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Chiral gem-difluoroalkyl reagents: gem-
difluoroalkyl propargylic borons and gem-
difluoroalkyl a-allenols¥

Hui-Na Zou, Meng-Lin Huang, Ming-Yao Huang, Yu-Xuan Su, Jing-Wei Zhang,

Xin-Yu Zhang and Shou-Fei Zhu @ *

Chiral fluorinated reagents provide new opportunities for the discovery of drugs and functional materials
because the introduction of a fluorinated group significantly alters a molecule’'s physicochemical
properties. Chiral gem-difluoroalkyl fragments (R-CF,—-C*) are key motifs in many drugs. However, the

scarcity of synthetic methods and types of chiral gem-difluoroalkyl reagents limits the applications of

these compounds. Herein, we report two types of chiral gem-difluoroalkyl reagents chiral gem-
difluoroalkyl propargylic borons and gem-difluoroalkyl a-allenols and their synthesis by means of
methods involving rhodium-catalyzed enantioselective B—H bond insertion reactions of carbenes and
Lewis acid-promoted allenylation reactions. The mild, operationally simple method features a broad
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substrate scope and good functional group tolerance. These two types of reagents contain easily

transformable boron and alkynyl or allenyl moieties and thus might facilitate rapid modular construction
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rsc.li/chemical-science

Introduction

Fluorine-containing compounds have unusual physicochemical
properties and have had a considerable impact on the discovery
of new medicines, agrochemicals, catalysts, and functional
materials.' Thus, the development of fluorine-containing
building blocks has recently been receiving increasing atten-
tion. The gem-difluoromethylene group is considered to be
a bioisostere> of carbonyl groups and oxygen atoms of ethers
and can modulate the pK, of neighboring functional groups.®
gem-Difluoroalkyl groups (-CF,-R) are key moieties in many
fluorine-containing drugs, including lubiprostone,* otesecona-
zole,” vinflunine,® and gemcitabine’ (Scheme 1a). The intro-
duction of a gem-difluoroalkyl group into bioactive molecules is
an effective strategy for studying structure-activity relationships
and tuning the pharmacological activity of drugs and drug
candidates.®

The efficient construction of chiral gem-difluoroalkyl
compounds has attracted substantial research interest over the
past few decades.® However, the types of chiral gem-difluoroalkyl
compounds are still limited in number because of lack of
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of chiral molecules containing chiral gem-difluoroalkyl fragments and might provide new opportunities
for the discovery of chiral gem-difluoroalkyl drugs and other functional molecules.

efficient synthetic methods. Since organoboron compounds,*
alkynes, and allenes™ are common building blocks in organic

synthesis,  gem-difluoroalkyl-substituted = chiral = boron
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Scheme 1 Background and strategy.
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compounds and allenes are expected to become novel chiral
gem-difluoroalkyl reagents. To our knowledge, there is only one
catalytic method for the synthesis of boron-substituted chiral
gem-difluoroalkyl compounds (Scheme 1b),** while chiral gem-
difluoroalkyl propargylic borons and chiral gem-difluoroalkyl-
substituted allenes remain unknown. Therefore, the develop-
ment of efficient, convenient methods for the synthesis of easily
transformable chiral gem-difluoroalkyl-substituted boron
compounds bearing alkyne and allene motifs would be highly
desirable. Herein, we report a method for dirhodium-catalyzed
B-H bond insertion reactions using gem-difluoroalkyl alkynyl N-
triftosylhydrazones as carbene precursors for the preparation of
a wide range of novel, stable chiral gem-difluoroalkyl prop-
argylic borons in high yields with high enantioselectivities
(Scheme 1c). We also developed a method for BF;-Et,O-
promoted allenylation of aldehydes with a chiral gem-difluor-
oalkyl propargylic boron; this method offers rapid access to
a wide range of chiral gem-difluoroalkyl a-allenols with adjacent
axial and central chiralities. These two types of chiral gem-
difluoroalkyl reagents, which contain easily transformable
boron and alkynyl or allenyl moieties, have high value for
facilitating the rapid, modular construction of chiral molecules
containing gem-difluoroalkyl groups. We demonstrated the
synthetic potential of the gem-difluoroalkyl a-allenols by trans-
forming one of them into chiral gem-difluoroalkyl 2,5-dihy-
drofuran and tetrahydrofuran derivatives.

Results and discussion

Inspired by our earlier work on asymmetric B-H bond inser-
tion,™ we hypothesized that gem-difluoroalkyl alkynyl N-trifto-
sylhydrazones could serve as carbene precursors for the
construction of chiral gem-difluoroalkyl reagents through
asymmetric B-H bond insertion reactions. We began by using
gem-difluoroalkyl alkynyl N-triftosylhydrazone 1a as a model
substrate, trimethylamine-borane adduct 2a as a boron source,
and NaH as a base (Table 1). First, we evaluated commercially
available chiral dirhodium catalysts 4a-4i (0.5 mol%) in reac-
tions at 0 °C in Et,O (entries 1-9). Of the tested catalysts, 4d gave
the highest yield and enantioselectivity (85% yield, 89% ee,
entry 4). We evaluated several alternative bases (entries 10-13)
and found that they significantly decreased the yield but had
little influence on the enantioselectivity. The solvent screening
revealed that the weakly coordinating solvent methyl tert-butyl
ether improved the yield to 99% (entry 14). In contrast, the
chlorinated solvent dichloromethane substantially decreased
both the yield and the enantioselectivity (entry 15). Lowering the
reaction temperature to —10 °C had beneficial effects on the
enantioselectivity: desired product 3aa was obtained in 99%
yield with 93% ee (entry 16). However, the reaction at —20 °C
gave a reduced yield and enantioselectivity (entry 17).

Under the optimal conditions (Table 1, entry 16), we evalu-
ated B-H bond insertion reactions of various gem-difluoroalkyl
alkynyl N-triftosylhydrazones 1 with trimethylamine-borane
adduct 2a (Scheme 2). Reactions of N-triftosylhydrazones
bearing an aryl group attached to the alkynyl moiety (1b-1t)
gave the corresponding B-H bond insertion products (3ba-3ta)
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Table 1 Optimization of conditions for rhodium-catalyzed enantio-
selective B—H bond insertion of N-triftosylhydrazone la with trime-
thylamine—borane adduct 2a“

NMes
~
iNHTes [Rh] (0.5 mol%) H,B
MesN—=BH
PhFC” "N oh * Mes 3 base, solvent, 0 °C PhFCT N
2a Ph
1a 3aa
Bn.  OtRh
1
Bu OtRh z
o Y| 4aR=HRuISPTTLL 0 H%)hh
Rh 4b, R = 2,34 5-tetrafluoro, Rhy[S-TFPTTL], N i

4c, R = 2,3,4,5-tetrachloro, Rhy[S-TCPTTL], o
4d, R = 2,3,4,5-tetrabromo, Rh,[S-TBPTTL],

N [e]
4
\\ °©
R+
Z
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o Hij[l

Rh

N o
4
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4f, Rh,[S-PTPA],

4e, Rh,[S-PTPA],

Ci2Has
4i, Rh,[S-DOSP],

4g, Rhy[S-NTTL],

4h, Rh,[R-BTPCP],

Entry [Rh] Solvent Base Yield (%) ee (%)
1 4a Et,0 NaH a1 31
2 4b Et,O NaH 40 70
3 4c Et,O NaH 71 85
4 4d Et,O NaH 85 89
5 4e Et,O NaH 52 11
6 4f Et,O NaH 34 11
7 4g Et,O NaH 67 63
8 4h Et,O NaH 72 12
9 4i Et,O NaH 15 26
10 4d Et,O NaOH 64 90
11 ad Et,O K,CO; 60 89
12 ad Et,0 K;PO, 56 90
13 4ad Et,O LiOtBu 54 86
14 4d MTBE NaH 99 89
15 41d DCM NaH 28 36
16? 4d MTBE NaH 99 93
17¢ 4ad MTBE NaH 59 86

“ Reaction conditions: 4/1a/2a = 0.0005:0.15: 0.1 (mmol), 0.45 mmol
base, 2.5 mL solvent; all the reactions were complete within 24 h.
DCM, dichloromethane; MTBE, methyl tert-butyl ether. Isolated yields
are given. The ee values were determined by HPLC. ? Performed at
—10 °C. © Performed at —20 °C.

in 74-99% yields with 73-99% ee. The steric properties of the
substituent on the aryl group clearly affected the enantiose-
lectivity of the reaction. A substrate with an ortho-methyl group
gave the expected product 3ba in high yield with high enan-
tioselectivity, whereas the corresponding meta-methyl-
substituted compound showed lower enantioselectivity (3ca).
However, the position of a chlorine substituent had little effect
on the enantioselectivity (3da-3fa). Furthermore, a substrate
with an ortho-fluorine substituent gave the corresponding
product (3ga) with good results. Transformation of a 1-
naphthyl-substituted N-triftosylhydrazone afforded product 3ha
with satisfactory results. Substrate 1i, which has a para-nitro
group, gave access to the corresponding product (3ia) in 80%
yield with 82% ee. We also evaluated substrates bearing an aryl
or a heteroaryl group attached to the alkynyl moiety. Substrates

Chem. Sci., 2023, 14, 9186-9190 | 9187
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Scheme 2 Preparation of chiral gem-difluoroalkyl propargylic borons
by rhodium-catalyzed B—-H bond insertion reactions. ¢ Reaction
conditions: 4d/1/2 = 0.0005:0.15:0.1 (mmol), 0.45 mmol NaH,
2.5mL MTBE, —10 °C. All reactions were complete within 24 h. Isolated
yields are given. The ee values were determined by HPLC. ® Performed
at room temperature. € Catalyst 4b was used.

with an electron-donating methyl group or an electron-
withdrawing fluorine or chlorine atom or a trifluoromethyl
group on the 1-phenyl ring were tolerated (3ja-3qa).
Compounds with a 1-naphthyl or 1-thienyl group attached to
the alkynyl moiety showed high yields and enantioselectivities
(3ra, 3sa). When 4b was the catalyst, a substrate with a methyl
group attached to the gem-difluoromethylene group afforded
3ta in good yield with moderate enantioselectivity. We also
evaluated reactions of 1a with a series of borane adducts 2 and
found that only trialkylamine-borane adducts afforded good
results (see the ESIt for details). The structure and absolute
configuration of (R)-3fa were determined by X-ray diffraction
analysis of a single crystal.

Chiral a-allenols," which have both axial and central
chiralities, not only are found in hundreds of natural products
but also serve as valuable synthetic intermediates in a wide
range of transformations. gem-Difluoroalkyl-substituted chiral
a-allenols have great potential as novel chiral gem-difluoroalkyl
reagents with possible applications for drug discovery. To the
best of our knowledge, chiral gem-difluoroalkyl-substituted
allenes have not been reported. Serendipitously, we found
that BF;-Et,O-promoted addition reactions between (R)-3ba
and aldehydes generated chiral gem-difluoroalkyl a-allenols,
which have axial and central chiralities (Scheme 3; see the ESIt
for optimization of the reaction conditions). Having discovered
this, we evaluated a broad array of aldehydes, including form-
aldehyde and aromatic and aliphatic aldehydes in reactions
with (R)-3ba. The addition reaction between formaldehyde and

9188 | Chem. Sci., 2023, 14, 9186-9190
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Scheme 3 Preparation of chiral gem-difluoroalkyl a-allenols through
addition reactions of gem-difluoroalkyl propargylic boron with alde-
hydes. ¢ (CH,0), (10 equiv.).

(R)-3ba gave chiral gem-difluoroalkyl a-allenol 5a in good yield
with excellent regioselectivity and well-retained ee. Aromatic
aldehydes with a 4-phenyl, 4-chloro, or 4-bromo substituent
gave corresponding a-allenols 5b-5d in good yields with excel-
lent regio-, diastereo-, and enantioselectivities. However, the
yield of 5e from the reaction of 4-methoxy benzaldehyde was
relatively low. 2-Thenaldehyde and 2-furfural gave good results
(5f, 5g). Aliphatic aldehydes were also appropriate substrates,
generating the desired products (5h-5j) in good yields with high
regio- and diastereoselectivities. In addition, a-chiral amino
aldehydes derived from natural amino acids reacted smoothly
with (R)-3ba under the standard conditions, diastereoselectively
providing gem-difluoroalkyl -amino a-allenols 5k and 51, which
have three contiguous chiral centers. We propose that this
reaction proceeds via transition state PT (Scheme 3). Coordi-
nation of BF;-Et,O to the carbonyl group of the aldehyde
enhances the electrophilicity of the carbonyl carbon atom,* and

a) A gram-scale B-H bond insertion reaction

NNHTfs ~NMe;
Hy
FC7 N 4d (0.2 mol% A
Mo + MeN—=BH, (0.2 mol%) LN
2 NaH (4.5 equiv) Me
a MTBE, -10°C, 40 h
1b 3.5 mmol 3ba
1.5 equi
equv 0.87 g, 76% yield, 96% ee

b) Sy i ions of chiral g i yl a-allenol

Au(MeCN)SbFs-(Johnphos) (5 mol%)  Me_ F2C

P

A,

cvc DCM, tt, 24 h

= oH
Me 5b
. 82% yield, 94% ee
0.1 mmol (95% ee, > 20:1 d.r.) 99% es, > 2041 dr.
Ph
H, (1 atm), PdIC (5 mol%) RN

Me. O
ethyl acetate, 12 h O
7
88% yield, 94% ee
100% es, >20:1d.r.

Scheme 4 Gram-scale B—-H bond insertion reaction and trans-
formations of gem-difluoroalkyl a-allenol 5b.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the concerted addition the
diastereoselectivity.

Next, we explored the synthetic potential of our method
(Scheme 4). We found that the B-H bond insertion reaction of
gem-difluoroalkyl alkynyl sulfonylhydrazone 1b and trimethyl-
amine-borane adduct 2a could be conducted at a gram scale
with 0.2 mol% 4d as the catalyst to afford (R)-3ba in good yield
with excellent enantioselectivity (Scheme 4a). Gold-catalyzed
cyclization of 5b stereoselectively furnished gem-difluoroalkyl
2,5-dihydrofuran 6, which has two chiral centers (Scheme 4b).
Hydrogenation of the trisubstituted olefin moiety of 6 over Pd/C
afforded chiral gem-difluoroalkyl-substituted tetrahydrofuran 7,
which has three chiral centers (Scheme 4b). Recently, various
compounds containing tetrahydrofuran units bearing chiral
gem-difluoroalkyl substituents have been proposed for the
treatment of cancers and other diseases.*

process  ensures high

Conclusions

In conclusion, we have developed two types of chiral gem-
difluoroalkyl reagents: gem-difluoroalkyl propargylic borons
and gem-difluoroalkyl a-allenols. First, a wide range of novel,
stable chiral gem-difluoroalkyl propargylic borons were synthe-
sized in high yields with high enantioselectivities by means of
dirhodium-catalyzed B-H bond insertion reactions. Then,
aldehydes (formaldehyde and aromatic and aliphatic alde-
hydes) were allenylated with chiral gem-difluoroalkyl prop-
argylic boron in the presence of BF;-Et,O for rapid access to
a wide range of chiral gem-difluoroalkyl a-allenols with two or
three contiguous chiral centers, including adjacent axial and
central chiralities. Moreover, a gem-difluoroalkyl a-allenol was
readily derivatized to afford chiral gem-difluoroalkylated 2,5-
dihydrofuran and tetrahydrofuran derivatives, demonstrating
the considerable potential utility of chiral gem-difluoroalkyl
reagents for organic synthesis.
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