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Magnetic iron oxide-based nanozymes: from synthesis to
application

This comprehensive review article provides a thorough
overview of Iron Oxide Nanozymes (IONzymes), magnetic
nanoparticles that mimic natural enzyme activities. Spotting
their remarkable stability, magnetic properties, and
biocatalytic capabilities, moreover, the article demonstrates
various synthesis methods, including chemical, physical, and
biological processes. This review also discusses the current
applications of IONzymes in biomedicine, environmental
fields, and the potential promising applications.
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Iron oxide nanozymes (IONzymes) are a class of magnetic nanoparticles that mimic the enzymatic activity of
natural enzymes. These particles have received significant attention in recent years due to their unique
properties, such as high stability, tunable magnetic responsiveness, and ability to act as biocatalysts for
various chemical reactions. In this review, we aim to provide an overview of the production methods of
magnetic nanozymes, including chemical, physical, and biological synthesis. The structure and design of
magnetic nanozymes are also discussed in detail, as well as their applications in various fields such as
biomedicine and environmental science. The results of various studies and the latest advances in the field of
magnetic nanozymes are also discussed. This review provides valuable insights into the current state of
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1. Introduction

The advancement of nanotechnology over the past two decades
has highlighted new prospects in a wide range of industries due
to the extraordinary qualities and distinct structure of
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magnetic hanozymes and highlights their potential for further development and application in various fields.

nanomaterials.”” The structure of nanomaterials is divided into
three layers (surface, shell, and core) where functional groups,
including metal ions, tiny compounds, surfactants, and poly-
mers, distinguish one layer from another.** In general, the core
is the nanoparticles (NPs), which can bond with various struc-
tures and macromolecules such as composites, metal organic
frameworks (MOFs), polymers, and carbon nanotubes. This
diversity enhances their unique properties in terms of size,
shape, composition, and structural framework, which require
optimization through synthesis procedures.”*®

Metallic nanoparticles represent a corner stone in the prepa-
ration of nanomaterials.>'® Various metal oxides such as FeO,
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NiO, ZnO, CuO, AgO, TiO, SnO, and WO have unlimited appli-
cations in the medical sector (drug delivery, cancer treatment,
and tissue repair), environment (qualitative and quantitative
analysis of pollutants and toxins, water purification, and photo-
degradation), energy nanogenerators, electronics, catalysis, and
mechanical and textile industries.**"”

Iron oxide is one of the best biocompatible inorganic
nanoparticles, and it has remarkable microscopic physical
properties including superparamagnetism, low susceptibility to
oxidation, firmness in liquid solution, extended blood half-life,
and flexible surface chemistry.'®>* Also, from an application
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point view, iron oxide NPs have high sustainability and superior
properties in comparison to natural substances such as
enzymes, which have drawbacks including high cost of isolation
and purification, limited thermostability, and small pH
window, which disrupts the enzyme activity upon handling,
storage, and transportation.>>*

Artificial enzymes have replaced real enzymes in many
applications for decades due to their stability and low cost. Metal
complexes, cyclodextrins, polymers, dendrimers, and biomole-
cules have been studied to replicate enzyme activities and
structures. Due to the rapid advancement of nano-studies and
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the exceptional properties of nanomaterials, several nano-
materials have shown enzyme-like functions. Moreover, nano-
zymes are popular because of their ease of manufacture, storage,
isolation, and exceptional outcomes. In this respect, IONzymes
can be used effectively to mimic natural enzymes and applied in
several environmental applications, such as degradation of
antibiotics and adsorption of dyes, in the food industry and
biomedical, biosensing, cosmetics, and bioengineering.>>*

In this review, we highlight the methods for the synthesis of
IONzymes and the current advances in the development of their
applications. We discuss several nanomaterials that have been
studied to imitate various types of enzymes in order to highlight
the advancement in the area of nanomaterial-based artificial
enzymes. We discuss their synthetic methods, processes, and
applications in several domains, such as biosensing and
immunoassays, as well as pollution elimination. We also
outline techniques, such as several green, chemical, and phys-
ical methods, to produce iron oxide nanozymes.

2. Synthesis approaches of IONzymes

The methods commonly used to produce metal oxide nano-
particles are often applied in the creation of IONzymes, espe-
cially when they consist primarily of two magnetic nanoparticles,
namely, magnetite (Fe;0,) and maghemite (y-Fe,03).*

The synthesis of IONzymes is accomplished using different
chemical, physical, and biological techniques. Co-precipitation,
evaporative decomposition of solution (EDS), aerosol, ultra-
sonic, sol-gel synthesis, micro-emulsion methods, reverse
micelles, flow injection, solid-state reaction, spraying, and
hydrothermal/solvothermal processes are typically used in
chemical synthesis.>* The physical methods include milling,
grinding, pyrolysis, and thermal ablation, as illustrated in
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Fig. 1. Also, the “Green Approach” has recently attracted
significant consideration due to its eco-friendly nature and
sustainability, which can be conducted using algae, bacteria,
fungi, and plants.

It is critical to distinguish between the general synthesis of
iron oxide nanoparticles and specific processes that provide the
characteristics of an enzyme in the production of IONzymes.
Several conventional methods are effective in generating iron
oxide nanoparticles, including co-precipitation, thermal
breakdown, and hydrothermal synthesis. These steps must be
performed to expose the properties of nanozymes. For instance,
surface functionalization is essential to provide the ability to
use enzymes.

Gao et al. (2007) demonstrated that the peroxidase-like
activity of iron oxide nanoparticles can be significantly
increased by adding specific functional groups to their surface.
Both the size and structure of nanoparticles play a key role in
determining their enzymatic activity.** Another study demon-
strated that an increase in the surface area to volume ratio of
smaller iron oxide nanoparticles leads to higher catalytic effi-
cacy. This characteristic resembles the active regions of natural
enzymes.*® In addition, the crystalline structure of IONzymes
influences their catalytic activity. Wei and co-workers showed
that the intrinsic catalase-like, oxidase, and peroxidase activi-
ties of magnetite (Fe;0,) nanoparticles are attributed to their
spinel structure.*”

The synthesis method influences the stability and specificity
of IONzymes prior to catalytic activity. Research in a related
study indicated that the value of adding stabilizing chemicals
during the synthesis of IONzymes can improve the lifespan of
their catalytic activity and their thermal stability.*® This study
emphasized that the functional characteristics of nanozymes
are stable with time, stressing the importance of stabilization in
the synthesis process.

Additionally, the effectiveness and selectivity of nanozymes
can be altered by doping them with different metals towards
particular substrates, hence expanding their applicative poten-
tial, as demonstrated by Zhang et al.** These features demon-
strate the significance of carefully choosing the methods for the
synthesis of IONzymes to induce enzymatic activity and particle
formation. This approach is consistent with the principles of
biomimetic design given that it features both the functional and
physical attributes of the nanoparticles. This illustrates the
intricate nature of enzymes found in biological systems.

2.1. Chemical synthesis

The chemical production of nanoparticles is the most typical
technique. However, the key challenges in this type of proce-
dure include particle dispersion, clumping, and size uniformity.
Additionally, chemical-based procedures involve the use of
solvents such potassium bitartrate, sodium dodecyl sulfate,
sodium borohydride, and hydrazine, all of which are detri-
mental to the environment given that they produce unpleasant
waste flows. Herein, we focus on the four most popular
methods, as listed in Table 1.

Nanoscale Adv., 2024, 6, 1611-1642 | 1613
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2.1.1. Co-precipitation. Massart developed a chemical co-
precipitation approach for the large-scale synthesis of hydro-
philic IONzymes.** This reaction is performed in aqueous
solution; therefore, the product is water-dispersed and may be
directly employed for diverse applications without complicated
ligand exchange procedures. The co-precipitation procedure to
manufacture Fe;0, involves the hydrolysis and condensation of
ferrous and ferric ions in aqueous solution in the pH range of 8-
14, as shown in eqn (1).*

Fe?* + 2Fe’ + 8OH™ — Fe;04 + 4H,0 (1)

Co-precipitation relies on the pH, reaction temperature, ion
concentration, ionic strength, salt type, and alkali used.
However, the application of co-precipitation to create magnetite
NPs is a challenging process, and the reaction conditions must
be tightly regulated.*>*¢

Another factor is the molar ratio of ferrous/ferric, which
affects the physical and magnetic properties of NPs. When 1
ferrous: 1 ferric is used, there is larger magnetization saturation
than other ratios.*”*® Similar research has been conducted to
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create various synthesis techniques employing the chemical co-
precipitation process to produce stable, homogeneous, smaller-
sized, crystalline particles.*®

A method involving co-precipitation in flow chemistry,
combined with an in situ synchrotron X-ray diffraction (XRD)
technique, was devised to “freeze” the transient reaction states
through steady-state operation. This technique showed
appealing findings, as follows:

(i) Five seconds after mixing, the only crystalline phase was
the inverse spinel framework of magnetite/maghemite.

(ii) The particle size increased slightly, and solid phase
development (owing to particle growth) was completed within
2 min.

(iii) The mixing conditions did not affect the XRD pattern.

(iv) During co-precipitation, the diffraction peaks widened,
indicating the presence of smaller coherently scattered regions
(Fig. 2).5°*

The co-precipitation chemical technique can be used to
produce functional materials, as shown in Table 2. Chen et al.
discovered a new co-precipitation approach to generate fer-
umoxytol, a therapeutically relevant magnetic nanoparticle with
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Fig. 1 Chemical and physical techniques for the synthesis of IONzymes.
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Table 1 The most common chemical techniques employed for the synthesis of IONzymes

Synthetic technique  Advantage Disadvantage Ref.
Co-precipitation Water-dispersed Multi-variable dependence 40
Environmentally friendly Toxic liquid waste
Efficient and economical Requires trained person for maintenance and
regeneration
Simple procedure Toxic liquid waste
Rapid particle formation
Hydrothermal/ Producing highly crystalline nanocrystals High temperature and pressure range 41
solvothermal Well-controlled dimensions Anti-corrosion autoclave material
Combined with microwaves and magnetic fields improves Relatively costly reactors
reproducibility and quality
Mass production is not possible
Electrochemical Short formation time Stable solvent media 42
deposition Simple apparatus High electrophoretic mobility

Uniformly coated on complicated geometries
Control of film thickness and morphology
Simplicity of the process

Uniform composition and high purity

High production efficiency

Sol-gel synthesis

Wear resistance reduced 43
Weak bonding strength
Hard to regulate porosity and permeability

Production of intricately shaped optical components

Controlling homogeneous products

Capacity to use the product with unique structures such as fibers and

aerogels

v-Fe,O; as the core. The magnetization of ferumoxytol is the
greatest recorded to date, reaching 104-105 emu g ', and its
crystal structure has been substantially improved.”* Super-
paramagnetic IONzymes were produced with a limited size
distribution, and their magnetic susceptibility, coercivity,
remanence, and saturation magnetization at 5-300 K were
analyzed.>

2.1.2. Hydrothermal and solvothermal. The technique
employed for the synthesis of IONzymes can alter the primary
properties of the generated IONzymes. The solvothermal and
hydrothermal processes are the most effective chemical ways to

create nanomaterials, specifically nanocrystals with precise
dimension control.*® The suggested process begins with the
formation of nuclei from the solute molecules, which subse-
quently undergo significant growth during heating, leading to
the formation of the final crystal structure (Fig. 3). The reaction
rate increases together with crystallinity.>® Highly crystalline
iron oxide nanoparticles with a size in the range of 14 and
25 nm were produced in a pressure-resistant reactor at 473 K.’
However, this method requires costly reactors.

Many advances have contributed to a deeper understanding
and improved this technique (Table 3). A novel strategy was

1. Precipitation and Agglomeration 2. Growth 3. Dissolution & de-agglomeration
-COOH i, .
<2 min

~ 10 min

Fig. 2 Suggested particle mechanism during the co-precipitation procedure: (1) particles are precipitated and agglomerated within 5 s, (2)
agglomerated pieces grow over the next 2 or 3 min and (3) addition of neutralization solution causes particles to de-agglomerate within 10 min.

Table 2 Representative iron oxides obtained through co-precipitation procedures

Particle size Magnetization
Compound/property (nm) Morphology (emug™) Ref.
Ferumoxytol 7.1 Spherical 104-105 52
Temperature-dependent 11.22 Spherical 64-72 53
particles
(zZn-Mn)-co-doped 10-13 Spherical 81 54

© 2024 The Author(s). Published by the Royal Society of Chemistry
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demonstrated to control the carbon chain length of the iron(ur)
carboxylate precursors and the amount of reaction solvent in
the solvothermal synthesis of FeO nanocrystals.** Additionally,
deep eutectic solvents with hydrated mixtures have been
applied to solvothermal approaches for the preparation of
functional nanomaterials.** A study presented the first in situ
and static structural analysis of the production of iron oxide
(hematite) nanoparticles in a deep eutectic solvent (DES) of
choline chloride : urea.*®® Gonzalez-Rivera et al. created a quick
and easy approach. By directly applying microwave radiation in
the solvothermal reactor with the aid of a coaxial antenna, the
synthesis was thermally initiated, accelerated, and controlled.
This method was perfectly regulated in short synthesis periods
utilizing the phosphorylated nanoreactor.®*

2.1.3. Electrochemical deposition. The electrophoretic
deposition (EPD) technique involves the use of charged parti-
cles that move and are deposited on the surface of a conductive
electrode to create thin or thick coatings and films. A broad
range of fine powder, composite particles, colloidal metals, and
ceramics can be produced via EPD.** EPD is one of several
solution methods employing colloidal NPs, which has recently
emerged as a successful method for producing dense and
durable NP films. The relationship in EPD systems between

/—
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Growth Units

Solute
Molecules
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colloidal NPs and the organic solvent has been studied using
hexane, toluene, and chloroform in various solvent ratios to
examine the charge formation function of the solvent in EPD
systems (10:0, 7:3, 5:5, 3:7, and 0:10). The NP layer gets
thicker and rougher as the toluene to hexane ratio increases.
Alternatively, the film thickness is dramatically reduced when
the chloroform to hexane ratio increases.®

The electrophoretic deposition approach was used to
produce a bioactive coating, such as hydroxyapatite-iron oxide-
chitosan (HA-CS) with varying amounts of Fe;O0, (1, 3, and
5 wt%) and porous morphology.”® Another methodology
demonstrated potential for generating thick magnetic nano-
composites for on-chip power components by incorporating
iron oxide nanoparticles into a mold, and subsequently per-
forming electro-infiltration of nickel through the porous film.
The resulting magnetic saturation of the nanocomposites was
measured at 473 kA m™ !, which is intermediate between the
magnetic saturation values of iron oxide nanoparticles and
nickel.* Also, the formulated and cost-effective coating method
can enhance the surface characteristics and hemocompatibility
for biomedical applications, resulting in decreased contact
angle values and hydrophilic nature. In one study, the Ti-13Nb-
13Zr alloy was electrophoretically coated with Bioglass (BG),

Growth

Crystal

Fig. 3 Schematic representation of crystal growth mechanisms under hydrothermal/solvothermal conditions.

Table 3 Representative iron oxide nanozymes obtained through advanced hydrothermal/solvothermal procedures

Variable/technique Starting materials Solvent

Particle size (nm) Morphology Ref.

Deep eutectic-solvothermal Iron(m) nitrate nonahydrate

Size-controlled facile
solvothermal method

FeCl;-6H,0 NaAc polyvinyl
pyrrolidone (PVP)
Oxidation-precipitation FeCl,-4H,0
solvothermal process

Microwave solvothermal FeCl;-6H,0 sodium citrate

1:2:10 choline chloride :
urea : water

Ethylene glycol (EG) diethylene 23
glycol (DEG)

Ligands and solvent composition FeCl;-6H,0 sodium carboxylate 2 : 1 water : ethanol 25
Deionized water 33

Ethylene glycol (EG)

Oblate 51 and
spheroid 60
Spherical 33

5-9

Cubic 59
Spherical 62

Irregular 63

treatment
Magnetothermally-responsive ~ FeCl,-4H,0 Ethylene glycol (EG) urea 50 nm diameter, 250 nm Tubular 61
nanocarriers length shape

1616 | Nanoscale Adv, 2024, 6, 1611-1642
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hydroxyapatite (HA), and iron oxide particles (FeO), which
improved the stability of the suspension.®”

2.1.4. Sol-gel synthesis. Using the sol-gel method, a gel-
like network is generated, incorporating both liquid and solid
phases. Also, by selecting the appropriate complexing agent,
concentration, type of chemical additives, and temperature
settings, it is possible to control the crystallinity, shape, and
magnetic characteristics of IONzymes.®** Apparently, the
annealing temperature plays a central role in this method, and
the outcome shows that the crystalline Fe,O; nanoparticles™
and the dielectric properties are enhanced.” Additionally, this
technique can be used to create products with efficient physical
characteristics, such as low UV absorption and thermal expan-
sion coefficient and high optical transparency.”

The crystalline structure, composition, purity, magnetism, and
morphology of iron oxide nanomaterials can be enhanced by
optimizing some variables or combining techniques (Table 4). One
technique is optimizing the precursor-to-solvent (P/S) ratio for
three iron oxide phases (a-Fe,O3, Fe;0,, and y-Fe,0;) to tune the
structural and magnetic properties via sol-gel synthesis.” Another
method combines microwave radiation and aluminum doping in
iron oxide thin films, which controls the structural transitions of
the iron oxide thin film. A study demonstrated a y-Fe,O; to Fe;0,
transition at 6-10 wt% Al with increasing saturation magnetiza-
tion of the films from 251.3 emu cm ™ to 405.6 emu cm >,

2.2. Physical genesis

Physical techniques such as mechanical milling, grinding, and
thermal ablation are all expensive given that they consume
a significant amount of energy. Furthermore, another signifi-
cant drawback of this strategy is its exceedingly low output
yield.

2.2.1. Ball milling. Ball milling is a shear-force-dominated
method, which is also known as mechanical alloying, ultra-
fine grinding, and nanosizing in the literature. It is one of the
most widely used industrial processes, in which the particle size

View Article Online
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is continuously reduced by impact and attrition. Metal balls,
often made of zirconia (ZrO,) or steel, serve as the grinding
medium, while a spinning shell generates centrifugal force. By
regulating the milling variables, such as ball-to-powder ratio (B/
P), milling time, milling rpm, starting weight, and ball diam-
eter, the excessive compression force that may harm the crys-
talline characteristics of nanomaterials can be reduced. Table 5
demonstrates examples of two states of milling that can be
initiated, ie., dry ball milling (DBM) and wet ball milling
(WBM). The solid-state mechanical size reduction process
known as ball milling transforms iron precursors into MNPs
(magnetic nanoparticles). To speed up milling and prevent the
agglomeration of the created nanoparticles, solvents or excess
salt can be added.”

Also, different mechanical ball milling techniques can be
applied, such as conventional ball milling. Specifically, larger
particles collide with steel balls or the interior wall of the tank to
produce ultrafine particles, while high-energy ball milling uses
a specialized grinding machine to synthesize a nano-spinel-type
ferrite by mechanically alloying the initial materials.” However,
the significant drawbacks of ball milling are pollution of the
steel ball, the potential chemical and mechanical amorphiza-
tion of the crystals, the high power used, and the prolonged
milling period.”*°

2.2.2. Electron beam lithography. The use of electron beam
lithography or electron beam deposition to apply either an
exposure-sensitive resist material or high-purity iron material to
a substrate can be employed of the synthesis of MNPs. This
process produces MNPs by evaporating the first iron precursors
onto the resist pattern, and then removing the resist through
a lift-off procedure. Alternatively, the nanopatterns can be
etched onto a functional substrate to produce MNPs.”®%*

2.2.3. Laser ablation. Laser ablation is a method that
involves irradiating a solid material placed under a thin layer
with a laser beam.?** When the solid material is placed at the
bottom of a cell containing a liquid,®® the technique is referred

Table 4 Representative iron oxide nanozymes obtained through sol—gel procedures

Starting Particle size
Variable/technique materials Solvent (nm) Morphology Additional property Ref.
Agitation time Fe (NOj3)3-9H,0 Absolute ethanol 10 nm Spherically Purity > 75% 75
Ba (NO3),
Carbonization FeCl;-6H,0/ Deoxygenated H,0/ <50 nm Varies with different rosins: Enhances interfacial 76
method rosin ethanol FeCl; reactivity
Non-hydrolytic Anhydrous Anhydrous ethanol 202-373 A Rod-shaped Homogeneous dispersion 77
FeCl;

Table 5

Iron oxide-based nanomaterials prepared via ball milling process

Milling process Equipment/ball properties

Milling agent/solvents and conditions Characteristics

Ref.

WBM Planetary ball mill DI water, 4 h, 500 rpm
DBM Iron balls with 1.5 cm diameter 30 h and 90 h

DBM Steel balls with 8 mm diameter 25 rpm, 60 min

DBM Planetary ball mill 30 min, 320 rpm

© 2024 The Author(s). Published by the Royal Society of Chemistry

High adsorption capacities of Cr(v) g. = 48.1 mg g~ " 34

31.48 emu g~ ' and 37.80 emu g~ " 81
Particle size = 45 nm 82
M, = 20.45 emu g~ " 83
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to as “laser ablation synthesis in solution (LASiS)”. In this case,
various lasers can be employed, including Nd:YAG, Ti:sapphire,
and copper vapor lasers,*>® allowing precise control of the
phase composition, size, and shape of the particles, thus
producing nanoparticles with an average diameter of approxi-
mately 15 nm.*” Although laser ablation can quickly generate
MNPs when exposed to a laser for short periods, this method
has a low production rate.*® Also, prolonged laser ablation leads
to the formation of an excessive number of nanoparticles, which
remain suspended in the colloidal solution and obstruct the
laser beam. This causes the laser energy to be absorbed by the
previously formed nanoparticles, rather than the target surface,
resulting in a decreased ablation rate.*

2.2.4. Sputtering. Sputtering is a process that entails
bombarding the surface of a bulk material with high-energy
particles, such as noble gas ion beams, to remove atoms from
the surface. This method produces nanoparticles with the same
composition as the target material and is more cost-effective
than electron beam lithography.** However, the choice of
sputtering gas, such as helium, neon, argon, krypton, and
xenon, can impact the surface morphology, texture, and optical
properties of the resulting nanoparticles.*>*°

2.2.5. Aerosol spray pyrolysis. Aerosol spray pyrolysis is
a scalable and cost-effective physical synthesis process.”* In this
method, nanoparticle precursors are transmitted into a heated
reactor in the form of small droplets suspended in a vapor,
obtaining MNPs with a spherical morphology, narrow particle
size distribution, and no agglomeration.®** However, there are
still challenges to be addressed, such as difficulty in controlling
the homogeneous pore sizes and inner structure of the
particles.”**

Spray pyrolysis is a chemical vapor deposition (CVD) process
used to prepare nanomaterials, which have a consistent particle
diameter compared to the traditional nanomaterials.®*** A
precursor solution of metallic salts is used to create an aerosol
in the spray pyrolysis process. The produced solution droplets
(aerosol) undergo several stages, as follows: (1) solvent evapo-
ration from the droplet surfaces, (2) drying, (3) annealing, (4)
production of microporous particles with a defined phase
structure, (5) creation of solid particles, and (6) sintering of

View Article Online

Review

solid parts. Fig. 4 shows these steps starting from precursors to
nanozyme formation.*

Several studies were conducted to investigate the influence
of different substrate temperatures,®®®” sampling techniques,®®
presence of chloride ion,” and other dispersion parameters'®
on the pyrolysis process. Interestingly, highly porous ternary
NiCoFe oxide nanomesh with a two-dimensional shape and
quasi-single-crystalline (QSC) property was created using
a practical molten-salt-protected pyrolysis method.

The NiCoFe oxide nanomesh possessed high stability, low
over-potential, high current density, and excellent oxygen
evolution reaction performance with increased intrinsic
activity. A quick pyrolysis technique shielded by molten salt
(MS, 53% KNO3, 7% NaNO3, and 40% NaNO,) was carried out at
300 °C to produce mild dehydration to form mixed metal oxides
with retained morphology and minimum particle sintering.'*
Another study employed the phase-selective laser-induced
breakdown spectroscopy technique to investigate the produc-
tion of FeO particles along the axial centerline of the spray in an
external mixing spray flame pyrolysis reactor, under different
precursor solutions. The addition of 2-ethylhexanoic acid to the
precursors was examined and significant changes in the
evolution of the atomic emission spectra were observed. These
changes enabled the differentiation between the gas-to-particle
and droplet-to-particle routes in situ.'*

2.3. Biosynthesis

Green synthesis, which involves the use of plants, microbes,
and other biological materials, has gained significant attention
as a safe, sustainable, and biologically acceptable method for
the synthesis of metal oxide nanoparticles, such as iron oxide
nanoparticles (IONPs) (Fig. 5). IONPs have attracted particular
interest due to their magnetic properties, which allow them to
be easily separated from the reaction mixture using an external
magnetic field. Biomaterials such as plants, fungi, bacteria, and
algae can be used in green synthesis to produce IONPs with
a size in the range of 1 to 100 nm and a variety of shapes,
including cubic, tetragonal crystalline, spherical, cylindrical,
elliptical, octahedral, orthorhombic, hexagonal rods, nano-
spheres, and quasi spherical. In addition to synthesizing IONPs,

= Flow Meter
Fe(NO,),.9H,0 \ l
Doubly Distilled —0¢
Water /
Deposition rate
is 10 mL/min =
Pump Air used as
Gas Carrier
Power Supply
Spray Substrate Heater with
Chamber Temperature Control

Fig. 4
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Setup of the spray pyrolysis technique used for synthesis IONzymes thin film at various temperatures.
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Fig. 5 Biosynthesis of IONzymes using different green sources.

these biomaterials can also act as reducing agents, capping
agents, stabilizing agents, and fabricating agents in the green
synthesis of nanoparticles.**

It is important to highlight the diverse biological pathways
employed by various organisms. For instance, Plumeria obtusa
leaves were employed for the biofabrication of well-defined,
crystalline INPs via an eco-friendly, cost-effective, and
surfactant-free technique. These nanoscale particles displayed
potent antimicrobial and antioxidant activity, while remaining
non-toxic to red blood cells. This green synthesis presented
a potential strategy for the synthesis of sustainable nano-
medicines against microbial infections.'® A study revealed the
eco-friendly biosynthesis of IONPs from Penicillium spp. fungal
filtrate. The extracellular strategy starts by the reduction of
FeCl;, with the protein from Penicillium spp. playing a pivotal
role in capping and stabilizing the IONPs. The characterization
of the IONPs showed that they were spherical with high
stability. The IONPs exhibited powerful antibacterial and anti-
oxidant activities, making them potential alternatives to anti-
microbial and anticancer agents in biomedical applications.'®

A notable example is the use of bacterial extracellular poly-
meric substances (EPS) as reducing and stabilizing compounds
during the bio-mediated production of metal nanoparticles for
multifunctional applications, such as a new bacterium, E. fae-
calis. RMSN6. The EPS was extracted from E. faecalis and used
for producing highly stable IONPs. This study aimed to assess
the effectiveness of the synthesized Fe;O, NPs as adsorbents for
removing Cr(vi) metal ions from aqueous solutions. Further-
more, an in vitro toxicity analysis using bacterial EPS was con-
ducted to evaluate the potential adverse effects of the
synthesized Fe;O, NPs.'¢

Shalaby et al. presented a green synthesis method for the
preparation of recyclable IONPs utilizing Spirulina platensis
microalgae. This study highlighted the efficient adsorptive

© 2024 The Author(s). Published by the Royal Society of Chemistry
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removal of cationic and anionic dyes for water treatment
applications. The environmentally friendly synthesis method
not only contributes to the sustainable formation of nano-
materials but also exhibits the recyclability of the synthesized
IONPs.*”

2.3.1 Biosynthesis of IONPs using plants. Plants are widely
available, easy to handle, and relatively inexpensive materials
that can be used for the synthesis of various types of nano-
particles.'®® Different parts of plants, such as their roots, leaves,
seeds, flowers, fruits, peels, petals, and whole plants, can be
utilized in the biosynthesis process because they contain
various biomolecules, such as amino acids, carbohydrates,
terpenoids, flavonoids, saponins, proteins, and nitrogenous
compounds, which can act as reducing agents, stabilizers, redox
mediators, and capping agents in the synthesis of
nanoparticles'®"** (Table 6).

2.3.2 Biosynthesis of IONPs using fungi. The synthesis of
iron oxide nanoparticles using fungal species has several
advantages, including ease of scaling up the process, use of
economical raw materials for growth, high biomass-forming
capacity of fungi, simplicity of the downstream processing
steps, low toxicity of the residue, and economic feasibility of the
process.'®**$> Fungal species also have superior tolerance and
bioaccumulation properties, which can aid in the synthesis of
metal nanoparticles.”® The relationship between microorgan-
isms and metals has been thoroughly researched and applied in
various biological processes, including bioleaching, heavy
metal removal, and bioremediation.” In these processes,
microorganisms can accumulate and extract metals through the
release of enzymes or other mechanisms. These interactions
have practical applications in fields such as biotechnology,
environmental science, and metallurgy (Table 7)."**%*

2.3.3 Biosynthesis of IONPs using bacteria. Prokaryotes,
which are simple organisms without a defined nucleus or
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Table 6 Biosynthesis of iron oxide nanoparticles using plants
Name of the plant Biomaterial used Iron precursor used Size Shape Application Ref.
Hibiscus rosa-sinensis Dried petals Ferric chloride (25 mM) 65 nm Spinel Biscuit fortification 117
and ferrous chloride (25
mM) (2:1)
Carica papaya Dried leaves FeCl;-6H,0 (0.1 M), NaOH 2.159 nm  Not uniform Antibacterial 118
1™ (agglomerated particles)
Psidium guajava Leaves FeCl;-6H,0 1-5 nm Spherical Antibacterial 119
Citrus Fresh leaves Iron chloride (0.1 mM) 15-80 nm  Spherical Antibacterial 120
Malus pumila (apple) Peels FeCl,-4H,0 (20 mM), 50-100 nm Elliptical and spherical Decolorization of dye 121
FeCl,.6 H,O (40 mM),
NaOH (1 M)
Citrus paradisi Peels FeCl;-6H,0 (6 mM) 28-32 nm  Spherical Antioxidant 122
Syzygium cumini Leaves FeCl; (0.010 mol L") 40-52 nm  Spherical Antibacterial, antifungal, 123
aflatoxin B1 adsorption
Juglans regia Dried green husk FeCl;-6H,0 (97%), 12.6 nm Cubic Cytotoxic assay 124
FeCl,-4H,0 (99%), NaOH
(2 M)
Pyrus sinkiangensis Yu Peels FeSO,-7H,0 (0.1 M) 10-90 nm Irregularly shaped Cr(1v) removal 125
Cymbopogon citratus Leaves FeCl;-6H,0 (0.26 M), 9+ 4nm Irregular cubic Nanotoxicological 126
FeCl;-6H,0 (0.52 M),
Na,COj; (0.75 M)
Laurus nobilis Leaves FeCl;-6H,0 (0.1 M) 8.03 + 8.99 Spherical Antimicrobial 127
nm
Hyphaene thebaica Fruits FeH;,N,04, (58) 5-10 nm Quasi-spherical and Antimicrobial, 128
cuboidal antioxidant, and antiviral
Solanum lycopersicum Leaves FeSO,-5H,0 (0.1 M) 200-800 nm Flower Antibacterial and 129
anticancer
Lawsonia inermis Leaves FeSO, (0.01 M) 2 pum Hexagonal Antimicrobial 130
Ficus carica Fruit (F,Cl3-6H,0) (100 mL) 11-29 nm  Spherical Antimicrobial 131
Rhamnus Triquetra Leaves Ferric acetate (3 g) ~21 nm Spherical Antimicrobial, 132
antioxidant, anticancer,
antileishmanial, brine
shrimp cytotoxicity
Trigonella foenumgraecum Leaves FeCl; (1 M) 27.91-40.94 Grain Antibacterial 133
nm
Tomato Fruits FeCl; (1 M) 48.18-77.54 Semispherical Antibacterial 133
nm
Grapes Fruits FeCl; (16.2 g) 49-50 nm  Cubic Antibacterial 134
Moringa oleifera Leaves FeCl; (0.5 M) 15.01 + Rod-like Antibacterial 135
6.03 nm
Withania coagulans Berries FeCl;-6H,0, FeCl,-4H,0 16 +2-18 Rods Photocatalytic degradation 136
(1:2M) + 2 nm and antimicrobial
Citrullus colocynth Pulp FeCl; (0.5 M) 12-45 nm  Spherical Antimicrobial 137
Seed 6-15 nm
Durian rind Peels Ferrous sulfate (0.05 M) 10 nm Spherical Antibacterial 138
Borassus flabellifer Seed coat Ferric chloride (0.2 M), 30-200 nm Hexagonal Antimicrobial, antioxidant 139
ferrous sulphate (0.1 M)
(2:1)
Citrus sinensis Peels Ferric chloride (1 mM) 97.5 nm — Antibacterial 140
Thymbra spicata Leaves FeSO,-7H,0 (0.1 M) 120.3-17  Spherical Antibacterial, antibiofilm, 141
nm and antioxidant
93.9 nm
Cocos nucifera L. Pulps 0.502 g of FeCl; 90-95 nm  Husked rice shape Antibacterial and 142
anticancer
Euphorbia herita Leaves Ferrous sulfate (0.1 M), 25-80 nm  Cavity like Antimicrobial 143
ferric chloride (0.1 M)
Camellia sinensis L Grinded waste of  FeSO,-5H,0 (0.1 M), 28.5 nm Regular spherical Antioxidant 144
pruned teas NaOH (0.5 M)
Gundelia tournefortii L Leaves FeCl;-6H,0 (2 M), 29.9 nm Spherical Remove crystal violet, 145

1620 | Nanoscale Adv, 2024, 6, 1611-1642

FeSO,-7H,0 (1 M), NaOH

(1 ™M)

malachite green, and
safranin dyes from
prepared aqueous
solutions
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Table 6 (Contd.)
Name of the plant Biomaterial used Iron precursor used Size Shape Application Ref.
Aegle marmelos Leaves Ferric nitrate (90 mL) — Agglomerated Antimicrobial and 146
antifungal
Alstonia scholaris Leaves FeCl,-4H,0 (0.5 M) 8.14-13.4  Cubic Antimicrobial, antioxidant 147
MgCl,-6H,0 (0.5 M) nm and larvicidal
Polyalthia longifolia Leaves FeCl,-4H,0 (0.5 M) 8.14-13.4  Cubic Antimicrobial, antioxidant 147
MgCl,-6H,0 (0.5 M) nm and larvicidal
Coffee Seed Fe** and Fe** (1:1) 23.2-37.5  Cubic Antibacterial 148
nm
Brassica oleracea var. Peels Iron(m) chloride (10 mM) 675 + 25  Agglomerated Anticancer 149
Capitata sub.var. rubra nm
Zingiber officinale Root Ferric chloride (0.1 M) 5.10 nm Nanocube Antimicrobial 150
Artemisia Leaves FeCl; (0.01, 0.04, 0.07, and 24.67-34.28 Cubical Antioxidant 151
0.1 M) nm
Garcinia mangostana Peels FeCl;-6H,0 and 13.42 + Spherical Anticancer 152
FeCl,-4H,0 at a molar 1.58 nm
ratioof 2:1
Chlorophytum comosum Leaves FeCl;-6H,0 (0.1 M) <100 nm  Spherical Methyl orange dye 153
degradation and
antimicrobial
Mikania mikrantha Leaves FeSO,-7H,0 (5 mmol) and 20.27 nm  Rhomboidal Antimicrobial 154
FeCl; (10 mmol)
Garlic Peels FeCl; (1 M) 24-44 nm  Irregular Degrade methylene blue 155
dye
Onion Peels FeCl; (1 M) 29-32 nm Nanofiber Degrade methylene blue 155
dye
Ficus carica Leaves FeCl;-6H,0 (0.01 M), 43-57 nm  Agglomerated and are  Antioxidant 156
NaOH (0.1 M) multiform
Celosia argentea Leaves Ferric nitrate (0.1 M) 5-10 nm  Spherical Antibiofilm, antioxidant, 157
anti-inflammatory,
antidiabetic, and larvicidal
activities
Plumeria obtusaobtuse Leaves Fe(C,H30,), (3 mM) 50 nm Spheroidal Antimicrobial, antioxidant 104
Camellia sinensis Leaves FeCl; (10 mM) 13 nm Cubical Antioxidant, antimicrobial 158
Persimmon Fruits FeCl; (0.04 M), NaOH (1 M) 30-60 nm  Spherical Antibacterial and 159
anticancer
Punica granatum Peels FeCl; (0.1 M) 17.8 £ 6.5 Cubical Enzyme mimicking 160
nm peroxidase, catalase, and
superoxide dismutase
Buddleja lindleyana Leaves Fe (SO4)3-6H,0 (1 g), 25 and 174 Triangular and Antimicrobial 161
AgNO; (0.1 g) nm spheroidal
Hibiscus rosa sinensis Flowers FeCl,-4H,0 (1 mM) 51 nm Tetragonal Antibacterial 162
Allium cepa Peel Ferric chloride (250 mL) 42.78 1 nm — Memory-enhancing agent 163
Centaurea alba Leaves FeCl;-H,0 (0.001 M) 10-52 nm  Spherical Anti-atherosclerotic and 164
antioxidant
Peltophorum pterocarpum  Leaves FeSO,-7H,0 (0.1 M) 0.085 to 0.2 Irregular Photocatalytic and 165
pm catalytic removal of
organic pollutants
Psidium guajava Linn Leaves FeCl; (1 M), NaOH (1 N)  80.3-99.1  Spherical Antimicrobial, antioxidant 166
nm
Hylocereus undantus Fruits Ferric sulphate and ferrous 10-15 nm  Spherical — 167
sulphate (2:1)
Nigella sativa Seeds FeCl; (1 M) and FeCl, (2M) 31.45 nm  Spherical Antimicrobial 168
Mentha spicata Leaves FeCl; (0.4 M) 21-82 nm  Circular or rod Antimicrobial 169
Cassia auriculata Flowers FeCl;-6H,0 (0.1 M) 15-35nm  Spherical Photocatalytic degradation 170
and larvicidal effect
Melia azedarach Flowers Ferrous sulphate (20 mM), 231.43 +  Spherical Antimicrobial, antioxidant 171
NaOH (0.1 M) 5.21 nm
Echinochloa frumentacea  Grains Fe(NO3) (0.1 M) 20-40 nm  Rectangular and Pharmaceutical, 172
triangular agricultural, targeted drug
delivery and biomedical
applications
Pimenta dioica Leaves FeSO, (0.1 M) 5-15nm  Spherical Anticancer 173

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 6 (Contd.)

Name of the plant Biomaterial used Iron precursor used Size Shape Application Ref.

Banana Peels FeCl;-6H,0 (2.16 g) 44-58 nm  Cubic and agglomerated Nondestructive technique 174
CH;3;COONa (6.56 g) (NDT) applications

Amla Seeds FeCl; (0.01 M) 4-5 nm Spherical Removal of toxic dyes 175

Centaurea solstitialis Leaves FeCl; (0.1 M) — Spherical Antimicrobial activity and 176

dye decolorization
Eucalyptus globulus Leaves Fe(NO3)3-9H,0 (0.1 M) 2.34 £+ 0.53 Spherical Removal of heavy metals 177
nm from agricultural soil

Galega officinalis Leaves FeCl;-6H,0 (40 mM), 41.9 + 1.00 Spherical Toxicity assessment in 178
FeCl,-4H,0 (20 mM) (2: nm plants and aquatic model
1 M ratio) organisms

Coriandrum sativum L. Leaves FeSO, (0.01 mM) 163.5nm  Spherical — 179

membrane-bound organelles, have been extensively studied as
a model system in the field of nanotechnology due to their
widespread presence, fast doubling time, ability to grow under
challenging conditions, and the fact that they can be cultivated

using

inexpensive and

straightforward media.****>

Table 7 Biosynthesis of iron oxide nanoparticles using fungi

The

application of this system is considered an effective method for
synthesizing nanoparticles with a range of shapes, sizes,
structural frameworks, and physical and chemical properties
through the reduction of metal ions using reductase enzymes,
which allow microorganisms to accumulate and detoxify

Biomaterial
Fungal strain used Iron precursor used Size (nm) Shape Applications Ref.
Aspergillus niger BSC- Cell-free (FeCl;-6H,0) and ferrous sulfate 20-40 nm Orthorhombic Cr(vi) removal 182
1 filtrate (FeSO,4-7H,0) in 2 mM:1 mM
Penicillium spp. Cell-free FeCl; (3 mM) 3.31-10.69  Spherical Antimicrobial, antioxidant 105
filtrate nm
Chaetomium cupreum Fungal FeSO, (2 g) and NaOH (1.20 g) 25 nm Spherical Anticancer 185
biomass
Chitosan . (FeCl;-6H,0), (FeSO,4-4H,0) 200-600 nm  Spherical Postharvest disease inhibition in 186
fruit
Penicillium roqueforti Fungal Ferric chloride hexahydrate (10~° M) 5-16 nm Spherical Antimicrobial 187
biomass and ferrous chloride tetrahydrate
(107°* M)
Lichen Ramalina — Fe*'/Fe** (100 mL) 31.74-53.91  Spherical Antimicrobial 188
sinensis nm
Pleurotus florida — Ferric chloride (1 M) 100 nm Spherical Antimicrobial 189
Penicillium commune — FeCl; (1 mM), FeSO, (1 mM) 30-50 nm Spherical Cleaning gel 190
Bacillus megaterium — FeCl; (1 mM), FeSO, (1 mM) 40-60 nm Cubic Cleaning gel 190
Fusarium oxysporum — FeCl; (1 mM), FeSO, (1 mM) 20-50 nm Quasi- Cleaning gel 190
spherical
Table 8 Biosynthesis of iron oxide nanoparticles using bacteria
Bacteria Salt Size Shape Applications Ref.
Bacillus subtilis FeCl; (2 mM) 12-32 nm Spherical Cytotoxicity assay 196
Bacillus subtilis FeCl; (2 mM) 3.6 nm Spherical — 196
Proteus vulgaris FeCl; (3 mM) 20-30 nm Spherical Antibacterial, antioxidant 197
Enterococcus FeCl,-4H,0 (0.1 M), FeCl;-6H,0 (0.2 15.4 nm Cubical, hexagonal, brick, and Heavy metal removal and 106
faecalis M) irregular cytotoxic
Enterococcus FeCl-.6H-O (1 M) 48.77-55.55  Cubic Antibiofilm 198
faecalis nm
Bacillus coagulans FeClz-6H,0, FeCl,-4H,0 (2:1 M)  15.18 nm Cubic Antibacterial 199
Aeromonas FeCl, (5 mmol), FeCl; hexahydrate 8-12 nm Spherical Antibacterial 200
hydrophila (10 mmol)
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Table 9 Biosynthesis of iron oxide nanoparticles using algae
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Algae Biomaterial used Iron precursor salt Size Shape Applications Ref.
Spirulina platensis Powder FeCl;-6H,0 (from 0.1 to 0.6 <10 nm Slightly irregular and Adsorptive removal of 107
M) rounded cationic and anionic dyes
Sargassum vulgare Powder FeCl; (0.1 M) 22.73 nm Nanospheres Antibiofilm 204
(Phaeophyceae)
Ulva fasciata Powder FeCl; (0.1 M) 28.41 nm Nanospheres Antibiofilm 204
(Chlorophyceae)
Jania rubens Powder FeCl; (0.1 M) 27.78 nm Nanospheres Antibiofilm 204
(Rhodophceae)
Sargassum crassifolium Dried powder (FeCl; : FeCl,) (0.1:0.05 and 40-215 nm Quasi-spherical — 205
0.02:0.01)
Chlorella vulgaris Powder FeSO,-7H,0 and 4.855,5.702 and Amorphous biochar Adsorbent for dye removal 206
Fe(NO3);-9H,0 3.614 nm
Aegagropila linnaei Powder FeSO,-7H,0 (0.01 mol) 100-150 nm Geomorphic Adsorption and Fenton-like 207
reaction
Ulva lactuca Powder FeCl;-6H,0 (28 mM), 50-80 nm Spherical Adsorptive removal of Pb(u) 208
FeSO,-7H,0 (14 mM) from heavy metal bearing
water
Ulva prolifera Dried-refrigerated FeSO,-7H,0 (0.1 M) 41.23 nm Spherical As(mr) removal 209

powder

metals.”® This process involves the use of metal salts as
precursors in the reaction and has been used to synthesize
metallic nanoparticles.******'*> Table 8 presents some types of
bacteria used to produce IONzymes.

2.3.4 Biosynthesis of IONPs using algae. Algae, which
include both microalgae (single-celled organisms) and macro-
algae or seaweeds (multi-celled organisms), are used in the field
of nanotechnology for the synthesis of various types of metallic
nanoparticles, such as gold, silver, palladium, iron, and copper
(Table 9).2°**° Similar to plants and bacteria, algae also produce
a range of biomolecules, including proteins, fats, carbohy-
drates, peptides, alkaloids, terpenes, macrolides, cell wall
polysaccharides, glycoproteins (containing functional groups
such as carbonyl, hydroxyl, carboxyl, and sulfonate), and
enzymes, which play a key role in the reduction, capping,
fabrication, and stabilization of nanoparticles.>*>* The use of
algae in the production of nanoparticles is considered a safe,
simple,  cost-effective, and friendly
approach."®

environmentally

3. Structure and design

Functionalized polymeric MNPs exhibit certain distinguished
features for drug delivery in terms of effectiveness and efficiency
compared to traditional oral and intravenous techniques. This
is because they can control the particle size, morphology, and
surface charge,”**” which enhance the drug delivery and
release by joining with other molecules such as antibodies,
proteins, and ligands. This can help reduce the side effects
associated with chemotherapy, radiotherapy, and surgery.”*®
MNPs used for biomedical purposes are often composed of
metals such as iron and iron oxide, which can possess a variety
of morphologies.

Iron oxide MNPs with nanocrystalline magnetite (Fe;0,4)
cores are preferred for biomedical applications because of their

© 2024 The Author(s). Published by the Royal Society of Chemistry

biocompatibility (they swiftly decompose into non-toxic iron and
oxygen elements in vivo), biodegradability,>*>'* and ease of
manufacturing.”*?"” Iron oxide nanoparticles (FeO-NPs) are
classified into two categories, i.e., superparamagnetic iron oxide
nanoparticles (SPIONs) and ultra-small superparamagnetic iron
oxide nanoparticles (USPIONs). These two classes have different
relaxometry properties and mean hydrodynamic sizes.*** SPIONs
are made of iron oxide cores with average diameters in the range
of 3-20 nm and composed of agglomerates with a hydrodynamic
diameter of more than 50 nm.*** Therefore, any spherical FeO-
NPs with a diameter equal to or less than 20 nm will exhibit
SPION behavior, which can be used to facilitate targeted drug
delivery in the treatment of oncological diseases (Fig. 6).

Magnetite has a face-centered cubic (FCC), closed packing
cubic, and inverse spinel structure with the ferric (Fe**) ion
occupying all the tetrahedral (Ty,) sites and both ferric (Fe**) and
ferrous (Fe®") ions occupying the octahedral (Oy,) sites. It has
attracted significant attention due to the hopping of electrons
between Fe** and Fe®" ions in its octahedral lattice at ambient
temperature, as well as its low toxicity (Fig. 6). This is because
the iron oxide core of magnetite degrades to low molecular
weight iron, making it a useful material in biomedical appli-
cations and an effective carrier for drug delivery to target loca-
tions, avoiding the negative effects of oral and intravenous drug
delivery.”**>*” This is due to the unique properties of magnetite,
such as its biocompatibility, lack of toxicity, targeting ability,
biodegradability, chemical stability, stable dispersion, and
magnetic stability.??*23>

Due to the anisotropic dipolar attraction and high surface
energies of FeO-NPs, large surface-to-volume ratio unmodified
FeO-NPs tend to form clusters of large aggregates, which can
reduce their surface area to volume ratio and decrease their
effectiveness. Additionally, FeO-NPs are prone to oxidation in
air, which can lead to the loss of magnetization because of their
chemical activity from the oxidation of ferrous (Fe*") to ferric

Nanoscale Adv., 2024, 6, 1611-1642 | 1623


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3na00903c

Open Access Article. Published on 19 2024. Downloaded on 2026/1/25 9:45:44.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale Advances

3-20 nm

Agglomerates
(250 nm)

View Article Online

Review

------ Superparamagnetic IONP
------ Magnetite Core (Iron Oxide)

Magnetite

Octahedral

F 3+ & F 2+

Tetrahedral (e )
(Fe3*) \

Oxygen

Fig.6 (a) Superparamagnetic iron oxide nanoparticles (SPIONSs). (b) Face-centered cubic (FCC) closed packing, with Fe®* in the tetrahedral sites

and Fe?* occupying the octahedral sites.

(Fe**) ions. Thus, to avoid this oxidation, experiments with FeO-
NPs are often conducted under dry conditions.>*>%*

4. Characteristics and applications of
IONzymes

Nanomaterials have established numerous novel applications
to improve human health, ranging from diagnosis to thera-
peutic effects, control, and monitoring environment pollution,
together with improving the chemical industry.****” Iron oxide
nanomaterials have versatile applications that are not limited to
their magnetic properties. IONzymes are considered one of the
most representative nanozymes being explored for their
kinetics and catalytic properties.”*®* IONzymes have several
benefits in real applications, particularly in biomedicine. In this
section (Fig. 7), we focus on the biomedical and environmental
applications of IONzymes.

4.1. Characteristics of IONzymes

Recently, diverse nanomaterials with enzyme-like actions were
discovered with catalytic properties such as the natural oxido-
reductase enzyme family as artificial enzymes or enzyme
mimics.>**>** Recently, researchers have utilized IONzymes in
numerous innovative biomedical applications due to their

1624 | Nanoscale Adv., 2024, 6, 1611-1642

enzyme-like activities.>**>*® In addition, the features of ION-
zymes are not limited to catalytic activity, where they are also
widely applied as biosensors, biomarkers, and in immunoassay
approaches.”””*** Here, we intend to highlight the importance
of IONzymes in biomedical applications.

4.1.1. Enzymatic-like characteristics. In 2007, it was re-
ported for the first time that iron oxide nanomaterials display
enzymatic-like characteristics. Gao et al. stated that FeO-NPs
showed basic peroxidase (POD)-like activity, with catalytic
behavior similar to horseradish POD (HRP).>° Since then,
IONzymes and their typical POD and catalase (CAT)-like activi-
ties have attracted attention because they have been proven to
work under physiological conditions like natural enzymes,
including the same substrate, pH, and temperature. Moreover,
they follow similar kinetics and pathways as conventional
enzymes.”'*** JONzymes are stated to mimic the peroxidase
and catalase enzymes. Both enzymes have a porphyrin heme as
a cofactor in their active site and utilize hydrogen peroxide as
the substrate. Also, both enzymes play a crucial role in avoiding
cellular oxidative damage in aerobically respiring creatures by
forming free radicals and oxygen.>***%¢2>

4.1.1.1. IONzymes mimic POD activity. POD-like activity was
verified for both Fe,O; and Fe;0, IONzymes, which catalyzed
a colorimetric reaction including hydrogen peroxide (H,O,)
utilizing the same optimal conditions as HRP at the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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physiological temperature and in acidic media.>*® In addition,
IONzymes can function over several substrates, including
3,3',5,5"-tetramethylbenzidine  (TMB), o-phenylenediamine
(oPD),  3,3-diaminobenzidine = (DAB),  2,2’-azino-bis(3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS),>******%° polydop-
amine,”* terephthalic acid (TA),>** luminol, and benzoic acid.**
Moreover, IONzymes could peroxidize biomolecules such as
proteins, nucleic acids, sugars,*** and lipids.>*

Furthermore, the enzymatic activity of IONzymes similar to
natural PODs can be affected by several natural effectors. ATP,
ADP, AMP,***7*%” and DNA are the main activators to improve the
POD-like activity of IONzymes by involving them in the electron
transfer mechanism.?>**** Free radical quenchers as sodium
azide, ascorbic acid, hypotaurine, and catecholamines were
found to decrease the POD activity of IONzymes*’**”* by delay-
ing the affinity of the substrate to IONzymes more than
quenching the free radicals.”*®

4.1.1.2. IONzymes mimic catalase activity. IONzymes have
been reported to exhibit catalase-like activity via H,O, decom-
position under neutral and high pH conditions. As previously
described for POD and proven by Chen et al., pH plays
a significant role in the effectiveness of the H,0, decomposition
rate.”

4.1.1.3. Kinetics of IONzymes. IONzymes, as POD and CAT
enzymes, follow Michaelis-Menten behavior.>”> The apparent
affinity of a substrate to the enzyme (KM) value for H,0, was
higher for IONzymes compared to the native HRP, indicating
that IONzymes have a lower affinity to H,O, than HRP by nearly
41-fold.*® Alternatively, the KM value for TMB against ION-
zymes was lower than that of HRP, indicating that the ION-
zymes have a higher affinity to TMB than the natural enzyme.*”
Given that IONzymes have an abundance of iron ions, this

© 2024 The Author(s). Published by the Royal Society of Chemistry

Biosensors

Nanoassembly

increases their POD activity by around 40-times compared to
HRP.>*°

The rate of the CAT activity depends on the O, production
rate in the solution. IONzymes also adopt Michaelis-Menten
kinetics for the CAT reaction.>*® The volumetric measurement of
oxygen gas is influenced by many other parameters, such as
temperature and O, diffusion and can be attained by a volu-
metric bar-chart chip.>”*

4.1.1.4. Mechanism of action of IONzymes. IONzymes show
a catalytic mechanism similar to HRP, where they react with
H,0, to form hydroxyl free radicals ("OH) as an intermediate
state like the POD enzyme state. 'OH captures H' from the
hydrogen donor such as TMB.>*® Interestingly, the produced
'OH does not have reaction specificity and can bind to any
hydrogen donors, leading to a wide range of applications.””®

During the activity of IONzymes, two types of free radicals are
produced, i.e., "OH and hydroperoxyl (HO;) radicals. The ferryl
ion (FeO®") that is typically formed in POD catalysis is not
detected in the POD-like IONzyme activity but produced in the
CAT-like IONzyme activity.””**”” Moreover, IONzymes have two
iron types, i.e., Fe?" and Fe®", where Fe>* ions may play a major
role in their catalytic POD-like activity.>*

The POD-like activity arises also from the integral nano-
particles rather than free iron ions, and thus the IONzyme
mechanism performance includes kinetic procedures involving
substrate binding, surface reaction, and product release, dis-
playing similar enzymatic kinetics.*’**”® Furthermore, ION-
zymes can be utilized as an exceptional carrier to load other
enzymatic functionalities on their surface. For example, glucose
oxidase (GOx) can form a new nano-complex by GOx catalyzing
glucose to produce hydrogen peroxide, which in turn can be
catalyzed by IONzymes.>*°
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4.2. Biomedical applications of IONzymes

4.2.1. Immunoassay, diagnosis, therapy, and biomarker
detection. Based on the superiority of IONzymes over HRP, they
can be used as an alternative to HRP in the enzyme-linked
immunosorbent assay (ELISA) and other associated molecular
detection procedures through the conjugation of anti-
bodies.”*"***> Based on the superparamagnetism of IONzymes,
they can be used to enhance antigen detection at low concen-
trations.”® Gao et al. developed chitosan-modified magnetic
nanoparticles (CS-MNPs) as additional enzymes in conventional
ELISA configurations, with 1 ng mL~" detection limit for a car-
cinoembryonic antigen (CEA).*®* Similar approaches were
adapted to detect other antigens or pathogens, containing
immunoglobulin G (IgG), hepatocellular carcinoma biomarker
Golgi protein 73 (GP73),** human chorionic gonadotropin
(HCG),*® mycoplasma pneumonia,®®® Vibrio cholerae, rota-
virus,”®” cancer cells with human epidermal growth factor
receptor 2 (HER2),*72%® and epidermal growth factor receptor
(EGFR).*® Daun et al. developed an iron oxide nanozyme-strip
to sense Ebola virus (EBOV) with a detection limit as low as 1
ng mL " for EBOV glycoprotein.>® Moreover, the surface of
IONzymes was covered with streptavidin to attain signal
amplification via IONzyme catalysis by Thiramanas et al. to
sense Vibrio cholerae with a sensitivity of 10° CFU mL™" in
drinking and tap water.”®* Moreover, Zhang et al. established
a colorimetric aptasensor for the determination of thrombin by
employing chitosan-modified Fe;O, (MNPs). The results
exhibited that the thrombin absorption values improved in
a concentration-dependent manner with a linear range from 1
to 100 nM.*? Based on the aptamer conjugated to the ION-
zymes, Fe;0, NPs with an aptamer-based immunosorbent assay
(NAISA) were developed for aflatoxin B1 (AFB1) recognition with
better operation and separation. The aptamer was implemented

APTMS H2PtCle
c/'~ \ o 6/0"’ \ NaBHa
» ) ©
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to diagnose AFB1, and this method showed a limit of detection
of 5 pg mL™" (Fig. 8).>

Magnetoferritin NPs (M-HFn) are a certain type of IONzymes
that are linked to the recombinant human heavy-chain ferritin
(HFn) protein shell, which binds to transferrin receptor 1 (TfR1)
overexpressed in most tumor cells.”** This approach enables
tumor diagnosis by utilizing the POD/CAT functionality of the
Fe;0, core to yield a color reaction, which can be utilized to
visualize cancer tissues. This strategy can differentiate
cancerous cells from normal cells with a sensitivity of 98% and
specificity of 95%.%***** IONzymes and their POD activity can be
used in bio-distribution studies. Based on this technique,
Zhuang reported that dextran-coated Fe;O, NPs were confined
in the liver, spleen, and lungs more than the kidney, lymph
nodes, and thymus (Fig. 9A).>%

In addition, IONzymes showed a therapeutic effect on tumor
cells and against bacterial growth by catalyzing H,O, to produce
toxic radicals.>®®*” To increase the intracellular H,O, concen-
tration, H,O, was directly injected, or an enzyme was merged to
generate H,0,. The former showed a significant inhibition
efficacy against a mouse model bearing subcutaneous HeLa
tumors.>*® Ferumoxytol was utilized with a low concentration of
H,0, to fight oral biofilms and avoid dental decay. Ferumoxytol,
carboxymethyl dextran-coated IONzymes could catalyze the
decomposition of H,O, to hydroxyl radicals (Fig. 9B).>*
However, due to the increased toxicity of the H,0, injection
option, incorporating an H,0,-producing enzyme is considered
an efficient and safer choice. For example, Huo et al. reported
that Fe;0, NPs and GOx co-entrapped in mesoporous silica NPs
could be used for tumor catalytic therapy.”*®

Moreover, iron-based NPs can cause generate sufficient
reactive oxygen species (ROS) to induce apoptosis in tumor cells
into (ferroptosis).**3** For example, Fe*" is reduced to Fe** by
the overexpressed glutathione (GSH) in tumor tissues, leading

m-SAP / cDNA

Magnetic
Separation

Fig. 8 Schematic presentation of nanozyme and aptamer-based immunosorbent assay (NAISA): (A) preparation of m-SAP/cDNA and (B)

construction of NAISA for AFB1 detection.
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Fig. 9 Schematic illustration of (A) investigation of dextran-coated FezO4 NPs in the liver, spleen, and lungs®**® and (B) pH-dependent catalytic
activity of ferumoxytol. (Insets) negative stain TEM of ferumoxytol (Scale bar: 50 nm and 10 nm for close image) and hydrodynamic diameter
measurements.?*® (C) Recoverable peroxidase-like Fez0,@MoS,-Ag nanozyme with enhanced antibacterial ability.3°* (D) Multi-catalyst system
for the quantification of galactose, entrapping both MNPs and Gal Ox in mesocellular silica.>*®

to the promotion of ROS production and resultant tumor fer-
roptosis.”*”*%* In addition, Wei et al. developed Fe;0,@Mo0S,-Ag
IONzymes that showed a good antibacterial effect against E. coli
(~69.4%) by the generated ROS through POD-like activity and
released Ag” (Fig. 9C).>* Furthermore, Wang et al. conveyed that
a new cobalt-doped Fe;O0, (Co@Fe;0,) IONzyme exhibited
better POD activity and a 100-fold higher affinity to H,O, than
Fe;0, nanozymes to generate ROS for kidney tumor catalytic
therapy in vitro and in vivo, presenting a potential novel avenue
for tumor nanozyme catalytic treatment.>** Similarly, Sun et al.
improved highly toxic ROS levels from iron oxide core-shell
mesoporous silica nanocarrier-mediated Fenton reactions for
cancer therapy.*® Furthermore, Li et al. prepared an H,O,-
responsive POD and CAT-mimic PtFe@Fe;O, IONzyme, which
displaced a 99.8% anti-tumor rate for deep pancreatic cancer in
collaboration with photothermal treatment.**® In a recent study,
the application of adenosine triphosphate disodium salt (ATP)
as a synergistic agent increased the generation of OH radicals
and restored the antibacterial activity of Fe;O0, IONzymes over
the full pH range against both Gram-positive (B. subtilis) and
Gram-negative (E. coli) bacterial strains in the presence of H,0,
at a pH of around 7.0.>”

4.2.2. Enzyme-IONzyme nanoassembly. This approach
utilizes IONzymes loaded with oxidase enzymes to enable the
fast colorimetric detection of biomolecules. The natural enzyme
usually produces H,0, as an intermediate, which is catalyzed by
the activity of the POD like-IONzymes.**®

© 2024 The Author(s). Published by the Royal Society of Chemistry

Glucose oxidase is the main enzyme assembled with ION-
zymes for the detection of glucose.****" Firstly, GOx catalyzes
glucose to produce H,0,, which is then catalyzed by IONzymes,
and a color signal can be formed related to the amount of
glucose with a detection limit of 0.5 to 3 uM.*"*** Other
oxidases and esterases can also be utilized in this approach
such as cholesterol oxidase for cholesterol detection,**3'¢
galactose oxidase (Gal Ox) for galactose (Fig. 9D),** alcohol
oxidase (AlOx) for alcohol,*"” and acetylcholine esterase (AChE)
for acetylcholine (ACh).>*

4.2.3. Biosensors. Several IONzymes have been used by
researchers for the development of IONzyme-based biosensors
for biomedical applications. IONzyme-based biosensors are
based on the mimicking activity of IONzymes and can be cate-
gorized into three main groups: POD, oxidase, and CAT
mimics.**® Table 10 summarizes the reported IONzyme-based
biosensors together with their enzyme-simulating activities
and sensing mechanism.

4.3. Environmental applications of IONzymes

Due to their high catalytic activity, stability, and multi-
functionality, IONzymes have shown an increasingly wide range
of applications in the biomedical, agricultural, and environ-
mental fields.***-*** Given that IONzymes possess intrinsic POD
and CAT properties and follow a Fenton and/or Haber-Weiss
reaction mechanism (including *OH/HO;), they can be utilized

Nanoscale Adv., 2024, 6, 1611-1642 | 1627
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Table 10 IONzyme-based biosensors and their type of enzyme-mimicking activities and sensing procedures
Enzyme-mimicking

IONzymes activities Biotarget Biosensor type Ref.
Fe;04 POD Ebola virus Colorimetric 319
Fe;0,-Pt/core-shell POD Human chorionic gonadotropin (hCG) Colorimetric (paper-based strip) 320
Fe-MOF-Au NPs POD Salmonella enteritidis Colorimetric immunosensor 321
Fe;0, POD Glucose Colorimetric 322
Fe;0, POD Listeria monocytogenes Colorimetric 323
Fe;0, POD Prostate-specific antigen Photoelectrochemical (PEC) immunoassay 324
Fe;0, POD Micro RNA Electrochemical 325
Fe;0, POD Hepatitis B virus surface antigen (preS1) Colorimetric, immunoassay 250
Fe@PCN-224 NPs POD Glucose Colorimetric 326
Fe;0,@C POD Platelet-derived growth factor BB (PDGF-BB)  Colorimetric 327
Fe;0,/CoFe-LDH hybrid POD Ascorbic acid Colorimetric 328

for the degradation of organic pollutants by combining free
radical production with the magnetic characteristics of iron
oxide.*”” Moreover, the catalytic activity IONzymes can be used
for environmental monitoring, for example, detecting H,O, in
rainwater and measuring heavy metals in environmental
samples. The environmental applications of IONzymes are
considered suitable for numerous environmental conditions,
relatively easy and cheap, and can be simply applied to the
screening of pesticides, organophosphorus compounds, and
other ingredients. IONzymes can determine pollutants indi-
rectly when they enable a target to undergo an alteration in
chemical properties and react with the colorimetric sensor to be
detected.®*?

A histidine-modified Fe;O, IONzyme offered an easy, inex-
pensive approach to detect Ag" with a detection limit of 18 fg
mL '3 4-Chloro-1-naphthol was utilized as a substrate, in
which the Fe;0, IONzyme POD enzyme activity was activated in
the presence of Ag', which produced the insulating precipita-
tion of benzo-4-chlorohexadienone. The insulating products
attenuated the photocurrent signal, reflecting the presence of
Ag'. Guo et al. developed an excellent colorimetric selective
method for the detection of Hg”* based on the stimulus of the
intrinsic oxidase-like catalytic activity of Ag-CoFe,0,/rGO NPs
via a one-pot microwave-assisted reaction, which can oxidize
3,3',5,5"-tetramethylbenzidine (TMB) to yield a light-blue
product.?®*

Recently, IONzymes have been established as anti-microbial
for environmental treatments. IONzymes effectively inactivate
viruses (IAVs) via envelope lipid peroxidation and destruction of
the integrity of neighboring proteins, including hemagglutinin,
neuraminidase, and matrix protein. Furthermore, IONzymes
possess a broad-spectrum antiviral activity against 12 subtypes
of IAVs 244 (H1-H12).»¢

In the treatment of organic pollutants in water, ferromag-
netic chitosan IONzymes (MNP@CTS), which have superior
catalytic activity and exceptional POD activity, were produced
for the degradation of phenol. MNP@CTS removed over 95% of
phenol from an aqueous solution within 5 h under the
optimum conditions (pH range of 2-10).%*"

Huo et al. showed that IONzymes can enhance the perfor-
mance of plants under unfavorable conditions such as abiotic

1628 | Nanoscale Adv, 2024, 6, 1611-1642

stresses. They studied the effect of a 25 ppm IONzyme dose on
Eucalyptus tereticornis against a high salinity concentration of
300 mM NaCl. The IONzymes showed a separate biochemical
change in superoxide dismutase, malondialdehyde concentra-
tion, and total soluble sugar and proline content, which are
biomarkers that circumvent the stress response and synergis-
tically improve the activity of CAT and POD enzymes.**®

Recently, Fe;0,-TiO,/reduced graphene oxide (Fe;04-TiO,/
rGO) NPs with hydrogen peroxide activity and photocatalytic
efficiency were designed for the colorimetric detection of atra-
zine pesticides, which can cause long-term negative effects
because of their persistence. TMB was used as the substrate
compound with a detection limit of 2.98 pg L™ '.3* Moreover,
the POD-like activity of IONzymes was utilized in water purifi-
cation in another study.***** This designates the promising
application potential of Fe;0, IONzymes in water treatment and
quality analysis.

4. Future scope and drawbacks of
IONzymes

The future potential as and present limitations of the applica-
tions of IONzymes must be considered for their development.
IONzymes have enormous potential for use in the environ-
mental and biomedical fields. Employing IONzymes in targeted
drug delivery systems and improved diagnostics is one field of
research and development that has great potential.*** Thorek
et al. suggested that IONzymes may revolutionize magnetic
resonance imaging (MRI) by improving the imaging contrast
and specificity. However, there are a few issues and disadvan-
tages that need to be resolved. One of the main challenges is
still their long-term biocompatibility and toxicity, particularly
for in vivo applications.**®

Although iron oxides are considered to be biocompatible in
general, Szalay et al. proposed that further research is needed to
determine their long-term impacts in biological systems.**
Another serious obstacle is the synthesis of IONzymes on a large
scale for industrial use. Researchers emphasized that the shift
from laboratory-scale production to large-scale manufacturing
frequently leads to instabilities in particle size and enzyme
activity, which can hinder their practical implementation.>*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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One more crucial element is the stability of IONzymes in
physiological settings. Thus, enhancing their stability through
surface modifications, while maintaining their enzymatic
activity under various pH and temperature conditions, is crucial
for their effective use in biological systems.*® In addition,
achieving high specificity in the catalytic action of IONzymes
remains a major research goal. As noted by Zhang and co-
workers, tailoring nanozymes to exhibit enzyme-like specificity
is a complex but vital aspect for their application in both the
medical and environmental fields. Enabling the actual deploy-
ment of IONzymes requires addressing these obstacles via
inventive research and technological developments.*® To fully
utilize the promise of IONzymes in a variety of applications,
future research should focus on improving their biocompati-
bility, scalability, stability, and specificity.**

5. Conclusion

In conclusion, the study of IONzymes has seen significant
advances in recent years. IONzymes can be synthesized using
chemical, physical, and biological techniques and offer unique
advantages for various applications, including biomedical and
environmental purposes. IONzymes have been explored for
their enzymatic properties and used in enzyme mimicry,
immunoassays, diagnosis, therapy, and biomarker detection.
Thus, the versatile nature of IONzymes, combined with their
biocompatibility and biodegradability, make them a promising
area for continued research and development.
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