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Protein design and directed evolution have separately contributed enormously to protein

engineering. Without being mutually exclusive, the former relies on computation from first

principles, while the latter is a combinatorial approach based on chance. Advances in

ultrahigh throughput (uHT) screening, next generation sequencing and machine learning

may create alternative routes to engineered proteins, where functional information linked

to specific sequences is interpreted and extrapolated in silico. In particular, the

miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes

and their rapid generation and analysis (>1 kHz) allows screening of >107-membered

libraries in a day. Subsequently, decoding the selected clones by short or long-read

sequencing methods leads to large sequence-function datasets that may allow

extrapolation from experimental directed evolution to further improved mutants beyond

the observed hits. In this work, we explore experimental strategies for how to draw up

‘fitness landscapes’ in sequence space with uHT droplet microfluidics, review the current

state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined

with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.
1. Introduction

Protein engineering has made remarkable progress over the last decades, based
on advances in recombinant DNA technology and site-directed mutagenesis,1

directed evolution,2 mechanistic and structural analysis3 and computational
design.4 Nevertheless, the ambition of the original protein engineering, formu-
lated as ‘designing tailor-made enzymes for every reaction”,5 has not been fullled
so far, still warranting Jeremy Knowles’ warning about the premature use of the
term ‘engineering’ in 1987.6 Two potentially crucial contributions have emerged
more recently: on the one hand, development of new assay formats that make it
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possible to gain quantitative insight not only into one enzyme mutant at a time,
but at a large number of them.When this comes at a low cost, by taking advantage
of miniaturization – e.g. through microwells in microuidic chambers7 or in in
vitro compartments in microuidics8 – much larger fractions of amino acid
sequence space can be explored and functionally evaluated. On the other hand,
machine learning offers increasingly capable algorithms suitable for interpreting
such large datasets. Will it be possible to decipher complex combinatorial
scenarios contained in these data and access mechanistic scenarios that would
defy hypothesis-driven approaches, to enable extrapolations to inform biocatalyst
engineering? Are these two approaches a natural match? Where do they synergise
and how might they be combined to obtain insights on enzyme function and
evolution that thus far have remained elusive?
2. Microdroplets as in vitro compartments
generated and screened in microfluidic devices –
three examples for screening workflows

Screening diversity is central to protein engineering efforts and scale is crucial to
identify rare hits in the vastness of sequence space. Water-in-oil emulsions
promise several orders of magnitude higher throughput compared to traditional
microtiter plate screening approaches by massively reducing the volume of an
experiment without use of plasticware (>107-fold volume reduction compared to
the regular 96-well plate format with a ∼200 ml volume) (Fig. 1). A large body of
work in so matter physics has equipped us with the ability to generate water-in-
oil emulsion droplets in microuidic devices at >kHz rates that allow analysis of
>107 variants per day.9 Analytical interfaces exist to measure reaction progress at
comparable scales, e.g. via detection by uorescence10 or absorbance11,12 (or even
label-free based on mass changes, albeit at lower throughput).13 When single
emulsions are converted into double emulsions, commercial ow cytometers can
be used for detection of uorophores.14 Further, lab-on-a-chip devices miniaturise
more complex liquid handling operations and coupled assays enlarge the range of
reactions that can be assayed.11,15–17 Indeed, functional assays for all E. C. classes
are already available.8 The above-mentioned scale and cost benets of droplet
experiments match recent advances in next generation sequencing technologies:
thus large sequence-function datasets can be generated at much lower cost and
with shorter lead times than conventional experimental formats (Fig. 1). Although
sequence space is notoriously vast (for a 100 amino acid protein there are 1.3 ×

10130 possible combinations), data in which sequence and function are correlated
may contribute to rough descriptions of ‘tness landscapes’ that track and inform
the navigation across more or less interesting sections of sequence space.18,19

Three examples show this technology in action, taking library screening
experiments in droplets (Fig. 2) all the way to ‘maps’ of sequence space (Fig. 3).
Each example illustrates a distinct workow (Fig. 2) in which large scale screening
allows to infer information on tness landscapes, generating substantial datasets
that may be useful for AI/ML interpretation:

(A) Evolution of an amine dehydrogenase (AmDH), a valuable biocatalyst for the
synthesis of chiral amines. Zurek et al.20 screened libraries of AmDH variants
generated by error-prone PCR mutagenesis. Libraries were transformed into E. coli
90 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024
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Fig. 1 Profiles of low to ultrahigh throughput experimentation systems (tubes, multiwell
liquid handling systems, HT-MEK 7 and emulsion droplets8) that may be used as data
generation tools for machine learning with their specific benefits and limitations.
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for expression. Single cells were encapsulated into droplets with substrates for
a coupled assay using the dye WST-1 as a turnover sensor (Fig. 2A). Positive variants
were selected based on an absorbance measurement (>105 droplets per hour, but
faster systems are now available12,21) and DNA was recovered and sequenced using
UMI-linked Oxford Nanopore sequencing (UMIC-seq) to achieve high-quality.

(B) Mutational scanning of a protein kinase involved in signaling networks. The
human protein kinase MKK1 is an example of a broad class of phosphate transfer
enzymes involved in signalling networks. In order to explore how these evolve,
MKK1 (which targets ERK2) was randomised with a focus on six residues in its
docking domain (D-domain), which mediates interaction with the downstream
kinase ERK, activating its kinase activity. EachMKK1 variant was tested for its ability
to bind and phosphorylate ERK2 in a coupled assay (Fig. 2B) exploring a scenario of
neutral roaming in sequence space (i.e. a non-adaptive evolution experiment). The
library was expressed (using a commercial in vitro transcription/translation system)
in a polydisperse emulsion containing monoclonal magnetic beads. This cell free
approach alleviates issues that frustrated previous in vivo kinase screens such as
cellular background and functional redundancy, while it simultaneously benets
from the robust expression of kinases in an in vitro transcription/translation system.
Selections were carried out in polydisperse emulsions (not even necessitating the
use of microuidics) and the gene as well as the substrate (giving a GFP readout
when a kinase target sequence was protected by successful kinase action against
proteolysis) were immobilized on a bead, so that ow cytometric sorting (FACS)
could be used to identify active clones. Using next-generation sequencing (NGS) of
the D-domain to calculate enrichment scores, functional combinations of D-domain
variants were mapped out.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 91
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Fig. 2 Ultra-high throughput screening workflows coupled to sequence data generation.
(A) Single cells can be encapsulated in droplets with substrates and lysis agent. The amine
dehydrogenase reaction is coupled to WST-1 reduction forming a colorimetric readout.
Active variants are sorted using AADS (absorbance-activated droplet sorting) and the
output is sequenced using high-quality nanopore sequencing (UMIC-seq). (B) Monoclonal
beads carrying GFP linked via a chymotrypsin cleavage sequence are encapsulated and the
kinase cascade is expressed via IVTT. A phosphorylated linker sequence is resistant to
chymotrypsin cleavage. Active variants are sorted by FACS of the beads with multiple gates
and the D-domain sequence and enrichment is read out via next generation sequencing
(NGS). (C) Single E. coli cells expressing metagenomic library members are encapsulated
into droplets along with a fluorogenic phosphotriester substrate. Phosphotriesterases
hydrolyse the phosphotriester releasing fluorescent fluoresceine. Droplets containing
active variants are sorted at >1 kHz using FADS (fluorescence-activated droplet sorting)
and hits are revealed by Sanger sequencing of the selected clones.
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(C) Identifying promiscuous phosphotriesterases in metagenomic libraries. A
metagenomic library with 1.25 million genomic inserts of mixed environmental
origins (soil, degraded plant material and cow rumen) was screened using
a uorescent assay reporting on phosphotriesterase activity (Fig. 2C). The
brightest 0.001% of droplets were sorted, sequenced using Sanger sequencing
and characterised to reveal novel, uncharacterised “bridgeheads” in sequence
space which is now functionally annotated in areas where homology-based clas-
sication would not have predicted phosphotriesterase activity.
3. What kind of data do we generate in large
scale droplet experiments?

Our objective is to reveal tness landscapes to visualize the exploration of
sequence space and ultimately steer ‘walks’ towards zones in which new or
improved activities are more likely. Droplet experiments inform the maps by
providing sequence information on individual variants correlated to a specic
functional label (i.e. a qualitative or quantitative assessment of activity). While the
92 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00065j


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
3 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

5/
10

/3
1 

14
:0

4:
27

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
variant sequence can be easily read out at the end of a screening workow,
functional labels can oen only be obtained indirectly and require creative
experimental design. Examples for such functional labels are variant identica-
tion aer passing a set threshold for sorting in directed evolution or quantitative
enrichment scores by deep mutational scanning,22 which has recently been
integrated with high throughput screening and machine learning treatment.58

More generally, these labels can be categorized as binary data (e.g. selection is
either successful or unsuccessful)23,24 versus binned quantitative data (with
granular enrichment scores).25 (These approaches are referred to as ‘categorically
quantitative’ in Fig. 1.)

The type of label that can be obtained from a large-scale droplet experiment is
highly dependent on the chosen library size and design, the microuidic work-
ow, and the choice of the sequencing strategy. NGS offers high enough
sequencing depth to generate binned quantitative data (granular enrichment
scores) for sequence-function mapping: reporting how oen a variant occurs in
the input vs. the output library. The technology used for sequencing determines
the information content further. Short reads with only up to 600 bp read length
(with 2 × 300 paired end sequencing) adequately describe mutational patterns in
small proteins26 or functionally dened regions of proteins.25 However, long read
sequencing technologies are necessary to reveal long-range epistatic effects in
larger proteins. Corresponding datasets can be obtained with PacBio or Oxford
Nanopore instruments. Oxford Nanopore sequencing is cheap (<1.1¢ per
sequence)20 and can be carried out in any lab at low cost, while the capital
expenditure for a PacBio (250 000$ for PacBio vs. <1000$ for a MinION device)
makes this impractical. The two technologies differ in their read quality, with
PacBio giving high quality reads at single nucleotide resolution. Oxford Nanopore
devices suffer from high error rates and are unable to pin-point single nucleotide
mutations, but a workaround – consisting of UMI (unique molecular identier)
labelling followed by clonal amplication and consensus generation from
multiple sequences (that are tagged by the same UMI)20 – exists to produce high
quality sequences of even single amino acid mutants. While short-read NGS can
be used to generate binned quantitative data with granular enrichment scores,
long-read sequencing technologies operate at lower scale (90 Gb for PacBio, 50–
110 Gb for Oxford Nanopore compared to up to 3000 Gb with Illumina
sequencing) and are currently limited to the generation of binary data on variant
identication per round of selection in directed evolution. (but see ref. 58 for new
long read approach employing Oxford Nanopore devices).

Each of the three studies reviewed here (Fig. 3) uses different experimental
designs, so the sequencing strategies are correspondingly different, but all three
arrive at representations of hits in sequence space that can be interpreted as
tness landscapes:

(A) AmDH screening (Fig. 3A). In AmDH evolution long-read Nanopore
sequencing (in a commercial MinION ow cell; Oxford Nanopore) was used to
sequence 3000 hits with an activity higher than the threshold chosen for
screening. A crucial accuracy improvement is achieved by tagging variants with
unique molecular identiers (UMIs): these are then amplied clonally, multiple
nanopore sequences are generated and nally evaluated by deriving a consensus
from many reads per amplied variant. In this way the sequencing accuracy was
dramatically increased to >99.99%. The improved accuracy for cost efficient long-
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 93
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Fig. 3 Functional annotation of sequence space. (A) Exploring productive trajectories on
the fitness landscape of an amine dehydrogenase in three rounds of directed evolution.20

(B) Scanning the fitness landscape of a short kinase docking domain (D-domain) with
increasing thresholds for comprehensive epistasis mapping.25 (C) Identifying islands of
sulfatase and phosphotriesterase function in an unexplored landscape through functional
metagenomics.23
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read nanopore sequencing is crucial for condently resolving multiple mutations
per variant and thus mapping evolutionary trajectories. The resulting dataset
gives a tness landscape shown in Fig. 3A that illustrates the evolution of
a functional protein through three generations of ultrahigh throughput screening
in directed evolution, in which the 3000 best hits of 250 000 variants were sorted
and sequenced. The apparent clustering reveals intra-gene cooperativity of
mutations (epistasis), for which accurate long read sequencing was necessary and
provided experimental evidence for sign epistasis. Information from multiple
rounds of directed evolution constitutes a dataset conditioned by the combin-
ability of mutations. The analysis of evolutionary trajectories in this way helps to
extract features for further labelling and reconstructing or extrapolating func-
tional evolution. Such features will be identied by their acquisition and
conservation through rounds of evolution and may include residues with a cata-
lytic function (located near the active site), but also enhancing solubility
(conferred by residues the outside of the protein), stability (e.g. residues allowing
improved packing or better hydrophobic interactions in the core of a globular
protein), introduction of conformational exibility or disorder (e.g. in order to
facilitate recognition of new substrates or remove steric clashes) and nally
patterns of the aforementioned epistatic interactions (i.e. long range interactions
between oen distant residues).

(B) Kinase screening (Fig. 3B). The narrow focus on the well-known docking
domain (D-domain) of kinases made it possible to use the short reads provided by
Illumina sequencing to draw up a tness landscape. A starting library of 500 000
mutants was generated from randomising six residues in the MKK1 docking
domain (synthesised on beads by spit-and-mix assembly, with high quality and
equal representation of nucleotides27). Library members were sorted into three
bins according to activity. 2.9 × 104 MKK1 variants are functional, providing
94 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024
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a rich dataset to explore cooperativity between the different randomised posi-
tions. Enrichment analyses identied patterns of interdependence between the
randomized positions, highlighting the role of cooperative hydrophobic effects
and charge balance. Taken together, the patterns are displayed in a tness
landscape in which transitions from one sequence motif to another are generally
possible. Many well-connected variants capable of substrate binding and phos-
phorylation suggest high evolvability. The extensive well-labeled sequence dataset
(Fig. 3B) carries information about implicit positive epistasis and may be further
interpretable by ML in the future.

(C) Triesterase screening (Fig. 3C). Screening of a metagenomic library (in
binary mode for overcoming a phosphotriesterase activity threshold) yielded 8
hits, the majority of which had not been recognized as phosphotriesterases
before. These new enzymes will constitute bridgeheads in sequence space for
further annotation, being selected for function rather than found by sequence
homology. New functional motifs were recognized, e.g. an a/b hydrolase fold, in
which a catalytic triad (with a cystein nucleophile) served as a multiple turnover
catalyst, despite its similarity to the target of phosphotriester as a toxin, an active
site catalytic triad (containing serine) that is suicide-inhibited by the triester.
Newly identied enzymes from this approach will be useful as a binary activity
label for ML-based functional annotation to further annotate sequences in large
metagenomic databases such as MGnify.28

The three campaigns provide examples for sequence space explorations, in
which the experimental design and selection criterion shapes both, the area of
sequence space that is explored and the functional readout that ultimately
completes a tness landscape by adding a third, functional dimension to
sequence space (as represented by two notional dimensions).

(A) The case of kinase MKK1 is producing a dataset (Fig. 3B) focused on the
small fraction of sequence space represented by docking domain mutagenesis
and functionally annotated with granular enrichment scores that map a smooth
tness landscape with many overlapping functional motifs.

(B) The data on AmDH (Fig. 3A)20 covers mutations across the entire protein
(being derived from an epPCR library) and thus samples a larger area of sequence
space. The dataset can be interpreted as an exploration of sequence space in all
directions, as long as the selection criterion of increasing AmDH activity is ful-
lled (measured by a binary assay). The resulting tness landscape is more
complex and shaped by long-range epistatic effects that dene founder muta-
tions, with considerable ‘ruggedness’ of the tness landscape (resulting in some
mutational paths closed off due to sign epistasis), but also with evidence for
positive epistasis across the protein structure (where the combined effect of two
mutations can be larger than the sum of their individual contributions).
Ruggedness in the tness landscape with fewer paths for evolution suggests that
transitions are more difficult and the evolvability potentially reduced, due to the
intrinsic response of this protein to mutations.

(C) Finally the sequence context in which new phosphotriesterases are found is
much broader (Fig. 3C),23 starting from a diverse metagenomic library (rather
than a randomised single protein) and identifying peaks only in a binary screen.
Additional surrounding sequences can be derived from sequence repositories,
but as their function is inferred rather than tested, no inference about the shape
of a tness landscape can be made: it is simply annotated.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 95
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Interpreting large sequence collections rather than individual single mutants
(e.g. a ‘winner’ of a selection or screening experiment) may offer additional
insight. It is tempting to hope that the data can be used to reliably extrapolate
from experimentally characterized variants and predict new ones with higher
tness. Cooperative epistatic effects dene an evolutionary trajectory and may be
inferred from information on groups of mutants (either as long-range intra-gene
effects in ‘founder mutants’ of AmDH 20 or as short range effects focused on the
MKK1 kinase D-domain25) and its analysis may allow predictions.29 Even for
metagenomic explorations,23,30 functionally annotated data can be the basis of
prediction.
4. The current state of AI for enzyme
engineering

Given the demand for green, carbon neutral biocatalytic processes that require
new or improved enzymes, it is tempting for protein engineers to dream of an
algorithmic black box that automatically and reliably produces instructions for
enhanced activity improvements, as easily as AlphaFold2 (ref. 31) comes up with
a structural model. However, structure is easier to predict than activity, with the
latter requiring sub-Angstrom precision in the active site and orchestrating
a number of catalytic effects just in time to cross the transition state. Further-
more, the input dataset for AlphaFold2 is the well-established, rigorously quality-
controlled, and systematically organized PDB which was built up in a community
effort over years. In contrast, there is no such systematic framework for functional
characterisation of large enzyme libraries yet. While substantial organizational
effort has been put into EnzymeML,32 this data exchange format is based on
STRENDA, ready to receive high quality data on a few enzymes (or mutants) rather
than necessarily shallower ultrahigh throughput data on tness in larger
libraries.

To discuss the interface between ultrahigh-throughput experiments and AI, we
must understand the AI enzyme engineering landscape (Tables 1–3.40,44–56 AI
models differ in the extent to which they rely on rules derived from prior
knowledge or autonomously identify statistical patterns in data without user
input. A useful distinction can be made between expert systems that make deci-
sions based on rules drawn up by a human expert (e.g. gravy hydrophobicity33 or
BLOSUM substitution34). In contrast, machine learning is an umbrella term for
techniques that do not rely on such rules, but instead derive rules from data (the
“learning” aspect in machine learning, e.g. linear regression, random forest, etc.).
Deep learning is a subclass of machine learning and is loosely distinguished from
general machine learning by its large count of learnable parameters: oen of
similar or larger order of magnitude to the available datapoints (or beyond). Many
contemporary neural network approaches, such as transformers35 (the main
component of modern languagemodels36), AlphaFold2 (ref. 31) and convolutional
networks,37 belong to this category. The amount of data available is a rst crite-
rion in the choice of a model, with deep learning approaches being more data
hungry, while general machine learning techniques can live with fewer data
inputs. The parameters of these models are then tuned in one or more ‘training’
steps.
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The training steps determine the data used and how it informs the model’s
parameters. We distinguish between pre-training steps, which use general data
such as the observed sequences on UniProt or general thermostability annota-
tions from FireProtDB 38, and assay specic training, which uses data from the
targeted assay. A pre-training step may precede self-supervised or supervised
learning: in the self-supervised mode only sequence or structure are available,
while a functional label, e.g. an activity measurement, is absent. Instead of
functional labels, “pseudo-labels” unrelated to function are created by masking
parts of the sequence or structure and predicting the amino acids that should
occupy the masked positions. This approach is called “self” supervised, because
the labels are generated from the datapoint itself, through a masking process.
This pre-training mode is used e.g. for protein language models39 and also for
methods that take the structural environment into account.40,41 By integrating this
information, the model learns to pick up on common sequence or structural
motifs. Alternatively, when we have access to experimental mapping of sequence
to function or a relevant proxy, a model may be pre-trained in a supervised way
given the annotation. In contrast to general pre-training, assay-specic training,
requires labels from the assay of interest and is therefore only possible in
a supervised mode.

Pre-training steps and assay-specic training can be combined. Workows
may include pre-training steps (self-supervised or supervised) along with assay-
specic training. The combinations of pre-training and assay specic training
give rise to three broad usage regimes for a model to predict a target property (or
generate a sequence with a desired target property value) that is probed by
a specic assay run in the lab:

(i) Zero-shot: in this case a model is only pre-trained on general data and is
used “as is” without supervised training on any assay labelled data to predict
a target property. For example, a language model (such as ESM) might be trained
through self-supervision (sequence masking) on all sequences observed in Uni-
Prot, and subsequently used in a “zero-shot” way by evaluating the probability
that ESM assigns to a sequence containing a given mutation vs. the probability of
the wildtype sequence. This assumes that the target property correlates with the
self-supervision task that was used during training (e.g. thermostability, because
‘natural’ motifs in UniProt must be at least marginally thermostable to be
observed in living organisms). As another example, we might pre-train a linear
regression model “supervised” on cDNA display proteolysis data42 from general
proteins, and then task the model to predict thermostability of our target protein
“as is” (zero-shot). (ii) Assay aligned (also referred to as ‘transfer learning’ or ‘task-
specic ne-tuning’ in the ML community): in the assay aligned regime, a model
that was previously trained (=“pre-trained model”) on general data through self-
supervision or supervision is “aligned” to the assay specic data through addi-
tional supervised training on a, commonly smaller, assay specic dataset. For
instance, this may be achieved using the same model (e.g. ESM) and updating its
parameters slightly based on the assay labelled sequence-to-function data (‘ne-
tuning’). As another example, one may use another model which uses represen-
tations or outputs from the pre-trained model as some of its inputs and train it on
the assay labelled data (‘feature extraction’). This process is illustrated for
example in Hsu et al.43where the output of ESM is used as input to a smaller linear
regression. In essence, “assay aligned” usage takes an existing pre-trained model
102 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024
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and trains it further with assay specic data. The loose idea is that this allows
“motifs” and “patterns” that can efficiently be represented by the pre-trained
model to be “re-mapped” to the assay data and thereby better extract which
motifs might improve or decrease the targeted property. (iii) Assay supervised: in
this case the given model is trained in a supervised way directly on assay data
without pre-training on other data. Since the amount of available assay data is
oen very low, the types of models in this approach tend to be general machine
learning models (not deep-learning models).

The functional coordinate dened by the assay determines the target property
that is to be predicted, e.g. thermostability, solubility and expression, enzyme
activity and cumulative characteristics (i.e. a mixed set of properties including
general tness, growth rate in the presence of antibiotic or lysate activity).

Finally design space restrictions can be incorporated, e.g. by explicitly restricting
options based on expert knowledge, such as evolutionary or structural data at the
following levels: (a) assignment to a specic class of proteins, e.g. an EC category or
a particular fold; (b) sequences derived from a specic protein: starting from theWT
sequence improvements in the target property are sought by mutating any position
or combination of positions in the wildtype enzyme; (c) specic regions of a starting
protein are considered preferentially – e.g.mutations in a subregion of the wildtype
dened from an evolutionary conservation threshold from an MSA, expert knowl-
edge of key positions or an enzyme structure.
5. Recent machine learning studies in enzyme
engineering

The large datasets emerging from ultrahigh throughput screens will be prime
candidates for machine learning analyses. Especially, unbiased datasets with
large coverage of design space promise to hold solutions for problems that are
difficult to access with traditional hypothesis driven research. However, the
current studies on enzyme engineering that involve ML are using far smaller
datasets. Nevertheless, even with smaller datasets remarkable progress has been
made, highlighting what the use of ML has achieved and what one may expect if
more data can be fed into the algorithms.

Four groups of common workow have been tested experimentally (see
Tables 1–3) and can be characterized by their primary variations in usage regime
and design space (Fig. 4B). We classify these as zero-shot approaches with focused
(ZSF) or broad design space (ZSB) on the one hand, and, on the other hand, assay
labeled regimes with focused (ALF) or broad design space (ALB). Assay labelled
regimes with focused design space are usually informed by data from focused
libraries targeting selected positions or regions in the protein only, in contrast to
modes with a broader design space which, among others, include random
mutagenesis (e.g. by error-prone PCR) across the entire protein.
5.1 Zero-shot regime without assay-labeled data (yellow sections in Tables 1–3)

5.1.1 Zero-shot with focused design space (ZSF). Zero-shot ML only requires
knowledge of the wild type sequence or structure and has been successful for
identifying expressible and active variants in large design spaces, when restricted
to select regions outside the active sites and highly conserved regions. Current
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 103
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successful zero-shot designs consistently tend to exhibit thermostability and
solubility improvements. These biophysical improvements themselves can lead to
activity improvements, e.g. when improved stability increases the lifetime of the
biocatalyst or when improved solubility makes the biocatalyst bioavailable,40,54,55

even without necessarily addressing the efficiency of the catalytic machinery
itself. At the time of writing only structure-based approaches in this workow
were wet lab validated for enzymes, so we focus on two prominent structure-based
examples:

(i) MutCompute. MutCompute is a deep learning approach (3D convolutional
network) that was pre-trained in a self-supervised way based on structures in the
Protein Database, by masking out amino acids in a given structure and predicting
the identity of the masked amino acid based on the local context (a structural
microenvironment dened by a 20 Å cube centered around the masked amino
acid). MutCompute was successfully applied to the improvement of a plastic-
degrading PETase by Lu et al.40 in zero-shot mode, coming up with 159 variants
that were experimentally tested. Combinability studies of the best mutations from
this panel yielded FAST-PETase, improved by more than an order of magnitude.
Enhancements are larger at higher temperatures, suggesting that temperature
adaptation is the main source of catalytic improvement. Additionally, MutCom-
pute was successfully applied with a methyltransferase51 and a b-lactamase.52

(ii) ProteinMPNN (Fig. 4A). ProteinMPNN is another deep learning model
(graph neural network) originally created for sequence-redesign given a backbone
structure. It is pre-trained in a self-supervised mode by ‘deleting’ the side-chain
and amino acid information in a given structure and then re-predicting the
correct sequence – position by position (autoregressively) – based only on the
backbone and Cb coordinates, as well as the amino acid types that it already
predicted.41 At usage time, a wildtype backbone structure, and optionally the
amino acid types for a few xed positions in the sequence, can be used as input
and the remaining sequence is re-designed to fold into that target backbone.
ProteinMPNN’s pre-training has been shown to correlate with solubility and
thermostability41 (Fig. 4A). The rationale is that ProteinMPNN’s pre-training was
based on general protein structures in which certain backbone fragments and
motifs re-appear with slightly varied amino acids, such that for a given backbone
fragment plausible (but diverse) amino acids are inferred at usage time. Since
ProteinMPNN has been trained on structures in the PDB, which predominantly
come from crystals and therefore need to be at least modestly stable and soluble,
it is thought to predict stable and soluble solutions. Existing protein structures
are biased towards these properties simply by virtue of being stable enough to be
observed.

A successful zero-shot application of ProteinMPNN for enzyme engineering is
the work of Sumida et al.,54 who improved the solubility and stability of TEV
protease. In order not to disturb the functionally relevant constituents of the
protein, evolutionarily conserved and active site residues were exempted from
randomization (Fig. 5A). 129/144 designs exhibited higher levels of soluble
expression than the starting point and 64/144 designs showed some activity with
a model substrate. The top three designs were further characterised on the model
substrate and all showed higher catalytic efficiencies than the parent (up to 26-
fold improvements) and the top hit (hyperTEV60) has 40 °C increase in melting
temperature Tm. At 30 °C, hyperTEV60 retains 90% of its activity over 4 h, while
104 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Breakdown of key aspects of AI enzyme engineering efforts. We distinguish
between pre-training (i.e. training on general data) and assay specific training (i.e. training
on data from the targeted assay), which gives rise to three usage regimes: (i) zero-shot =
pre-training only. (ii) Assay supervised = training only. (iii) Assay aligned = pre-training +
training. Note that multiple pre-training steps are possible. Further details are explained in
the text.
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the parent enzyme only retains 15% activity (Fig. 5B). These observations are
consistent with the studies involving MutCompute,40 namely that biophysical
robustness brings about an increased ability to form product. Observing an effect
on reaction kinetics (with the actual native protease substrate) would provide
more direct evidence for transition state stabilization (as opposed to improving
the availability of a “competent state”, either by increased Tm or backbone
rigidication).

The studies provide evidence that, when used in a focussed zero-shot way,
models such as Mutcompute and ProteinMPNN can yield catalysts able to
generate more reaction product. While biophysical characteristics are improved,
the current data is less clear on improvements to the catalytic machinery. It is
possible that the emphasis on stability in the pre-training data for self-
supervision, which is from the general PDB and may not contain much signal
on catalytic prociency, is responsible for generating proteins mainly improved in
structural integrity or solubility. If this is so, then initially unstable proteins
should benet most from these approaches and would make promising targets
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 105
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Fig. 5 Machine learning informed engineering of a TEV protease54 and a halogenase.47 (A)
Design strategy for TEV protease engineering. Based on structural and evolutionary
constraints as input, the design space was defined by fixing the amino acid identities of the
active site residues and conserved residues. ProteinMPNN was used to redesign the
remaining residues and generate the designed sequences as output. (B) Stability assay. The
best design hyperTEV60 shows improved benchtop stability compared to the native TEVd
when incubated at 30 °C over time. (C) Identification of engineering sites for WelO5*
halogenase. The target substrate soraphen A was docked into WelO5* and three positions
were chosen for generating a full randomization library. (D) Activity assays for WelO5*
variants. Hits from the combinatorial library (red) and from the ML predictions (green and
blue) were tested in biotransformations with cell lysate. Results are displayed as fold
increase compared to the parent GAP. The best hit in the combinatorial screen was SLP
and the best hit in the ML predictions was VLA.
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for ZSF machine learning approaches, although other excellent stability-
enhancing algorithms already exist.57 However, such an approach will miss out
on potentially destabilizing mutations that may nevertheless be crucial for cata-
lytic activation. Mutations at sites in the protein that were oen deliberately
excluded in these models (rst shell residues, conserved residues) will not be
suggested. This conservative bias in the designs may decrease the chance to nd
designs with improved catalysis, and may be overcome by feeding data on
directed evolution trajectories (e.g. from droplet screens) into the algorithms.
Higher throughput data from catalytic selections (e.g. in microdroplets) may
enhance the value of models currently used in ZSF packages. It remains to be seen
whether learning input from comprehensive activity screens (Fig. 3) would give
less conservative solutions, overcoming a possible learning bias from the
preponderance of stable structures in the training data, and allow better extrap-
olation towards solutions for catalysis beyond the conditio sine qua non of stability.

5.1.2 Zero-shot with broad design space (ZSB). Family-based, zero-shot ML
has demonstrated the ability to create new sequences that still have comparable
activity to a representative reference sequence, despite exhibiting sequence
106 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024
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similarities as low as ∼60% to any known protein in the targeted family. Madani
et al.,56 for example, employ a GPT-like language model to generate lysozymes via
next-token-prediction which have comparable activity to hen egg-white lysozyme.
Interestingly, they found that their most active, designed sequence folds into
a structure that closely mimicks that of known proteins in that family despite the
moderate 60% sequence similarity. However, beyond exploring sequence space
functionally neutrally, catalytic improvements over wildtype are still elusive.45,56 It
is also unclear if the results carry over to protein families for which we only know
a few representatives, as current successful studies relied on the availability of
many bona de representatives of a family: for lysozyme and MDH there are >10k
sequences known in each family. Further, current models in the ZSB regime only
have information about family membership, but the activity of most members in
a family is largely unknown. In such cases, accumulating additional functional
screening data may be important for the success of ZSB to nd improved variants
for more exotic families.
5.2 Models incorporating assay-labelled data (red in Tables 1–3)

Studies using assay-labelled data are most likely to benet from larger amounts of
screening data, especially when their design space is large. Screening datasets –
the larger the better (e.g. obtained inmicrodroplets) – will drive the success of this
area. However, compared to the entirety of possible solutions the “coverage of the
problem space” is still small. Focussing on a few sites for randomization may
cover a large part of the relevant space, so even when less training data are
available, solutions may be found. The number of datapoints used thus far varies
between 7 (InnovSar 46) and 5000.44 These numbers are small, even when making
optimistic assumptions about the hit rates of functional proteins in sequence
space. More high-quality data (covering the relevant space through a good
amount of diverse datapoints that are individually reliable) might be needed,
although no natural threshold for reliable predictions seems to exist (Tables 1–3).

5.2.1 Models based on assay-labels in focused design space (ALF). Assay
supervised ML with small input datasets has been successful when randomiza-
tion can be restricted to small regions of the protein based on previous knowl-
edge.46,47,50 Fig. 5 shows how assay-labelled data was used to engineer the activity
and regioselectivity of halogenase WelO5*.47 The empirical dataset was generated
by fully randomizing three positions identied in a docking study (yielding an
8000-membered library) (Fig. 5C) and screening 504 variants (∼6% of the theo-
retical diversity) in plates for product formation (Fig. 5D). This assay-labelled data
was used for supervised training of a Gaussian process model. Seven predicted
variants from this model were tested and four variants showed a higher total
halogenation activity than the best variant from the dataset (up to 16-fold higher
than the starting point). Again, the question of what was optimized here arises:
while the total turnover number (TTN) was highest for the best ML construct,
Michaelis–Menten parameters were actually more improved for some of the 504
mutants from the experimental screen (93-fold improvement in kcat for the best
experimental candidate vs. 75-fold improvement in kcat for the best ML candi-
date). This observation is consistent with improvements in stability for the ML-
improved mutant, which correlates with the improved TTN parameter that
measures long-term availability of an active enzyme, while catalytic activity
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 252, 89–114 | 107
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(monitored in the initial rate reaction kinetics of the Michaelis–Menten treat-
ment) was less improved.

5.2.2 Models based on assay-labels in broader space (ALB). When limited or
no knowledge about the target protein is available, no limits on regions and
positions for randomization can be imposed and a broader space must be
sampled. For example, two studies44,53 incorporate single site saturation muta-
genesis and error-prone PCR data in their training based on robotic screening
assays and interpret these data (up to 8000 variants in case of Ma et al.44 and 96 in
case of Biswas et al.,53 respectively) using random forest and structure-informed
models. As above, improvements for better conversion are substantial (8-fold)
in the best predicted mutant, while changes related to enzymatic activity are less
pronounced (1.3-fold improved specic activity). Again biophysical factors seem
to be easier to improve than features related to the catalytic machinery. Never-
theless, the open-ended nature of this approach – in input (no library design
necessary) as well as output (revelations not limited to targeted residues or
regions) – makes ALB attractive as an innovative discovery tool. The lack of
working hypothesis and vast design space, however, will make it important to
generate large datasets: integration with ultrahigh throughput screening will
ensure that sufficient information output is achieved describing high activity
regions. Starting with a breadth of the input mutations helps to achieve coverage
and efficient high throughput screening compensates for a lower hit rate in such
a library, so that a sufficient number of hits is made available for ML
interpretation.

6. Implications and conclusions

More data are always better, but library design, screening technology, labeling
method and sequencing approach determine interpretability.

‘Smart’ libraries limit the design space to a few randomized residues that can
be oversampled, but rely on a reductionist model of protein function that might
not reect reality: mutations far away from the active site and unknown hotspots
are oen playing unanticipated roles and proteins are typically cooperative
(highlighted by the relevance of intra-gene epistasis). ML approaches will play
a key role in uncovering these complex higher order phenomena that are oen
overlooked in traditional experiments. Instead of deep and focused, broad and
unbiased coverage of sequence space may be more valuable input data for such
ML endeavors.

The experimental approach used for screening determines what type of label
can be attached to library members evaluated in a screening experiment. Fully
quantitative datasets require cumbersome plate screening or use of high-
throughput microuidic enzyme kinetics (HT-MEK): information on multiple
parameters (e.g. activity, specicity, stability) provides excellent input for ML, but
the numbers of library members that can be characterized in such detail is
practically limited to a few thousands. Higher throughput may aid better
predictions, because the increased coverage of sequence space will give ML
interpretation and extrapolation a better grounding. Experimental binning of
survivors in ultra-high throughput screenings is practically straightforward (e.g.
when using FACS25) and provides a ranking based on ‘quantitative categories’.
Experimental noise (e.g. overlap of separate bins) may compromise the data
108 | Faraday Discuss., 2024, 252, 89–114 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00065j


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
3 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

5/
10

/3
1 

14
:0

4:
27

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
quality, but the high throughput and coverage in a microuidic screen will
mitigate this problem to some extent. Binary data, where survivors are merely
measured against a threshold activity, avoids possibly experimentally elusive
differences between bins and simply labels survivors based on occurrence. Bin-
ned and binary data can be obtained straightforwardly in ultrahigh throughput
droplet screening, where multimillion membered libraries can be interrogated to
come to grips with the combinatorial explosion of higher order interactions. The
nature of the quantitative data plays a role: rankings based on lysate assays vs.
expression-normalised assays, long-term conversion vs. initial rates, turnover of
(undemanding) model substrates vs. (unreactive) natural substrates etc. will be
different, so ML interpretations will be biased accordingly. Interpretations of
these datasets need to deconvolute the combined effects of stability and activity
that contribute differently to the range of quantitative descriptors outlined above.
Finally, the experimental approach for sequencing determines the information
content further: short reads neglect long-range interactions, but provide deeper
information on limited complexity. One objective in this phase of research at the
interface of ML and experiment will be to reect on how these set-up consider-
ations impact interpretations, even though more data must always be best.

Both approaches discussed here, ultrahigh throughput screening and machine
learning, have thus far mainly been used as powerful discovery engines of new and
improved proteins. To be more than discovery tools, the current challenge is to
coordinate the ability of ultrahigh throughput screening to generate large datasets
with ML’s potential to read and interpret complex messages, be it on catalysis,
molecular recognition or protein evolution. To be useful in this respect, datasets
need to be large, well-labelled, diverse and of good quality. Noisy data needs to be
paired with robust ML algorithms, to avoid overtting the noise inherent in the
data. Open access protocols for both ML and uHT screening should be made
available, to make data compatible and interpretations comparable.

Once the screening/ML interface becomes more established it will be inter-
esting to probe whether alternative models applied to the same dataset lead to
similar molecular conclusions: if current predictions already reliably yield robust
and stable proteins (e.g. with higher Tm), will the molecular patterns that lead to
higher catalytic efficiency also be revealed? The two properties are intertwined
(e.g. stability enables catalytic improvement through epistatic interactions) and
may be difficult to disaggregate. However, obtaining multiple datasets under
different conditions – at varying temperatures or pH or with different substrates –
would lead to sequence–function relationships familiar from traditional lower
throughput research (e.g. pH-rate proles, temperature denaturation curves,
physical organic analysis of molecular recognition of substrates with varying
reactivity or steric requirements), but apply them to many enzyme mutants in one
go. If it becomes possible to isolate and understand the molecular responses to
such variations, then ML will have made ultrahigh throughput screening
a mechanistic tool, able to deal with the challenge of enormous complexity that
thus far has made protein engineering more difficult than the original protein
engineers envisaged.
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