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Rate-dependent stress-order coupling in
main-chain liquid crystal elastomers

Chen Wei,a Scott Cao,a Yu Zhou,a Dehao Lin†ab and Lihua Jin *a

Liquid crystal elastomers (LCEs) exhibit significant viscoelasticity. Although the rate-dependent stress–

strain relation of LCEs has already been widely observed, the effect of the intricate interplay of director

rotation and network extension on the viscoelastic behavior of main-chain LCEs remains inadequately

understood. In this study, we report real-time measurements of the stress, director rotation, and all

strain components in main-chain nematic LCEs subjected to uniaxial tension both parallel and tilted to

the initial directors at different loading rates and relaxation tests. We find that both network extension

and director rotation play roles in viscoelasticity, and the characteristic relaxation time of the network

extension is much larger than that of the director rotation. Interestingly, the gradual change of the

director in a long-time relaxation indicates the director reorientation delay is not solely due to the

viscous rotation of liquid crystals but also arises from its coupling with the highly viscous network.

Additionally, significant rate-dependent shear strain occurs in LCEs under uniaxial tension, showing non-

monotonic changes when the angle between the stretching and the initial director is large enough.

Finally, a viscoelastic constitutive model, only considering the viscosity of the network by introducing

multiplicative decomposition of the deformation gradient, is utilized to manifest the relation between

rate-dependent macroscopic deformation and microscopic director rotation in LCEs.

1. Introduction

Liquid Crystal Elastomers (LCEs) are special polymers combin-
ing crosslinked elastomers with rod-like liquid crystal (LC)
mesogens.1 Nematic LC mesogens tend to align in a specific
orientation, with the average direction called the director, d,2–4

which can be identified by their uniaxial optical axis. LCEs have
unique mechanical behavior attributed to the strong coupling
effect between their macroscopic stress and microscopic director
order. When LC mesogens are heated above a transition tem-
perature Tni, they undergo a phase transition from the aligned
nematic phase to randomly oriented isotropic phase, inducing
macroscopic contraction of LCEs.1 Moreover, external stimuli,
such as light irradiation,5–7 magnetic fields,8–10 and electrical
fields11–14 can trigger the phase transition or reorient the direc-
tor of LCEs, which can lead to spontaneous strain approaching
400%15,16 or stress if constrained. On the other hand, mechan-
ical deformation not parallel to the director can reorient the
director to the stretching direction,1,17–22 inducing a stress
plateau in the stress–strain relation.1,23 The unique mechanical

behaviors endow LCEs with many potential applications, including
soft robots,5,24–26 thermomechanical actuators,27,28 artificial
muscles,15,29 and so on.

Significantly rate-dependent stress–strain relations and
extremely slow shape recovery during relaxation have been
reported in LCEs.17,18,30–42 A large number of previous studies
about side-chain LCEs show mesogen rotation and network
extension have different characteristic times.12,32,34,36 Fuku-
naga et al.12 studied the deformation of side-chain LCEs under
an electro-optical effect and found the director rotates about 1
order of magnitude faster than the mechanical deformation.
Clarke et al.32 studied stress relaxation during the polydomain-
monodomain transition with stress fitting by a power law in
a short time and a logarithmic scale in a long time, which they
explained by a proposed theoretical model considering a coop-
erative mechanical barrier for each domain rotation. Hotta and
Terentjev34 systematically investigated the rate-dependent and
relaxation responses of side-chain LCEs, and also reported two
distinct relaxation regions for long-time stress relaxation.
Although fitting both regions by power laws, they found the
short-time region shows a power exponent of 0.67, representing
the stress relaxation is facilitated by the director rotation
due to the polydomain-to-monodomain transformation, while
the long-time region shows a power exponent of 0.15, where
the director relaxation is almost finished and the LCEs behave
like isotropic rubber. Schonstein et al.43 reported a broad
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distribution of director relaxation times but with a small mean
relaxation time on the order of 0.01 s via light scattering.
Previous studies showed that shape recovery of LCEs takes a
very long time and requires a very slow loading rate of around
10�4 s�1 to reach quasi-equilibrium mainly due to the slow
relaxation of the network.17,34,37,42 These findings suggest that
the director rotates slightly faster than the network deforms.
Researchers have also shown that the crosslinker forming
conditions, director fields, LC phases, chemical components,
and many other parameters could profoundly influence the
viscoelasticity of LCEs.33,36–41 However, the viscoelasticity of
main-chain LCEs was not studied intensively until very recently.
The comprehensive understanding of viscoelasticity in main-
chain LCEs remains challenging due to the complicated
synergy of the network extension and mesogen rotation to give
rise to high viscosity. Azoug et al.31 and Martin Linares et al.35

studied the main-chain polydomain LCEs under uniaxial ten-
sion, reporting rate-dependent anisotropic stress responses.
Moreover, Luo et al.20 evaluated the director alignment of
main-chain monodomain LCEs by optical measurements, finding
the director almost reaches equilibrium rotation at the loading
rate of 450% per min. However, it is not clear what the relaxation
time scales of the network extension and director rotation are for
main-chain LCEs, and how they influence the macroscopic stress–
strain behavior and microscopic director rotation.

To better understand how viscoelastic LC reorientation
affects the mechanical responses of LCEs, we need to capture
the real-time director rotation at different loading rates. Wide-
angle X-ray scattering17,44–46 (WAXS) and polarized Fourier
transform infrared spectroscopy22,23,47,48 (FTIR) have been used
to measure the mesogen reorientation. However, WAXS can
only obtain diffraction patterns at quasi-static loading, while
FTIR has a strict requirement of specific functional groups on
the chain backbone, giving an angular-dependent absorbance
spectrum. Both of them have the restriction that they cannot
measure universal main-chain LCEs orientation dynamically.
Conversely, polarized optical microscopy is an alternative method
to capture mesogen reorientation under fast loading.19,20,46,49

Recently, Luo et al.20 used crossed-polarized optical measure-
ments to evaluate the director rotation in monodomain LCEs at
different loading rates. Mistry et al.19 used polarized optical
microscopy to measure the director distribution in LCEs sub-
jected to step stretching almost perpendicular to the initial
director. Here, we will use crossed-polarized optical measurement
to characterize the director rotation of LCEs under oblique
stretching at different rates. The optical data will be recorded at
different angles of the crossed polarizer and analyzer with respect
to the stretching direction at different strains to probe the
director. More details can be found in Section 2.

Some viscoelastic models are developed to better under-
stand the viscoelasticity mechanism of LCEs. Zhang et al.50

and Zhou and Bhattacharya51 proposed a viscoelastic model
considering both viscous network and director via applying a
simple Rayleigh dissipation energy. It shows the semi-soft
elasticity effect, rate-dependent stress, and director rotation.
However, as the stress is the summation of the elastic and

viscoelastic contributions, which is equivalent to a simple
Kelvin-Voigt model, it cannot accurately capture the stress
response under high loading rates due to an impractical
instantaneous non-zero stress, and neither can it capture
relaxation tests due to an unrealistic constant stress. Later,
Wang et al.52 proposed a nonlinear viscoelastic model by
multiplicative decomposition of the deformation gradient to
elastic and viscous parts. The predicted stress–strain behavior
of LCEs under loading perpendicular to the initial director
agrees well with the experimental results.31 Here, following the
work of Wang et al.,52 we establish a viscoelastic LCE model by
considering more realistic viscosity of the network and low
viscosity of the director based on our experimental measure-
ments. Furthermore, the semi-soft elasticity is introduced in
the elastic free energy.

This work aims to bridge the existing knowledge gap in
understanding the effect of the intricate interplay of director
rotation and network extension on the viscoelastic behavior of
LCEs. In particular, we systematically characterize the real-time
director–stress–stretch relations for main-chain monodomain
LCEs with different initial directors under different loading
rates, showing not only rate-dependent stress-stretch behavior,
but also rate-dependent director–stretch relation. Since director
rotation also induces shear strain, we apply digital image
correlation (DIC) to quantitatively measure the fields of all
the rate-dependent strain components relative to the mesogen
rotation. Moreover, we conduct relaxation tests, and record the
time evolution of the stress and director under fixed stretch. By
comparing the the results from the rate-dependent director–
stress–stretch measurements and relaxation tests, we further
distinguish the relaxation times of the network and director. To
better understand how the two viscoelastic dissipation pro-
cesses govern the microscopic director rotation and macro-
scopic deformation, we develop a viscoelastic model via the
multiplicative decomposition-based method, which imple-
ments more realistic viscosity and elastic energy compared
to existing literature. This paper is organized as follows. In
Section 2, we introduce the experimental methodology. In
Section 3, we report the experimental results, including rate-
dependent stress–strain and director-strain relations, and stress
and director relaxation results. The theoretical model and the
predicted viscoelastic behavior compared with the experimental
results are presented in Section 4. Section 5 concludes the paper.

2. Experimental methods
2.1 Sample preparation

In this study, the main-chain monodomain LCEs are synthesized
via a two-stage thiol-acrylate Michael addition-photopolymeri-
zation (TAMAP) reaction.53 The crosslinker, pentaerythritol
tetrakis(3-mercaptopropionate) (PETMP, 95%), and chain extender,
2,2-(ethylenedioxy)diethanethiol (EDDET, 95%), were obtained
from Sigma-Aldrich and used as received. The diacrylate mesogen,
1,4-bis-[4-(3-arcyloyoxypropyloxy)benzoyloxy]-2-methylbenzene
(RM257, 95%), was purchased from Wilshire company.
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Dipropylamine (DPA, 98%) and (2-hydroxyethoxy)-2-methylpro-
piophenone (HHMP, 98%) were selected as the catalyst and
photoinitiator to enable the second-stage photopolymerization
reaction, respectively. Toluene (98%) was used as the solvent for
RM257. To prepare a sample, firstly, RM257 was fully dissolved
in a vial with 60 wt% of toluene at 80 1C. Then, PETMP, EDDET,
HHMP, and DPA solution (DPA : toluene = 1 : 50) were poured
into the solution and mixed using a vortex mixer for 60 s to
obtain a uniform solution. The molar ratio of thiol functional
groups between PETMP and EDDET was 15 : 85, corresponding
to a ratio of 15 mol% PETMP. The molar ratio of DPA with
respect to the thiol functional group was 1 mol%, while the
molar ratio of HHMP was 1 mol%. The solution was degassed for
about 2 min to remove all bubbles and then poured into a mold.
Then the samples were cured at room temperature for 24 hours
and put into an oven at 80 1C for another 24 hours to remove the
toluene from the LCE sample. At this stage, thiol-acrylate formed
a loose network and the sample showed an opaque appearance
at room temperature. There would be an excess of 15 mol%
acrylate groups for a second-stage photo-crosslinking reaction.
In the second stage, the LCE sample was stretched uniaxially to
90% strain by a mechanical stretcher. The pre-stretch forced
mesogens to reorientate to the tension direction, and the sample
became transparent, indicating a monodomain LCE. The pre-
stretched sample was exposed to UV light for 1 hour to photo-
polymerize the excessive acrylate groups, forming a denser
network. After releasing the samples from the stretcher, a thin
film of monodomain LCE sheet remains.

Rectangular strips with a width of 3 mm and length of
35 mm were cut out of the LCE sheet with angles y0 ¼
0�; 30�; 45�; and 60� between the director and the longitudinal
direction, shown in Fig. 1. The angles between the longitudinal
direction and the director were measured by a protractor and
further verified by the optical polariscopy method, which will
be discussed in Section 2.3. The samples are designated as
monodomain nematic elastomers-y0 (MNE-y0), i.e. MNE-0,
MNE-30, MNE-45 and MNE-60.

2.2 Uniaxial stretch

Uniaxial tension measurement was performed in the longitu-
dinal direction of a LCE specimen at different loading rates
using an Instron universal testing machine (Model 5944) with a
50 N load cell to record the LCE rate-dependent stress–strain
relationship. A specimen was mounted in a pair of tensile grips,
leaving a gauge length of 15 mm. The ratio of the length to
width (= 5) is high enough to ensure that the majority of the
specimen undergoes uniaxial tension, with negligible edge
effects. The thickness was measured at three locations by an
electronic caliper, giving the average thickness over all speci-
mens to be 0.11 � 0.01 mm. The specimens MNE-0, MNE-30,
MNE-45, and MNE-60 were uniaxially stretched up to 40%,
100%, 150%, and 200% strain, respectively, with loading rates
of 10%/s, 1%/s, and 0.1%/s, and unloaded at the same rates
until stress reached zero. The maximum stretches were set as high
as possible, but below the fracture points of specimens with
different directors to ensure completion of the tests. Although
the specimens show complete recovery at room temperature after
unloading, to accelerate the recovery process, after each loading
and unloading, a specimen was put on a hotplate at 30 1C for
5 min and then at room temperature for another 10 min to release
any residual stress. The next test would be run once the specimen
was fully recovered. From these tests, we were able to plot the
nominal stress as a function of stretch. Here the stretch is defined
as l = L/L0, where L0 is the unstretched gauge length (15 mm) and
L is the extended length.

2.3 Crossed-polarized optical measurement

Director rotation driven by stretching at different loading rates
was dynamically characterized by the crossed-polarized optical
measurement. A light source, a polarizer, a specimen stretched by
the Instron universal testing machine, an analyzer with the
polarization perpendicular to the polarizer, and a camera were
set up in the order as shown in Fig. 2a. The appearance change of
the specimen under uniaxial tension was recorded by a Canon
EOS 6D DSLR camera per 1% strain simultaneously with the
measured stress–strain relation. The recorded images were used
to measure the transmitted light intensity by ImageJ. Because the
dramatic change of specimen thickness under large stretching
can alter the measurement of brightness, we recorded the trans-
mitted light intensity for different orientations of the crossed-
polarizers by rotating them every 101 to determine the director as
a function of stretch. Since the director d is symmetric (d = �d)
and the initial director is known, the light intensity is cycled every
901. Therefore, we can calculate director rotation by only measur-
ing the transmitted light at different angles between the polarizer
and the tension direction, j, from 01 to 901. The measured
transmitted intensity I for different j (Fig. 2a), can be fitted by
the following equation to determine the director,

I ¼ I0 sin
2 bp j� yð Þ

180

� �
þ d; (1)

where I0, b, y, and d are fitting parameters. In particular, the
parameter y represents the current director. Fig. 2b shows one

Fig. 1 Schematics of specimens with different initial directors. (a)
The specimen (red dashed line) was cut from a LCE thin film with the
angle between the director and the longitudinal direction defined as y0.
(b) Specimens with different initial directors are defined as MNE-0,
MNE-30, MNE-45, and MNE-60, corresponding to y0 = 01, 301, 451
and 601, respectively. The specimens were 3 mm in width and 35 mm
in length.
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example of the measured transmitted intensity as a function of
angle j and the fitting curve based on eqn (1) at zero strain. The
curve fits the experimental data well. The j value at the lowest
intensity corresponds to the polarizer parallel or perpendicular to
the director, and the j value at the highest intensity corresponds to
the polarizer 451 away from the director. As a result, the fitted
parameter y = 01. Fig. 2c shows the appearance of an MNE-0
specimen with different j angles. When j = 01 or 901, the specimen
looks darkest, while when j = 451, the specimen looks brightest.
We similarly measured the director for different LCE specimens as
a function of stretch under different loading rates of 0.1%/s, 1%/s,
and 10%/s.

2.4 Digital image correlation (DIC)

Attributed to director reorientation, LCEs can experience shear
strain even under uniaxial external tension. Here we use the 2D
digital image correlation (DIC) method to measure all the strain
components in the middle region of specimens at different
loading rates. To generate a high-quality pattern, Koh-I-Noor

Rapidraw ink, which dries fast and has a dark color, was
sprayed using a Gocheer airbrush, which generates small
droplets, at 30 psi with a 0.3 mm nozzle. The changes of the
speckle patterns under deformation were recorded as videos by
a Canon EOS 6D DSLR camera along with a Canon 100 mm
F/2.8 L macro lens. The videos were set at 30 frames per second
(fps). To enhance the optical contrast, a whiteboard was used
as a background, and a white LED light was shot on the
sample. Fig. 3a presents an example of an MNE-45 specimen
with speckle patterns in the undeformed (left) and stretched
(right) states.

After testing, videos were converted to images by the open-
source software FFmpeg, with an imaging rate of 2 fps, 0.5 fps,
and 0.2 fps for loading rates of 10%/s, 1%/s, and 0.1%/s,
respectively. The images were then read by an open-source 2D
DIC Matlab software, Ncorr,54 to calculate the deformation
gradient F. We selected the middle part of a specimen as the
region of interest (ROI) and set the image of the undeformed
sample as the reference image. Here, we set the three critical
parameters which can affect the results as the following: subset
radius as 25, subset spacing as 3, and strain radius as 20. More
details are available in the instruction manual (https://www.
ncorr.com/). Fig. 3b shows the distributions of the components
of the deformation gradient calculated by Ncorr for the MNE-45
specimen at 100% external strain in the x2 direction at the
loading rate of 1%/s. The deformation gradient F under uni-
axial tension could be written as:

F ¼

l11 l12 0

l21 l22 0

0 0 l33

2
6664

3
7775; (2)

where l22 is the normal component in the stretch direction, l21

is the shear deformation, l11 and l33 are the stretches in width
and thickness. l12 is almost zero during the test, so we could set
it as zero. From Fig. 3b, we could see that all the components
exhibit uniform distributions in the middle part of the specimen.
Therefore, we can calculate the median value of the selected
region to represent the strain of the specimen and plot l11, l21

and l22 versus external stretch. When the initial director is tilted

Fig. 2 (a) Schematics of the setup of the crossed-polarized optical
measurement for directors. (b) The transmitted intensity I was measured
as a function of the angle between the polarizer and the tension direction,
j, and fitted by eqn (1) to determine the director y. (c) The appearance of
an MNE-0 specimen showing different brightness was captured by a
camera with different angles j = 01, 451, and 901.

Fig. 3 (a) Representative images of speckle patterns generated by spraying ink with an airbrush on an MNE-45 specimen in the undeformed (l22 = 1) and
deformed (l22 = 2) states. (b) Distributions of the components of the deformation gradient, l11, l12, l21 and l22, using the DIC method in the MNE-45
specimen under an external tensile stretch l22 = 2 at the loading rate of 1%/s. (c) The schematic of deformation of the MNE-45 specimen under uniaxial
tension based on the DIC results.
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with the elongation direction, an obvious shear deformation was
expected and observed (Fig. 3b and c).

2.5 Relaxation tests

To characterize the reduction of stress and evolution of directors
of LCEs during relaxation, specimens were subjected to uniaxial
stretch performed in the same apparatus as described in Sec-
tions 2.2 and 2.3. Specimens MNE-0, MNE-30, MNE-45, and
MNE-60 were stretched to a fixed strain, e0 = 30%, 50%, 70%,
and 100%, respectively, at a very high loading rate of 267%/s.
The specimens were then held for 3600 seconds, and the stress
and director rotation were recorded as functions of time by an
Instron universal testing machine and the crossed-polarized
optical measurement, respectively. The applied strains are dif-
ferent for different specimens to observe significant director
rotation and ensure that specimens would not break during the
tests. As the loading rate is very fast, the stress oscillates at the
very beginning. We counted the time t0 as the end of loading
when the oscillation dies out. t0 is 0.40 s, 0.47 s, 0.56 s, and 0.74 s
for specimens MNE-0, MNE-30, MNE-45, and MNE-60, respec-
tively. The stress relaxation curves were fitted with a power law:

s(t) = m1 + m2(t � t0)�b, (3)

where t is the total experiment time, m1, m2 and b are fitting
parameters. Based on the previous study,36 b is about 0.4 for a
main-chain smectic LCE. We used the nonlinear least-squares
solver (lsqcurvefit) in Matlab to fit the experimental results and
set b = 0.4 as the initial value.

3. Experimental results
3.1 Rate-dependent director–stress–strain relationship

The uniaxial loading-unloading nominal stress–strain curves for
LCE specimens with different initial directors under different
loading rates, 10%/s, 1%/s, and 0.1%/s, are shown in Fig. 4. The
corresponding director–strain relations during loading are
shown in Fig. 5. In general, the prepared samples show birefrin-
gence, indicating they are monodomain, and the measured
initial director is close to the design. For MNE-0, the director
does not rotate with strain independent of the loading rates
(Fig. 5a). Consequently, the stress–strain loading curves are
similar to that of classical neo-Hookean materials. When the
initial director is oblique to the elongation direction, as in MNE-
30, MNE-45, and MNE-60, the director gradually rotates as
the strain increases, and eventually approaches the elongation
direction when the strain is high enough (Fig. 5b–d). As a result,
the director rotation produces high spontaneous strain and
stress plateau in the stress-stretch relation, where the stress
increases a little while the strain increases a lot (Fig. 4b–d).
For a LCE with a higher initial director angle y0, the nominal
stress is lower at a given level of strain, and the specimen can
survive a higher stretch due to the spontaneous strain.

All the specimens exhibit rate-dependent stress and director
responses. Since the area between a loading and an unloading
stress–strain curve represents dissipation energy, our results

show that the specimens do not reach equilibrium even at
0.1%/s (Fig. 4). A higher loading rate leads to higher nominal
stress and higher dissipation. For MNE-0, where no director
rotation occurs, the stress–strain curve is highly rate-dependent
and hysteretic, suggesting a highly viscous network extension.
For LCEs with initial directors oblique to stretching (MNE-30,
MNE-45, MNE-60), directors show rate-dependent rotation from
the initial angles to the elongation direction (y = 01). At a higher
loading rate, the directors rotate less at a given strain, showing
delayed behavior due to a shorter response time.

From Fig. 4 and 5, it is obvious that there is a strong
relationship between director rotation and stress responses.

Fig. 4 Loading and unloading nominal stress (S22) as a function of the
applied external stretch (l22) for specimens (a) MNE-0, (b) MNE-30,
(c) MNE-45, and (d) MNE-60 under uniaxial tension at loading and
unloading rates of 10%/s, 1%/s, and 0.1%/s.

Fig. 5 Director reorientation as a function of the applied external stretch
l22 at loading rates 10%/s, 1%/s, and 0.1%/s for (a) MNE-0, (b) MNE-30,
(c) MNE-45, and (d) MNE-60, respectively.
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From MNE-45 and MNE-60, we could observe the stress–strain
curves show three regimes: (1) when the stretch l22 is small, the
stress is neo-Hookean-like; (2) as the sample is stretched more,
the director rotates more, and a stress plateau occurs; (3) when the
director approaches the elongation direction, the stress–strain
curve becomes stiffened again. The stress plateau is caused by the
spontaneous deformation due to director rotation elaborated
by previous studies.1,17,19 As we have shown the rate-dependent
director in Fig. 5, it is expected to observe a rate-dependent stress
plateau. When a fast loading at 10%/s is applied, the director
rotation is delayed, so the sample’s deformation is mainly accom-
modated by network extension. When a slow loading at 0.1%/s is
applied, the director rotates more, so the stress plateau is wider
and occurs at a lower strain level. In Section 3.3, we will further
distinguish the contributions of the director and the network
viscosity by stress relaxation tests.

3.2 DIC measurement

The rate-dependent strain fields of LCEs were measured by DIC.
The median value of the strain components l11, l21 and l22 were
calculated by Ncorr. Fig. 6 shows l11, l22, and l21 of MNE-30,
MNE-45, and MNE-60 measured from DIC at loading rates of
10%/s, 1%/s, and 0.1%/s. Fig. 6b, e and h plot the axial stretch l22

measured by DIC versus l22 prescribed by the Instron. Their values
are very close (grey dashed curve) for all different loading rates
and initial directors, verifying the accuracy of the DIC method.

The transverse stretch l11 measured for MNE-30, MNE-45,
and MNE-60 is rate-dependent (Fig. 6a, d and g). When the

loading rate is higher, as mentioned in Section 3.1, the director
rotates less, leading to lower spontaneous deformation. As a
result, LCEs behave more like traditional incompressible
elastomers. The stress state is closer to the uniaxial state, which

satisfies l11 ¼ l33 ¼ 1=
ffiffiffiffiffiffiffi
l22
p

(grey soild lines in Fig. 6a, d and g).
We could see that the measured l11 under fast loadings (blue
curves) is closer to that of the uniaxial (plaine stress) condition.
When the loading rate is low, the spontaneous strain caused by
director rotation dominates the deformation. As the director
rotation mainly occurs in the x1–x2 plane of the specimens,17

the deformation is close to a plane strain condition (l11 = 1/l22,
l33 = 1, grey dashed lines in Fig. 6a, d and g). Our results indeed
show that the measured l11 under slow loadings (black curves)
is closer to that of the plane strain case. Moreover, since a lower
initial director angle y0 corresponds to less director rotation,
l11 of MNE-30 is closest to that of the uniaxial condition among
the three cases under the same loading condition, while MNE-
60 is closest to that of the plane strain condition.

Fig. 6c, f and i show the measured shear deformation l21 as
a function of the external stretch l22. Different from traditional
elastomers, LCEs exhibit considerable shear strain under uni-
axial tension due to the director rotation. As the director is rate-
dependent, it is not surprising to see the rate-dependent shear
strain. For MNE-30 and MNE-45, the absolute value of l21

monotonically increases with l22, exhibiting large shear strain
(B�1.4 for MNE-30 and B�1.6 for MNE-45) when the director
rotates almost parallel to the stretching direction (l22 = 2
for MNE-30 and l22 = 2.5 for MNE-45) at the loading rate of

Fig. 6 Components of the deformation gradient, l11, l22, and l21, measured by the DIC method as functions of the applied external stretch l22 at
different loading rates of 10%/s, 1%/s, and 0.1%/s for specimens (a), (d) and (g) MNE-30, (b), (e) and (h) MNE-45, and (c), (f) and (i) MNE-60, respectively.
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0.1%/s. For MNE-60, it is interesting to observe that l21 non-
monotonically changes with l22, i.e. at a small stretch, the shear
strain first rises to be positive and then decreases with the
stretch to a negative value. When the director rotates almost
parallel to the stretching direction (l22 = 3 at the loading rate of
0.1%/s), the shear strain is around �1.26. Such non-monotonic
shearing has been predicted by theoretical modeling
before.50,55 When the external stretch l22 is high, faster loading
rates lead to lower shear strain for all different directors due to
a delay in director rotation.

3.3 Relaxation test

The stress relaxation of viscoelastic LCEs has been documented
for many years.32,34,36 Compared to traditional elastomers, LCEs
show more complex relaxation behavior due to the relaxation of
both the director and the network, and their coupling effort.
Here by applying a nearly instantaneous stretch, we characterize
both the stress relaxation and director reorientation over time to
distinguish the different characteristic time scales of the net-
work extension and director rotation.

Fig. 7 shows the stress relaxation of MNE-0, where the director
hardly rotates. The specimen was stretched to 30% strain nearly
instantaneously in a short time period t0 and held for 3600 s. The
stress was measured as a function of the total experimental time t.
The relaxation of stress shows two distinct relaxation regimes and
can be fitted by two different power laws as shown in eqn (3).
At the early stage (t o 1.5 s), the power law with an exponent
around 0.14 fits the experimental data well, while at the long term
(t 4 1.5 s), relaxation follows a power law with an exponent
around 0.40. The long-term exponent is similar to the one
previously reported for main-chain smectic polydomain LCEs.36

At a short time, the stress does not match the long-time fitting
curve, which may be caused by slight director rotation since
mesogens may not align perfectly with the stretching direction.

Fig. 8 shows the relaxation of stress (Fig. 8a–c) and directors
(Fig. 8d–i) for MNE-30, MNE-45, and MNE-60. The specimens
were stretched to different fixed strains, 50%, 70%, and 100%,
respectively, to ensure significant director rotation but no
fracture during a test. Then the specimens were held for

3600 s, and the stress and directors were recorded over time.
Stress relaxation could be divided into two parts. Compared to
MNE-0, the stress relaxation in LCEs with a titled director with
respect to the stretching is more complicated at the early stage
(t o 1.5 s), as stress relaxation is a synergy of the director
reorientation, the backbone orientation, and the polymer chain
sliding. As Fig. 8g–i show, the director has already rotated a lot
by the time the loading is completed (t = t0). At the stage t0 o
t o 1.5 s, MNE-30, MNE-45 and MNE-60, particularly MNE-60,
show a the sharp drop in stress (Fig. 8a–c), caused by the
spontaneous strain due to director rotation. When t 4 1.5 s, the
director rotates smoothly, and the stress relaxation can be fitted
by a power law well with a power exponent around 0.4 for all the
samples, which behaves similarly to MNE-0. This suggests that
after t 4 1.5 s, stress relaxation is dominated by the network
viscosity. The further relaxation of the director after t 4 1.5 s
may be due to the further extension of the network. As mesogens
locate on the backbone, the network slow extension can drag the
mesogens to further realign to the stretching direction. Further-
more, it is coincident that the director relaxation could be fitted
well with the same power law formula y = m1 + 20(t � t0)�b of
stress relaxation (eqn (3)), but with a much smaller power
exponent around 0.04 (Fig. 8d–f).

To probe the characteristic times of the network relaxation
and director rotation, we compare the director and stress
values from the uniaxial tension tests at different rates and
the relaxation tests. We choose some representative cases in
Tables 1 and 2.

In Table 1, we listed the directors measured for MNE-30 at
50% uniaxial strain, for MNE-45 at 70% strain, and for MNE-60
at 100% strain at the loading rates of 10%/s (1st column), 1%/s
(3rd column), and 0.1%/s (5th column). In 2nd, 4th, and 6th
columns, we compared them with the directors measured from
the relaxation tests for MNE-30, MNE-45, and MNE-60 at the
relaxation time equal to the time needed to load the specimens
to the corresponding strain in the uniaxial tests. If the directors
from the uniaxial tension tests equal or approach those from
the relaxation, this means the director rotation reaches equili-
brium at that loading rate. We find that the directors measured
from the uniaxial tension tests at 1%/s are close to those from
the relaxation tests, and the directors measured from the
uniaxial tension tests at 0.1%/s are almost the same as those
from the relaxation tests (Table 1). To be more specific, taking
MNE-30 as an example, the director is about 19.11 under 50%
strain at the rate of 10%/s, while the director reaches around
16.81 when relaxing for 5 s in the relaxation test; the director is
about 16.31 under 50% strain at the rate of 1%/s, while the
director reaches around 15.31 when relaxing for 50 s in the
relaxation test; the director is about 14.11 under 50% strain at
the rate of 0.1%/s, while the director reaches around 13.91 when
relaxing for 500 s. Allowing �11 natural error, the results
suggest mesogen reorientation approaches equilibrium at
1%/s and has already reached equilibrium at 0.1%/s.

In Table 2, we listed the stress measured for MNE-0 at 30%
uniaxial strain, for MNE-30 at 50% strain, for MNE-45 at 70%
strain, and for MNE-60 at 100% strain at the loading rates of

Fig. 7 Stress relaxation of MNE-0. (a) Stress S22 as a function of the
relaxation time t–t0, where t represents the total experimental time, and t0

represents the short loading period. Two power laws are utilized to fit the
experimental data: a power law with an exponent 0.14 for the experi-
mental data before t = 1.5 s, and a second power law with an exponent
0.40 for the experimental data after t = 1.5 s. (b) Zoom-in relation of S22

and t–t0 within the first 3 seconds.
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10%/s (1st column), 1%/s (3rd column), and 0.1%/s (5th
column). Similarly, in the 2nd, 4th, and 6th columns, we
compared them with the stress measured from the relaxation
tests at the corresponding relaxation time. As a result, the stress
values measured from the uniaxial tension tests are much
higher than those in the corresponding relaxation tests for all

specimens at all rates, which means the material is far away
from the equilibrium state. Taking MNE-30 as an example, the
stress is about 1.63 MPa under 30% strain at the rate of 10%/s,
0.77 MPa at the rate of 1%/s, and 0.45 MPa at the rate of 0.1%/s,
while the stress is around 1.07, 0.57 MPa and 0.38 when the
specimens are relaxed for 3 s, 30 s and 300 s, respectively, in the

Fig. 8 Stress and director relaxation as functions of time for MNE-30, MNE-45, and MNE-60. Power laws with exponents 0.40, 0.38 and 0.32 fit well the
stress relaxation results after t = 1.5 s for (a) MNE-30, (b) MNE-45, and (c) MNE-60, respectively. The director relaxation with power laws of exponents
0.04, 0.04 and 0.05 fit well the director relaxation results after t = 1.5 s for (d) MNE-30, (e) MNE-45, and (f) MNE-60. The director relaxation within 1.5 s for
(g) MNE-30, (h) MNE-45, and (i) MNE-60. For the relaxation tests, MNE-0, MNE-45, and MNE-60 were stretched to 30%, 70%, and 100% strain,
respectively, and held for 3600 s.

Table 1 The director measured from the uniaxial tension tests and relaxation tests (unit: degree)

Uniaxial tests at
10%/s under 50%,
70% and 100%

Relaxation
tests at 5 s,
7 s and 10 s

Uniaxial tests
at 1%/s under 50%,
70% and 100%

Relaxation
tests at 50 s, 70 s
and 100 s

Uniaxial tests at
0.1%/s under 50%,
70% and 100%

Relaxation tests
at 500 s, 700 s
and 1000 s

MNE-30 19.1 16.8 16.3 15.3 14.1 13.9
MNE-45 26.4 23.8 24.2 22 19.1 20.9
MNE-60 24.2 21.1 20.7 19.0 17.4 17.3

Table 2 The stress measured from the uniaxial tension tests and relaxation tests (unit: MPa)

Uniaxial tests at
100%/s under 30%,
50%, 70% and 100%

Relaxation tests
at 3 s, 5 s,
7 s and 10 s

Uniaxial tests at
1%/s under 30%,
50%, 70% and 100%

Relaxation tests
at 30 s, 50 s, 70 s
and 100 s

Uniaxial tests at
0.1%/s under 30%,
50%, 70% and 100%

Relaxation tests at
300 s, 500 s, 700 s
and 1000 s

MNE-0 4.11 2.20 2.41 1.44 1.66 1.10
MNE-30 1.63 1.07 0.77 0.57 0.45 0.38
MNE-45 1.29 0.66 0.65 0.40 0.36 0.28
MNE-60 1.13 0.58 0.57 0.35 0.30 0.24
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relaxation tests. As we have discussed that the director almost
reaches equilibrium at 0.1%/s, we could conclude that the
viscosity at slow loading is due to the reorganization of the
viscoelastic network. And the director relaxes at least two orders
of magnitude faster than the network.

In general, based on the relaxation of the director and stress,
we can see that the relaxation time of the network is much larger
than that of directors, and the long-time stress relaxation (t 4
1.5 s) is mainly attributed to the reorganization of the viscoelastic
network. However, since the mesogens are on the main chains of
the polymer network, the relaxation is the synergy of the director
and network. On one hand, the fast-responsive director rotation
causes fast macroscopic deformation, leading to a sharp stress
drop at the early stage of stress relaxation. On the other hand, the
slowly relaxed network extension further facilitates the director
alignment at a long relaxation time.

4. Theoretical model

LCEs show unique stress behavior distinct from traditional
elastomers mainly due to mesogen alignment and director
rotation. Recently, some viscoelastic models have been devel-
oped to describe the rate-dependent stress and director of LCEs
subjected to external stretching.50,52 Here, following the work
of Wang et al.,52 we will establish a viscoelastic model for
LCEs based on multiplicative decomposition, which is widely
used for modeling viscoelastic elastomers.52,56 The viscoelastic
constitutive model assumes the elastic energy as the sum of the
neo-classical free energy and the semi-soft energy,1,57–59 but
only considers the viscosity of the network. After fitting to our
experimental results, the model will be used to manifest the
relation between rate-dependent macroscopic deformation and
microscopic director rotation.

4.1 A general continuum viscoelastic model for LCEs

Consider a material particle in a body in the reference configu-
ration labeled by its position vector X. It moves to position x at
time t in the current configuration. The deformation gradient is
defined as FiK = qxi(X,t)/qXK. The rheological model is composed in
parallel of an equilibrium spring, representing the elasticity after
viscoelastic relaxation, and a Maxwell unit with a non-equilibrium
spring and a dashpot connected in series, describing non-
equilibrium behavior (Fig. 9). In the Maxwell unit, we assume
the total deformation gradient F can be decomposed into an
elastic part Fe and a viscoelastic part Fv, F = FeFv. Based on the

experiments in Sections 2 and 3, we know that the viscosity of the
director rotation is much smaller than that of the network, so we
could assume the viscosity is mainly from the network. Thus, the
dashpot in the rheological model in Fig. 9 represents the viscous
behavior of the network. Here we assume the free energy density
in the reference state fr is a function of the deformation gradient
F, the elastic part Fe, and director d, fr = fr(F,Fe,d). According to the
free energy imbalance for the isothermal condition, we can write
the nonequilibrium thermodynamics requirement asð

� _frdV þ
ð
B _u dV þ

ð
T _u dAþ

ð
gdd � _d dV � 0; (4)

where : in
:
fr,
:u and

:
d represents a small variation over a small time

increment, :¼ d=dt; the volume element dV and area element dA
are both defined in the reference configuration; the body force
and traction do work at the rate

Ð
B _udV þ

Ð
T _u dA; gd is a

Lagrange multiplier to enforce the unit vector constraint of d, d�

d � 1. Using the relation _fr ¼
@fr
@F

: _F þ @fr
@Fe

: _Fe þ
@fr
@d
� _d, we could

further expand the inequality (4) in the following mannerð
B þ divX Sð Þð Þ _u dV þ

ð
ð�S �N þ TÞ _udAþ

ð
gdd �

@fr
@d

� �
_d dV

þ
ð
@fr
@Fe

:FeL
vdV � 0;

(5)

where Lv = FvFv
�1, N is the unit vector normal to any given surface

at the reference state, S ¼ @fr
@F
þ @fr
@Fe

F�Tv is the first Piola–Kirchh-

off stress. The inequality should always be satisfied, requiring
each of the above terms to be positive or equal to zero due to the

independency of :u,
:
d and

:
Fe (and therefore

:
Fv).

Then we can get the force balance equation and traction
relation from the first two terms:

B + divX(S) = 0, (6)

�S�N + T = 0. (7)

The third term in eqn (5) indicates that
@fr
@d

should be in the
same direction as d, requiring that

d � @fr
@d
¼ 0 (8)

which is a governing equation for the director field, equivalent
to the balance of rotational momentum derived in previous
work.60 To satisfy the non-negative requirement of the last term
in eqn (5), we propose a simple evolution equation for Lv

Lv ¼ 1

Z0
FT
e

@fr
@Fe

: (9)

Solving the above force balance equation together with the
boundary condition eqn (6) and (7), the constitutive equation
for the director eqn (8), and the evolution equation for Lv

eqn (9), we can determine the viscoelastic stress–director-
strain behavior of LCEs under arbitrary inhomogeneous
deformation.Fig. 9 Rheological model for the viscoelasticity of LCEs.
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Next, we assume the free energy of LCEs includes the
synergetic work of the director rotation and network extension.
We employed the free energy as the summation of the equili-
brium and nonequilibrium parts based on the neo-classical
theory including the semi-soft elasticity,1,61,62 fr = f eq

r + f neq
r , with

f eqr ¼
meq

2
tr FeqFeq

T

þ a I � d0 	 d0ð ÞFT � d 	 d � F
� �

� p J � 1ð Þ;

(10)

f neqr ¼mneq

2
tr FneqFneqT þa I�d0	d0ð ÞFT

e �d	d �Fe

� �
�mneqlnðJeÞ;

(11)

where meq and mneq are the shear modulus of the equilibrium and
non-equilibrium; p is the Lagrange multiplier to incorporate the
incompressibility J = det(F) = 1; Je = det(Fe); Feq = l�1/2Fl0

1/2; Fneq =
l�1/2Fel0

1/2; a represents the semi-soft parameter, the value of
which is kept the same for the equilibrium and non-equilibrium
free energy; d and d0 represent the director in the current and
reference states, respectively. l and l0 are the corresponding

dimensionless shape (metric) tensor, l¼ 1

lk
lk� l?
� �

d	dþ l?I
� �

and l0¼
1

l0k
l0k � l0?

� �
d0	d0þ l0?I

� �
. The effective lengths along or

perpendicular to the director (l8 and l>) are assumed to remain
constant during deformation, and we can denote their ratio as

r:¼
lk
l?
¼
l0k

l0?
: (12)

In the absence of non-equilibrium and with parameters r = 1 and
a = 0, eqn (10) recovers the conventional neo-Hookean elastic
energy. When r a 1, the backbone shows anisotropy owing to the

presence of LCs by the free energy
meq

2
tr FeqFeqT
� �

¼
meq

2
tr l�1Fl0F

T
� �

. The energy term could also be interpreted as

the classical neo-Hookean elastic energy incorporating a deforma-
tion gradient Feq = l�1/2Fl0

1/2 from the isotropic phase of the
reference configuration to the isotropic phase of the current

configuration.55 The energy term
meq

2
tr a I�d0	d0ð ÞFT �d	d �F
� �

represents the semi-soft elasticity, describing fluctuation of chains
with various anisotropy r. When a = 0, it implies the director can
rotate with negligible stress; when a 4 0, a stress threshold is
required to initiate the rotation of the director. We can also rewrite

the term as
meq

2
aFTd� FTd �d0

� �
d0

		 		2; indicating that the energy

vanishes when FTd is parallel to d0.
Consider the homogeneous deformation of a thin LCE

sample with a tilted director subjected to uniaxial stress in
the x2 direction, and we assume the director only rotates in the
x1–x2 plane, i.e. d = (cos y, sin y,0)T. We can rewrite the first
Piola-Kirchhoff stress, evolution equation for Lv eqn (9), and the

constitutive equation for the director eqn (8) as

S ¼ meq l�1Fl0
� �

þ ad 	 I � d0 	 d0ð ÞFTd
� �

þ mneq l�1Fel0F
T
e F
�T� ��

þad 	 I � d0 	 d0ð ÞFT
e dF

T
e F
�T�

� JpF�T � mneqF�T ;

(13)

_Fv ¼
mneq

Z0
FT
e l
�1Fel0 þ aFT

e d 	 I � d0 	 d0ð ÞFT
e d� I

� �
Fv;

(14)

seqd � d + sneqd � d = 0. (15)

where seqd : ¼ meq lk
�1 � l?

�1� �
Fl0F

Td þ aF I � d0 	 d0ð ÞFTd
� �

and sneqd : ¼ mneq lk
�1 � l?

�1� �
Fel0F

T
e d þ aFe I � d0 	 d0ð ÞFT

e d
� �

.
Since the deformation is homogeneous, the force balance
equation eqn (6) is satisfied automatically. As discussed in
Section 2.4, the deformation gradient under uniaxial tension
could be written as

F ¼

l11 0 0

l21 l22 0

0 0
1

l11l22

2
66664

3
77775; (16)

where the shear strain l21 exists due to director rotation; l22 is
the stretching direction. Also, we can assume the viscous part of
the deformation gradient Fv as

Fv ¼

Fv11 Fv12 0

Fv21 Fv22 0

0 0 Fv33

2
6664

3
7775: (17)

The elastic deformation gradient can be expressed as Fe = FFv
�1.

Inserting the expressions of F, Fv (Fe) and d into eqn (13)–(15),
and using the condition S = diag(0, S22, 0) for uniaxial tension,
we numerically solve S22, y and all the components of F and Fv

(Fe) as functions of time with Matlab, where the Lagrange
multiplier p is determined using S33 = 0.

4.2 Analysis of uniaxial tension

Here we study the director y, shear strain l21 and engineering
stress S22 as functions of the normal stretch l22 at different
loading rates _l22. The viscoelastic model proposed in Section
4.1 has five material parameters. As the viscoelastic relaxation
is significant, we estimate mneq/meq = 9 based on the stress
relaxation test on MNE-0. The network viscosity Z0/(mneq + meq) =
1 s and the semi-soft parameter a = 0.08 are selected to fit the
director reorientation and stress response from the uniaxial
tension tests. The parameter r = 5.5 is calculated based on the
following thermomechanical deformation test. We recorded
the length of a monodomain LCE sample in the nematic
configuration at room temperature as lnem. Then we heated
the specimen up to 130 1C, which is above the phase transition
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temperature Tni, using a hotplate, and recorded the length in
the isotropic configuration as liso. The macroscopic length
change in response to the temperature change is purely due
to the phase transition of LCs, correlating to the magnitude of
the anisotropic backbone,1,17 and relates to r via:

r ¼ lnem

liso

� �3

: (18)

We measured lnem and liso several times and took an average
value to obtain r = 5.5.

Analytical solutions of the uniaxial engineering stress S22

(Fig. 10a–c), the director angle y (Fig. 10d–f), and shear strain
l21 (Fig. 10g–i) at different loading rates _l22 = 0.1%/s, 1%/s and
10%/s for different initial directors are plotted as functions of
the normal stretch l22. Obvious rate-dependent stress, director
rotation, and shear deformation are observed. At a low loading
rate, the director rotates more, providing more spontaneous
strain, and the stress caused by the viscosity of the network
(the dashpot in Fig. 9) is smaller. As a result, the stress is lower
at a lower loading rate. Generally, the stress–strain behavior
predicted by the model exhibits a consistent agreement with
the experimental observations.

For all applied rates, the director approaches the stretching
direction (y = 01) as the normal stretch l22 increases (Fig. 10d–f).
However, it is evident that the director rotation is slower at
higher loading rates, exhibiting a noticeable delay. Although we
only consider the network viscosity in the model, we still observe
time-dependent director rotation due to the strong influence of

the network on the director in main-chain LCEs. When a
uniaxial stress oblique to the initial director is applied, the
director tends to rotate instantaneously, but the slow extension
of the network can impede the director rotation. As a result, at a
high loading rate, the network deforms less under a given
normal stretch, constricting the director rotation, and causing a
pronounced delay in director rotation. Conversely, at a low rate, as
the network deforms more, the director also rotates more.

Fig. 10g–i show the shear strain l21 as a function of the
normal stretch l22 at different loading rates. The occurrence of
shear strain is a consequence of director rotation. In general, it
is observed that an increase in l22 leads to greater rotation of
the director, and an increase in the magnitude of l21 in MNE-30
and MNE-45. Particularly in the case of loading rates at 1%/s
and 0.1%/s, the modeling results exhibit a high level of agree-
ment with the experimental findings. However, the shear strain
at 10%/s presents inconsistencies with the experimental obser-
vation, as it shows a lower value at a lower normal stretch
compared to the 1%/s loading rate, which can be attributed to
the omission of the viscosity of director rotation in the model.
Experimental evidence has indicated that the director does not
reach the equilibrium at 10%/s loading rate, and both the
viscosity of the director rotation and network extension con-
tribute to the delayed direction rotation.

Moreover, we observe non-monotonic shear strain l21 with
respect to the normal stretch l22 in MNE-60. The shear strain
initially grows to a positive value and then drops to a negative value
with the increased normal stretch. Warner and Terentjev et al.1,63,64

Fig. 10 Analytical results of the (a)–(c) engineering stress S22, (d)–(f) director angle y, and (g)–(i) shear strain l21 as functions of the normal stretch l22 at
different loading rates of 10%/s, 1%/s, and 0.1%/s for MNE-30, MNE-45, and MNE-60, respectively.
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have discussed non-monotonic shear strain when the initial
director is perpendicular to the stretching direction (y = 01).
Without the viscous effect, the director and shear strain can be
expressed as

y ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r� 1
1� lss2

l222

� �s
; (19)

l21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l222 � lss2
� �

rlss2 � l222
� �

rl222lss3

s
; (20)

where lss ¼
r� 1

r� 1� ar

� �1
3

related to semi-soft elasticity. When

a = 0, lss = 1, and the above equations reflect the case of soft
elasticity.

Fig. 11a and b illustrate the behavior of the director and
shear strain based on eqn (19) and (20) for a = 0.1. The director
and shear strain start with y = 901 and l21 = 0 when l22 = 1. As the
director angle decreases, the shear strain non-monotonically
increases and then decreases. Then the director and shear strain
end with y = 01 and l21 = 0 when l22 ¼

ffiffi
r
p

lss ¼ 2:42. After
the director becomes parallel to the stretching direction, the
network further extends with an elastic energy cost without
director rotation, behaving the same as traditional neo-
Hookean materials.

The experimental measurement of shear strain for MNE-60
is presented in Fig. 11d as a function of the director.
The macroscopic deformation under stretching is depicted in
Fig. 11c, illustrating the transition of shear strain from a
positive value to a negative value induced by the director
rotation. Based on the perpendicular loading discussed earlier,
considering the shear strain at the initial director y0 = 601 as
zero in Fig. 11b, the shear strain exhibits non-monotonic

behavior as the stretch increases and as the director y changes
from 601 to 01. Consequently, the non-monotonic shear strain
is expected when the initial director deviates much from the
stretching direction.

5. Conclusion

To summarize, this paper presents controlled experiments to
manifest the relation among mechanical stress, director, and
stretch for LCEs with different initial directors at different loading
rates. Examined by dynamically uniaxial tension and relaxation
tests, we find that the viscoelasticity of LCEs is a synergy of rate-
dependent network deformation and mesogen rotation, giving
rise to the unique mechanical responses of LCEs, which is further
verified by a general continuum viscoelastic model.

We successfully measure the rate-dependent stress and
director rotation in dynamic tension and relaxation tests. In
the uniaxial tension tests, the loading rates range from 0.1%/s
to 10%/s and the initial director ranges from 01 to 601 oblique
to the stretching direction. We observe realignment of oblique
directors to the stretching direction, and reorientation delay when
the loading rate is high. A larger director rotation produces a
higher spontaneous strain, which leads to a higher stretchability
and a more obvious stress plateau. By comparing the stress and
director values in uniaxial tension and relaxation tests, we find the
viscosity of director rotation is much smaller than that of the
network extension. For all specimens, stress does not reach
equilibrium even at the slow loading rate of 0.1%/s, while the
director almost reaches equilibrium at around 1%/s. Moreover,
the stress relaxation in a short time reflects the complicated
synergy of quick director rotation and network extension, while
in a long time, the stress relaxation can be fitted by a power law
which is similar to traditional rubbers, suggesting that the
relaxation is dominated by the network extension. Although the
viscosity of director rotation is considerably small, in a long-term
relaxation, the director continues to rotate as the viscous network
extension further realigns the director, and the director relaxation
could also be fitted by a power law.

We quantitatively measure the rate-dependent strain com-
ponents via DIC for LCEs with different initial directors. Our
DIC results under uniaxial tension tests reveal homogenous
deformation in the middle parts of the LCE samples. At a lower
rate, the macroscopic deformation is primarily originated from
spontaneous deformation arising from director rotation, exhi-
biting the stress–strain relation closer to the plane strain case;
conversely, at a higher rate, the macroscopic deformation is
more attributed to network extension, leading the stress–strain
relation closer to the plane stress case. DIC measurements
present notable rate-dependent shear strain, where faster load-
ing leads to smaller shear strain, and vice versa. Non-monotonic
shear strain is observed when the angle between the initial
director and the stretching is large.

We further use a general continuum viscoelastic model to
explain the rate-dependent stress, director, and strain. The model
incorporates the effect of the viscous network deformation via

Fig. 11 (a) Schematic of the deformation of a LCEs sample with the
stretching perpendicular to the initial director (y0 = 901). (b) Shear strain
as a function of the director rotation starts from y0 = 901 and ends at y = 01
calculated from the soft-elasticity theory. (c) Schematic of the deformation
of MNE-60 under uniaxial stress, exhibiting changes of the shear strain l21

from a positive value to a negative value. (d) Shear strain of MNE-60 as a
function of the director rotation at loading rates of 0.1%/s, 1%/s, and 10%/s
up to a strain of 200% from the experiment.
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applying multiplicative decomposition of the deformation gradi-
ent to elastic and viscous parts. No director viscosity is considered
in this analysis. The analytical solution elucidates the strong
coupling between the macroscopic deformation and microscopic
director rotation – on one hand, the director rotation provides
additional spontaneous deformation, reducing the network
extension and corresponding stress levels; on the other hand,
the observation of the director reorientation delay indicates that
the rate-dependent network deformation influences the rate-
dependent director rotation. Furthermore, the analytical results
indicate the possibility of non-monotonic shear strain when the
angle between the initial director and the stretching direction is
large enough.

This work provides a comprehensive investigation into and
mechanistic understanding of the rate-dependent behavior of
LCEs. The utilization of crossed-polarized optical measurement
and DIC allows us to dynamically probe the director and
deformation fields for LCEs of different directors under different
loading conditions. We conduct experiments to characterize the
distinct relaxation time scales of the director rotation and network
extension and explain the rate-dependent results using a general
viscoelastic continuum model, which enhances our understand-
ing of the director–stress coupling effect. However, it is important
to note that a much lower loading rate needs to be applied in
order to reach the full equilibrium stress–strain behavior of
LCEs.17 Moreover, the efficacy of the model diminishes at high
loading rates, where the viscosity of both the director and network
needs to be accurately accounted for.50,52
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