite/
PC70BM interface. The formation of ultrathin 2D TMC lms on
the surface of the perovskites was assessed through X-ray
photoelectron spectroscopy (XPS) and scanning electron
microscopy (SEM) measurements. As shown in Fig. S2,† the 3d
In, Mo, and Sn XPS spectra, acquired on the perovskite surfaces
treated with 2D TMCs, conrm the presence of InSe, MoSe2 and
SnS2 nanosheets, respectively. Fig. S3† presents top-view SEM
images of the perovskite surface treated with 2D TMCs. The
images show scattered TMC nanosheets atop the perovskite
surface, without the presence of large material aggregates.
Importantly, the few-layer nature of the exfoliated TMCs
permits nanometer-thick interlayers to be obtained without
resulting in signicant changes of the surface topography of the
underlying perovskite lm.

The effect of the 2D TMC interlayers between the perovskite
and PC70BM layers was evaluated by measuring the device
performance estimated through the analysis of their J–V curves
under 1 sun illumination. Fig. S4–S6† report the statistical
analysis of the photovoltaic parameters, i.e., PCE, open circuit
voltage (Voc), ll factor (FF) and short circuit current (Jsc), for the
investigated devices, produced with different 2D TMC inter-
layers and by varying the number of successive spin coating
steps used for the deposition of 2D TMCs atop the perovskite.
These data indicate that the number of spin coating steps has
a signicant impact on the nal photovoltaic parameters of the
devices. Specically, exceeding two spin coating steps has
a detrimental effect on the device performance. This negative
effect is likely associated with the excessive exposure of the
perovskite layer to the solvent of 2D TMC dispersions. Impor-
tantly, the incorporation of 2D TMCs into the device structure
through one or two spin coating steps always increases the PCE
of the device. In addition, different 2D TMC interlayers result in
the improvement of specic photovoltaic parameters, indi-
cating different benecial effects of the investigated materials.
To compare the devices that have different 2D TMC interlayers
and to eliminate any uncontrollable effect between various
fabrication batches, Fig. 2 plots the percentage relative change
of PCE and of the other photovoltaic parameters measured for
the most performing 2D TMC-incorporating PSCs compared to
reference (without 2D TMCs) devices. Cells incorporating InSe
and SnS2 nanosheets exhibit a similar behavior, characterized
by a substantial increase in their FF by 2.32% and 2.83%,
respectively, along with a slight improvement in Jsc, and no
change in Voc, compared to the reference device. Differently, the
This journal is © The Royal Society of Chemistry 2024
device containing MoSe2 nanosheets exhibits a decrease in FF
by about 1.9% compared to the reference cell. Meanwhile the Jsc
increases considerably by 2.95% and the Voc increases by 1.42%
compared to the reference cell. Notably, the devices incorpo-
rating SnS2 nanosheets demonstrated the greatest relative PCE
improvement of 5.05%, with a 2.83% increase in FF, resulting in
a PCE as high as 18.5% and FF of 82%. Fig. S7† shows the
external quantum efficiency spectrum of the best device.

The optoelectronic properties of the perovskite surface
treated with 2D TMCs were investigated to assess if they are
correlated with the device photovoltaic parameters. TheWF and
valence band (VB) maximum energy of the perovskite surface
were estimated using ambient photoemission spectroscopy
measurements. Fig. S8† illustrates the WF measurements of the
perovskite surface before and aer the deposition of 2D TMCs,
and the extrapolated WF values are listed in Table 1. The WF of
the pristine perovskite was determined to be 4.15 eV and
increased aer depositing the 2D TMCs (i.e., 4.8 eV aer SnS2
nanosheet deposition). This behavior suggests the presence of
a surface dipole that shis the perovskite vacuum level to higher
energies, with the negative part of the dipole facing outward
from the surface (positive part facing toward the perovskite).
The value of the interface dipole, D, for each case is listed in
Table 1. Fig. S9† shows the VB measurements for the investi-
gated samples. Interestingly, compared to the untreated
Sustainable Energy Fuels, 2024, 8, 2180–2190 | 2183
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Fig. 3 Sketch of the energy level diagram of the investigated devices
(energy values are not in scale). The dashed lines show the energy
levels of the perovskite after the deposition of InSe, SnS2, and MoSe2
nanosheets.
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perovskite, the presence of 2D TMCs shis the perovskite VB to
lower energy. Fig. 3 reports the sketch of the energy level
diagram expected for the investigated cell congurations. The
incorporation of 2D TMCs alters the energy level alignment at
the interfaces between the perovskite and the PC70BM. Speci-
cally, the conduction band (CB) minimum energy and VB
maximum energy shi to lower values. Thus, the CB minimum
energy of the perovskite approaches that of PC70BM, while the
VB maximum energy of the perovskite moves away from that of
PTAA. To quantify the offset of the energy levels, the energy
difference between the CB minimum energies (conduction
band offset-CBO) and the difference between the VB maximum
energies (valence band offset-VBO) of the respective charge
transporting layers and the perovskite were evaluated. In greater
detail, the CBO and VBO can be calculated as:

CBO = cperovskite − cPCBM (1)

VBO = cPTAA + Eg,PTAA − (cperovskite + Eg,perovskite) (2)

in which c is the electron affinity and Eg is the bandgap of the
material indicated in the subscript.

The measured values for VB maximum energies and the
calculated values for CBO and VBO are listed in Table 1. For the
reference device, the CBO is negative (−0.08 eV), indicating that
the CB minimum energy of PC70BM is lower than that of the
perovskite. This energy level alignment at the perovskite/PC70BM
interface is commonly indicated as a “cliff,” signifying the
absence of an energy barrier for electron injection from the
perovskite to the PC70BM. Similarly, the VBO for the reference
device is −0.01 eV, implying no injection barrier for holes at the
PTAA/perovskite interface. However, the CBO and VBO change
drastically upon the deposition of 2D TMCs atop the perovskite.
The CBO is reduced to −0.02 eV aer the deposition of SnS2
nanosheets and becomes 0.00 eV aer depositing InSe nano-
sheets. Conversely, the CBO is positive (0.03 eV) when MoSe2
nanosheets are deposited atop the perovskite, resulting in the
formation of a “spike” feature at the perovskite/PC70BM interface.
2184 | Sustainable Energy Fuels, 2024, 8, 2180–2190
In our previous work, we have demonstrated that the doping
of the perovskite with BiTeI nanosheets leads to a modication
of the energy levels of the perovskite.88 In this context,
increasing the CBO and decreasing the VBO have proven to be
advantageous for device performance. Similar to our previous
ndings, tuning the CBO and VBO by incorporating TMC
interlayers enhances the FF and, thus, the PCE of PSCs, as
demonstrated for PSCs containing InSe and SnS2 nanosheets.
In the case of MoSe2-containing PSCs, the formation of
a “spike” level alignment at the interface is also expected to
enhance the FF. However, a decrease in FF was observed
together with an increase in Voc, suggesting a different behavior
of MoSe2 nanosheets compared to SnS2 and InSe nanosheets.
The VBO of the reference sample (−0.01 eV) decreases to
−0.12 eV with the incorporation of the MoSe2 interlayer. Our
previous work has demonstrated that lowering the VBO is
advantageous for device performance, as it reduces non-
radiative recombination at the interface between the HTL
(PTAA) and the perovskite.88 Moreover, experimental and theo-
retical studies have emphasized the importance of an absolute
energy level offset of approximately 0.2 eV at the PTAA/
perovskite interface.89 Additionally, a VBO between 0 and
−0.18 eV has been identied as the optimum range for efficient
hole extraction.90 Therefore, the observed improvement in Voc
for MoSe2 can be attributed to the reduced recombination at the
PTAA/perovskite interface, as the incorporation of MoSe2 helps
to tune the VBO closer to the theoretically optimum range. The
improved PCE of devices incorporating InSe can be attributed to
the tendency of this material to oxidize under ambient condi-
tions, forming In2O3. Notably, the surface of InSe readily
undergoes oxidation when subjected to air heat treatment.91–93

The native oxide In2O3 is an n-type semiconductor with an
optical band gap of 3.66 eV92 and a high carrier concentration of
approximately 6 × 1019 cm−3,68,94 which can improve device
PCE. Theoretical studies have indicated that H2O, N2, and O2

molecules physisorbed onto the 2D InSe surface, resulting in
partial electron charge transfer from InSe to the adsorbed
molecules.95 Additionally, it has been shown that a monolayer
of InSe readily physisorbs H2O under ambient conditions,
irrespective of the presence of In or Se vacancies. Depending on
the vacancies, InSe can be doped with H2O, leading to either p-
type (In vacancies) or n-type (Se vacancies) behavior,96 suggest-
ing precaution to assess the actual role of the InSe interlayers.
The interface dipole at the interface of perovskite/ETL could
reduce interface recombination, by preventing electron carriers
in the ETL from reaching the interface.

The incorporation of 2D TMCs atop the perovskite has been
the subject of extensive research, and our ndings supplement
previous studies, mainly focused on dichalcogenides and
normal PSCs. Indeed, we have observed a strong agreement
between our results and a theoretical study investigating the
perovskite/InSe interface,97 in which it was shown that InSe
plays a crucial role in facilitating electron charge transport,
causing charge transfer from the perovskite towards the InSe. In
line with this, we have observed that the WF of the perovskite
surface covered with InSe nanosheets is higher than that of the
control sample, indicating the accumulation of negative charge
This journal is © The Royal Society of Chemistry 2024
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on the top surface with InSe, forming an interface dipole, as well
as for the other investigated 2D TMCs.97 Furthermore, experi-
mental evidence has shown that the interfaces of TMCs such as
MoS2, WSe2, and MoSe2 with inorganic perovskites exhibit
ultrafast and efficient charge carrier transfer.98,99 Based on these
ndings, it is expected that the presence of 2D TMCs on the
perovskite will not impede charge transport, a hypothesis that is
conrmed by our experimental results. Moreover, SnS2 nano-
sheets have been utilized in the literature to form the ETL,
enhancing charge extraction and passivating interfacial traps
more efficiently compared to SnO2.38 Our results are aligned
with this, further supporting the benecial effects of SnS2 as an
ETL in PSCs. Consequently, our study provides additional
insights on the incorporation of the 2D TMC interlayer at the
perovskite/PC70BM interface, highlighting their potential in
improving charge extraction in PSCs.

Lifetime measurements

The stability of the PSCs incorporating TMC nanosheets was
investigated following the International Summit on Organic
Photovoltaic Stability (ISOS) L-2 protocol. Thus, the devices were
subjected to continuous 1 sun illumination under ambient
humidity at 65 °C.100 Fig. 4 illustrates the normalized PCE of the
unencapsulated devices over time. The reference device
exhibited a burn-in phase during the initial testing period and
a fast degradation aerwards. This behavior can be attributed to
the degradation of the Ag electrode caused by its reaction with
iodine, which migrated from the perovskite layer.101–103 The
device incorporating SnS2 nanosheets showed the worst
stability, while the one containing MoSe2 nanosheets exhibited
similar behavior to the reference cell. On the other hand, the
incorporation of InSe led to the disappearance of the burn-in
phase, enhancing the cell stability. The InSe-incorporating
PSC exhibited a T70 of 250 h, i.e., the device retained 70% of
its initial PCE aer 250 h. The superior stability of the InSe-
Fig. 4 Stability measurements of the PSCs incorporating InSe, MoSe2,
and SnS2 interlayers under continuous 1 sun illumination, ambient
humidity and 65 °C temperature (ISOS L-2).

This journal is © The Royal Society of Chemistry 2024
containing PSC compared to the other cells can be correlated
with the morphological and chemical properties of InSe nano-
sheets. The photo-induced degradation of InSe towards In2Se3
and In2O3 under ambient conditions can commence a surface
passivation interlayer at the perovskite/ETL interface. The
formation of In2Se3 and In2O3 (ref. 104) does not seem to affect
the PCE and enhances the stability of the device, according to
our results. Moreover, the InSe nanosheets show the highest
lateral size amongst the investigated akes (Fig. S1†) and
therefore, InSe can serve as an effective barrier, protecting the
metal electrode from the degradation species of the perovskite,
thus enhancing the device stability.

Conclusions

The structure of inverted PSCs has been systematically opti-
mized by screening the incorporation of various 2D TMCs in the
form of an interlayer between the perovskite and the PC70BM
ETL. Specically, bulk InSe, SnS2, and MoSe2 were exfoliated by
means of ultrasonication-assisted LPE and deposited atop the
perovskite surface by spin coating to form thin (nanometer-
thick) lms. The incorporation of TMC interlayers causes
a shi in the energy levels towards lower energies, altering the
energy level offset at perovskite/charge-transporting layer
interfaces. In detail, the introduction of SnS2 and InSe nano-
sheets reduces the energy offset at the perovskite/PC70BM
interface, resulting in an increase of the FF and PCE of the
devices. The SnS2- and InSe-incorporating devices exhibited
relative improvement in PCE by 5.05% and 3.37%, respectively,
compared to reference (without 2D TMCs) cells. The PSCs
engineered with the SnS2 interlayer showed the highest PCE,
reaching 18.5% and FF of 82%. Conversely, the MoSe2 interlayer
introduces a small cliff arrangement at the interface of perov-
skite/PC70BM. Compared to reference cells, the cells of MoSe2-
incorporating devices demonstrated improved PCE compared
to reference cells, increasing the Jsc and Voc. Moreover, to assess
the long-term stability of the cells, the devices were subjected to
continuous 1 sun illumination at 65 °C, following the ISOS-L2
ageing protocol. The results indicate different stability behav-
iors of the cells incorporating the investigated TMC interlayers,
reecting the different physico-chemical properties of the 2D
TMCs. The incorporation of the MoSe2 interlayer has no
discernible effect on device stability, while the SnS2 interlayer
has a negative impact. On the other hand, InSe interlayer
eliminates the burn-in degradation observed in the reference
devices, signicantly improving the overall cell stability. In
summary, this work elucidates the potential of 2D TMCs to
engineer the architecture of inverted PSCs.
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L. Manna, Z. Sofer and F. Bonaccorso, Microwave-Induced
Structural Engineering and Pt Trapping in 6R-TaS2 for the
Hydrogen Evolution Reaction, Small, 2020, 16(50), 2003372.

6 L. Naja, R. Oropesa-Nuñez, S. Bellani, B. Mart́ın-Garćıa,
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