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Natural goods, medications, and pharmaceutically active substances all contain substituted oxindoles.

Generally, the C-3 stereocenter of the substituents of oxindoles and their absolute arrangement have

a substantial impact on the bioactivity of these substances. In this case, the desire for contemporary

probe and drug-discovery programs for the synthesis of chiral compounds using desirable scaffolds with

high structural diversity further drives research in this field. Also, the new synthetic techniques are

generally simple to apply for the synthesis of other similar scaffolds. Herein, we review the distinct

approaches for the synthesis of diverse useful oxindole scaffolds. Specifically, the research findings on

the naturally existing 2-oxindole core and a variety of synthetic compounds having a 2-oxindole core are

discussed. We present an overview of the construction of oxindole-based synthetic and natural

products. In addition, the chemical reactivity of 2-oxindole and its related derivatives in the presence of

chiral and achiral catalysts are thoroughly discussed. The data compiled herein provides broad

information related to the bioactive product design, development, and applications of 2-oxindoles and

the reported techniques will be helpful for the investigation of novel reactions in the future.
1. Introduction

Oxindoles (1, Fig. 1) are a group of endogenous hetero-aromatic
organic compounds (quinoline,1–3 indole,4 etc.) found in the
tissues and bodily uids of mammals and in the natural
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products in different plants.5 The term “oxindole” and its
derivatives are known as “1,3-dihydro-2H-indole-2-one(s)”6

because their structure consists of a six-membered benzene
ring fused with a ve-membered pyrrole ring and a carbonyl
group at the C-2 position. It is well known that oxindoles have
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Fig. 1 Structure of oxindole.

Fig. 2 Structure of commercially available drugs with an oxindole
core.
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two rapidly tautomerizing hydroxyl isomers.7–9 Several synthetic
methods have been successfully applied to develop various
derivatives and scaffolds with a range of biological activities, in
addition to natural methods to obtain the oxindole nucleus.

New oxindole compounds with a distinct pharmacological
prole and commendable efficacy are of great interest in many
sectors of the pharmaceutical industry and academia. Ninte-
danib (2), a marketed highly potent drug, was recently approved
in March 2020 in the United States for the treatment of inter-
stitial lung diseases such as idiopathic pulmonary brosis (IPF)
and chronic brosis with a progressive phenotype. It is one of
the most potent indolinone compounds and has an effective
antiproliferative property, which inhibits angiokinase and
limits the growth factor. Nintedanib is advertised commercially
under the brand names “Ofev” and “Vargatef”. 10 Sunitinib (3),
a tiny molecule that primarily serves as a tyrosine kinase
inhibitor and a well-known treatment for renal cell carcinoma
and gastrointestinal stromal tumours, is another notable oxin-
dole derivative. It was clinically approved by the Food and Drug
Administration (FDA) in 2006 and is the rst anticancer medi-
cine to be approved for use on two distinct types of cancer cell
lines simultaneously. As part of its mechanism of action, it
indirectly targets numerous receptor tyrosine kinases in an
effort to suppress cellular signaling.11 The phase III trials for
semaxanib (7), a tyrosine kinase inhibitor that targets angio-
genesis and colon-rectal cancer via the vascular endothelial
growth factor pathway, were unsuccessful.12 Ropinirole (6),
a commonly prescribed drug for the treatment of Parkinson's
disease and restless legs syndrome (RLS), is a well-known
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medication, which contains the widely used active ingredient
oxindole. It was developed in 1996 and functions as a complete
agonist at D2, D3, and D5 receptors, as well as a dopamine
receptor (D2) agonist. However, it has a relatively lower affinity
for D1 and D5 receptors. The success of ropinirole as a medica-
tion is attributed to the characteristics of its structure, which are
benecial to its functionality, such as low molecular weight,
accessibility, and a stereocenter-free chemical structure,
attracting additional attention in ongoing research.13 Another
oxindole derivative called ziprasidone (4) is a novel antipsy-
chotic medication produced by the American pharmaceutical
behemoth Pzer and marketed and sold under the trade name
“Geodon”. Presently, ziprasidone has received FDA approval for
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use in psychotherapy and the treatment of mental illnesses
including schizophrenia and severe manic behavior. Ziprasi-
done (4) works similarly to ropinirole by blocking the dopamine
(D2) receptor.14 Cardiovascular diseases and ischemic chest
pains are actively treated with some other drugs that have
potent vasodilatory and advantageous inotropic effects, notably
adibendan (5) and indolidan (8) (Fig. 2).15
2. Natural products & biologically
active compounds

To maximize the achievements in current probe- and drug-
discovery studies, there is a great demand for synthetic
libraries of chiral molecules that mimic the structural charac-
teristics of privileged scaffolds frequently occurring in natural
products and pharmaceuticals. One of these classes of scaffolds
are 3,3-disubstituted oxindoles,16 which are the foundation of
many bioactive natural products (Fig. 3). Many new drugs and
lead compounds have been created by taking inspiration from
these molecules. It is interesting to note that in all fully
substituted stereocenters, whether spiro or not, all their
carbons are either quaternary or tetrasubstituted with hetero-
atoms, including the C-3 carbon of oxindoles.17,18 The efficient
construction of tetrasubstituted, and in particular, quaternary
carbon stereocenters remains challenging, which has sparked
intense interest in the catalytic enantioselective synthesis of 3,3-
disubstituted oxindoles.19–22 In addition to providing libraries of
structurally different oxindole derivatives for medicinal study,
which aid in the discovery of more potent and selective
analogues, enormous research effort has also been devoted to
the development of new synthetic methodologies.23

Notably, successful catalytic enantioselective reactions
involving direct C–H bond24 functionalization or highly stereo-
selective construction of adjacent all-carbon quaternary ster-
eocenters are well documented.25 A comprehensive overview on
the development of the rapidly evolving eld of catalytic enan-
tioselective synthesis of 3,3-disubstituted oxindoles was re-
ported in 2010.26,27 Meanwhile, it was noted that, although
Fig. 3 Structure of natural-based bioactive natural products.

© 2023 The Author(s). Published by the Royal Society of Chemistry
elegant protocols are available, it is still highly desirable to
create effective techniques for extracting oxindoles with a wide
range of structural compositions from readily available starting
materials. To achieve the catalytic28 enantioselective synthesis
of 3,3-disubstituted oxindoles, some programmes employ new
chiral catalysts, new activation models, and tandem
sequences.29

Aspergilline A (9) was isolated in 2014 from the fungus
Aspergillus versicolor by Hu and Gao.30 Cladoquinazoline (10) is
an active obtained from a mangrove-derived fungal strain
known as Cladosporium sp. and was chosen for additional study
as part of anti-inuenza compounds. The chemical analysis of
the EtOAc extracts of the mycelia of the fungus and its
fermentation broth led to the discovery of new indole alkaloids,
including cladoquinazoline and other indole alkaloids known
to contain quinazoline.31,32 Alstonisine (11) was discovered in
1972 by Eldereld and Gilman, which is the rst oxindole
alkaloid related to macrolines, in the plant Alstonia muelleriana
Domin.33,34

Costinone B (12) was isolated from the Pakistani herb Isatis
costata and found to inhibit lipoxygenases and butyl cholines-
terases. The N-aryl substitution in these compounds is notable,
and also the presence of the 3-oxygen substituent in costinone
B. The presence of the 3′-oxygen substituents in isatinones is
noteworthy.35

Gelsemine (13, C20H22N2O2) is an indole alkaloid that acts as
a paralytic and is extremely toxic, which was discovered in
owering plants of the genus Gelsemium, a plant native to the
subtropical and tropical Americas and Southeast Asia. Exposure
to gelsemine can be fatal. The family Loganiaceae, which
includes the subtropical to tropical owering plant genus Gel-
semium, contains ve species as of 2014, with the species G.
sempervirens Ait. being more common in the Americas and G.
elegans Benth. in China and East Asia.36,37

The chemistry of marine bacteria has also been studied, but
they represent a largely untapped source of unusual, bioactive
chemical components. Prosurugatoxin (14) and a few bromi-
nated pyrroles are examples of products of marine bacterial
metabolism that have been isolated thus far, demonstrating
that the few genera under investigation appear to utilize
a variety of secondary metabolic pathways.38

Spirobrassinin (15) belongs to the class of organic
compounds known as indolines including (S)-spirobrassinin.
Indolines are substances that contain an indole moiety, which
is created when a pyrrolidine ring is fused to a benzene ring to
develop 2,3-dihydroindole. In different foods, including Bras-
sica oleracea var. botrytis, Brassica rapa, and Raphanus sativus,
spirobrassinin has been identied but not quantied. Conse-
quently, (S)-spirobrassinin may one day serve as a biomarker for
consuming these foods.39
3. Pharmaceuticals containing the 2-
oxindole moiety

Despite the large number of 3′-alkyl-oxindoles reported, a Beil-
stein database search, which was limited to structures from
RSC Adv., 2023, 13, 14249–14267 | 14251
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Fig. 4 Natural products containing 3 alkyl-oxindole cores and 3 alkyl-
tri-substituents.
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natural sources, yielded only 13 compounds with a tri-
substituted unit (Fig. 4). The rst naturally occurring 3′-alky-
loxindoles were (E) and (Z)-3-(2-methyl-2-butene)-2-indolinones
16 of type 2. In 1978, the two yellow pigments were isolated from
the stem of the plant Cimicifuga dahurica, which is used in
traditional Chinese medicine (Bei Sheng Ma), and especially
known for its antipyretic properties. However, it should be
noted that the complete description of the structure of these
compounds was only reported in 1981 by the same authors. In
1993, three new oxindole alkaloids, i.e., neolaugerine (17), iso-
neolaugerine (18), and 15-hydroxyisoneolaugerine (19) (no
stereo morphisms were fully understood), were isolated from
the root of the small evergreen tree Neolaugeria resinosa, which
is distributed in the Bahamas and West Indies. In 1996, very
simple (E)-3-ethylidene-1,3-dihydroindol-2-ones 20 were
Fig. 5 Natural products with a 3-alkenyl-oxindole core and 3-alkene
tetra-substituent.

14252 | RSC Adv., 2023, 13, 14249–14267
isolated from the Colletotrichum fragariae fungus and described
as self-growth inhibitors. Oxide alkaloid E-isatin derivative 21
was isolated in 1997 from the roots of Isatis indigotica,
a component of the widely used traditional Chinese medicine
Ban-Lan-Gen. In 1999, two plant alkaloids, wasalexins, were
isolated from the foliar tissue of Wasabi (Wasabia japonica, syn.
Eutrema wasabi) and wasalexin 22 exhibits antifungal activity
against Phoma lingam. The functions of the C-3-nitrogen
substitute and N-methoxy-oxindole are remarkable in these
examples. In 2005, it was reported that soulieotine (23) was
isolated from the roots of Souliea vaginata, a plant used as an
anti-inammatory analgesic in traditional Chinese
medicine.40–47 The simplest examples (without additional rings)
are the two new antifungal alkaloid isatinones A (24) and B (25)
isolated from Isatis costata (non-stereochemistry dened in the
alcohol side chain) in 2007, which expanded the structure
search to include naturally occurring 3′-alkenyl-oxide
compounds with a 3′-alkenyl unit substituted by tetrasub-
stituted 3′-alkenyl-oxide compounds, producing the
compounds shown in Fig. 5. The presence of a substitute of
three oxides in isatinones is noteworthy (see costinone B (12)).
There are a sufficient number (six) of natural products of 3′-
alkenyloxindole, and the 3′-alkenyl substitute is part of an
additional ring. The purple pigment violacein (26) was rst
isolated from the Amazon bacteria Chromobacterium violaceum
1934, has a variety of biological activities, including in vitro
antitumor effects. The main component of deoxyviolacein (27)
was isolated from the same source in 1958, and pseudodeox-
yviolacein (28) was isolated from Chromobacterium violaceum in
1994. Biosynthetic studies of violacein and deoxyviolacin have
identied three alkyl-oxindoles related to violacin as possible
intermediates. Indirubin (29) was rst isolated in 1986 from
plasma, urine, and hemoltrate in human blood, and in 2001
from the leaves of Isatis tinctoria, its isotopes, isoindirubin (30)
and isoindigo (31), were isolated together.48–59
4. Synthesis of spiro oxindoles &
related natural products
4.1 Construction of oxindole-based synthetic products

The atroposelective synthesis of axial chiral molecules has
attracted considerable attention from chemists due to the
importance of these molecules. However, due to the low rota-
tional barriers and low conguration stability of these mole-
cules, the catalytic asymmetric synthesis of axial chiral styrene
or vinyl arene is underdeveloped and difficult. Therefore, the
development of powerful strategies for the selective catalytic
synthesis of axial cyclic or vinyl arenes is extremely important.
In one study, the rst selective access to the axially chiral
styrene based on oxindole by a catalytic kinetic resolution
strategy was developed. This strategy provides two types of
oxindole-based axially chiral derivatives of styrene with good
diastereoselectivity (94 : 6dr) and excellent enantioselectivity
(98% ee) with high selectivity factors (S up 106). This strategy
not only facilitates access to the axially chiral styrene based on
oxindole, but also provides a robust method for the synthesis of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Construction of the tetracyclic core of lycorine-type
alkaloids and its application in the formal synthesis of a-lycorane.

Scheme 3 Pd-catalyzed aryl trifluoromethylation of alkenes.
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bisamide derivatives 35 with both axial and central chirality.
More importantly, this strategy added new members to the
axially chiral styrene family (Scheme 1).60

The 3,3′-pyrrolidinylspirooxindole scaffold is a privileged
structural motif that can be found in a wide range of natural
products and pharmaceuticals, which possesses various bio-
logical activities, such as antitumor, antidiabetic, anti-
inammatory, and antitubercular activities, among others.
Because of these signicant bioactivities, 3,3′-pyrrolidinylspir-
ooxindole has emerged as an attractive target, and some elegant
Scheme 2 Catalytic enantioselective 1,3-proton shift/[3 + 2] cycloadditi

© 2023 The Author(s). Published by the Royal Society of Chemistry
strategies for its construction have been established. An enan-
tioselective approach to assemble heterocycle 40 involving
a three-component reaction of isatins 36, amines 37, and
nitroalkenes 38 catalyzed by chiral bifunctional squaramide 39
is well documented in this direction (Scheme 2).36

The oxidative aryl triuoromethylation reaction of activated
alkyls catalyzed by palladium was studied in intramolecular and
molecular oxidation reactions. The reaction allows the efficient
synthesis of various CF3-containing oxides 43 in moderate to
good yield. The preliminary mechanical studies indicated that
the reaction involves an intermediate of Csp3PdIV(CF3), which is
reduced to enable he formation of Csp3CF3 bonds (Scheme 3).61
4.2 Construction of the oxindole-based natural products

The enolate arylation/HWE sequence was also used for the rst
synthesis of the simple natural product soulieotine (23)
on for the synthesis of spirooxindoles.

RSC Adv., 2023, 13, 14249–14267 | 14253
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Scheme 4 Synthesis of E and Z-soulieotine.

Scheme 6 Synthesis of sunitinib.

Fig. 6 Bioactive molecules containing spiro-[pyrrolidin-2,3′-
oxindole].
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(Scheme 4). Soulieotine was isolated from the rhizomes of
Souliea vaginata, which is used as an anti-inammatory and
analgesic plant in traditional Chinese medicine. The PMB-
protected cyclization precursor was easily obtained from
aniline and using 3′-methylbutene as a trapping agent gave the
expected conductor, with an unoptimized yield as an isomer
mixture of alkene. It should be noted that enolate arylation
using Pd(OAc)2 was not successful, probably because of the
deprotection of PMB mediated by palladium(II) but proceeded
with tetrakis(triphenylphosphine)palladium. Aer TFA protec-
tion, the mixture of E and Z-soulieotine (2 : 1) was separated by
chromatography.62

Under the optimum conditions, a series of novel highly
functionalized spiropyrrolidine-oxindoles 52 was synthesized
via the 1,3-dipolar-cycloaddition of azomethine ylides derived
from isatine 49 and various amino acids such as sarcosine,
phosphate, and typroline, and dipolarophile (1,3-diphenyl-1H-
pyrazol-4-yl)-2-(1H-indole-3-carbonil)acrylonitriles. All synthetic
Scheme 5 Synthesis of spiropyrrolidine-oxindoles by [3 + 2]
cycloaddition.

14254 | RSC Adv., 2023, 13, 14249–14267
compounds have been evaluated for antimicrobial activity and
showed signicant activity (Scheme 5).63 The process involves
converting 5-uoroindolin-2-one, 5-formyl-2,4-dimethyl-1H-
pyrrole-3-carboxylic acid and its derivatives, and N1,N1-
diethylethane-1,2-diamine to give sunitinib 3. Sunitinib
produced by the above-mentioned process has only 93.87%
purity, as shown in Scheme 6.64

Pyrrolidin-2,3′-oxindoles 59–60 are representative spiroox-
indole compounds, which are notable heterocyclic frameworks
Scheme 7 Synthesis of oxindole spiro-P,N-polycyclic heterocycles.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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because they are widespread in many natural products and
synthetic compounds. They have a wide range of bioactivities
such as anticancer, antibacterial, and MDM2 inhibitory effects
(Fig. 6).65 A reliable stereoselective assembly strategy for the
construction of pyrrolidin-2,3′-oxindole cis-fused phosphadihy-
drocoumarin 58 was established. This process involves the
condensation of O-vinyl-phosphate salicylic aldehydes and 3′-
aminooxindoles, followed by intermolecular cycloaddition with
high diastereoselective and atom economy (Scheme 7).66
Scheme 10 3-Thioxindole addition by Michael reaction.
5. Chemical reactivity of 2-oxindole
and related derivatives in the presence
of chiral catalysts

Quinine-based catalysts 62 were rst applied in the Strecker
reaction of N-aryl isatin ketimines 61 with trimethylsilyl cyanide
(TMSCN) (Scheme 8) because at that time, the bifunctional
tertiary-amine catalyzed Strecker reaction was undeveloped,67

although Deng had reported a highly enantioselective chiral
tertiary-amine mediated ketone cyanosilylation to produce 63.68

Preliminary studies indicated that 10 mol% phosphinamide
catalyst afforded oxindole based on an aminonitrile.69,70 Despite
the unsatisfactory result, the phosphinamide catalyst afforded
clearly better enantioselectivity than analogous catalysts with
amide or thiourea as the H-bond donor.

This result exhibited their potency in other reactions and
triggered subsequent research on the catalytic enantioselective
addition of nucleophiles to isatin ketimines for the synthesis of
chiral 3-substituted aminooxindoles. The bifunctional phos-
phoramides were subsequently found to be potent catalysts for
the Michael addition of 3-substituted oxindoles 64 to
Scheme 8 Isatin ketimine asymmetric Strecker reaction.

Scheme 9 Asymmetric Michael addition.

© 2023 The Author(s). Published by the Royal Society of Chemistry
nitroolens 38 (Scheme 9).71–73 The resulting adducts are valu-
able synthons to access quaternary oxindole 66 and indoline
derivatives; however, previous studies relied on the use of highly
active N-protected 3-substituted oxindoles and had limited
substrate scope. Unprotected 3-substituted oxindoles were less
reactive but more convenient and atom-efficient to prepare. The
simple and easily available cinchonidine-derived phosphor-
amide is used to achieve high to excellent diastereo- and
enantioselectivity. Notably, both 3-aryl- and 3-alkyloxindoles as
well as aryl- and alkyl-substituted nitroolens are viable
substrates, giving the desired quaternary oxindoles with excel-
lent enantioselectivity. Later, with phosphoramide having
a bulky ester group, the highly enantioselective Michael addi-
tion of 3-alkylthio- and 3-arylthiooxindoles was developed,
giving various 3-substituted 3-thiooxindoles 69 in high yield
(Scheme 10). This reaction could be run on a gram scale with
only 1.0 mol% catalyst 68.74a

The oxides with adjacent tetrasubstituted stereocenters were
obtained in moderate yields and stereoselectivities by the
monothiomalonate (MTM) monocatalyzed conjugate addition
reaction of N-Cbz ketimines derived from isatin. This method
requires 2 mol% catalyst load and operates under moderate
reaction conditions. Both enantiomers can be used with
Scheme 11 Functionalization of the thioester and oxo-ester moieties.
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Scheme 12 Asymmetric olefin cyclopropanation reaction catalyzed
by Hg(II).

Scheme 14 [3 + 3] cycloaddition of nitrones in an enantioselective
manner.

Scheme 15 Reaction of difluoroenoxysilanes via Mukaiyama-aldol
reaction.
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Takemoto's catalyst or an alkaloid derivative of cinchona, with
good yields and excellent stereoselectivities. The synthetic
methodology allowed a direct route to the derivatives of the
antagonist of the agonist of the gene/cholecystokinin-B receptor
AG-041R. The reactivity of the connected functional groups can
be decreased by molecular crowding at nearby carbon atoms
that are fully substituted. In this reaction, the authors treated
ent-70 with 4-bromobenzylamine 71, which solely interacted
with the thioester group to afford the amide (intermediate), to
test if the differentially accessible oxo and thioester moieties
could be further functionalized. Alcohol 72 was produced by
further selective reduction of the oxoester moiety, which crys-
tallised, allowing the unambiguous assignment of the absolute
and relative stereochemistry of the addition products (Scheme
11).74b

The rst known instance of diazo compound-mediated
Hg(II)-catalysed olen cyclopropanation was revealed. Spi-
rocyclopropyl oxindoles can act as donor–acceptor cyclopro-
panes for complexity-generating synthesis,75 in addition to
being useful pharmacophores. In this reaction, enantioselective
cyclopropanation to obtain 76 was revealed using chiral
diuorophos 75 in conjunction with Hg(OTf)2 (Scheme 12).76

To produce cyclopropanes with high enantioselectivity, both
unprotected and N-methyl diazooxindoles performed well.
Ligand acceleration effects were observed because using 0.4
equivalent of chiral ligand in comparison to Hg(OTf)2 produced
comparable results. Furthermore, changing the counter anion
improved the catalytic properties, where diuorophos/Hg(OTf)2
failed in these reactions, whereas diuorophos/Hg(PF6)2 ach-
ieved high activity, albeit with moderate enantioselectivity, in
Scheme 13 Cyclopropanation of olefins catalyzed by Au(I).

14256 | RSC Adv., 2023, 13, 14249–14267
the cyclopropanation of disubstituted olens. These ndings
demonstrated that ligands could be used to modify the catalytic
properties of mercury dioxide (Hg(II)). The cyclopropanation of
di- and trisubstituted olens was then performed with high
enantioselectivity using an Au(I) catalyst. In fact, it is chal-
lenging to develop a general catalyst for the full control of
stereoselectivity in the cyclopropanation of trans- or cis-1,2-
disubstituted and trisubstituted alkenes due to the high sensi-
tivity of metallocarbenes to the steric hindrance and geometry
of alkenes. Potent catalyst ((S,S,S)-SKP L1) 78 enabled highly
stereoselective cyclopropanation with a variety of alkenes,
including monosubstituted, cis- and trans-1,2-disubstituted,
1,1-disubstituted, and even trisubstituted alkenes, which is
Ding's spiroketal bisphosphine-derived complex (Scheme 13).77

Adjusting the electron-withdrawing N-protecting group, the
synthesis of spirocyclopropyl oxindoles was revealed. The acti-
vation by an appropriate Lewis acid produced N-diethox-
yphosphoryl oxide 80, which can be converted into spirocyclic
oxindoles 83 and 3,5-disubstituted pyrrolidinone by [3 + 3]
cycloaddition with nitrone 81, cyclization with 1,4-dithiane-2,5-
diol, and ring opening/cyclization with primary amine. Under
Cu(OTf)2 catalysis, the N-benzoyl oxindole performed better in
the [3 + 2] cycloaddition with aldehyde (Scheme 14). The
absence of these transformations in the presence of unpro-
tected or N-methyl spirocyclopropyl oxindoles proves the
unmistakable activation effects of N-protecting groups. This
activation strategy works well to produce oxindole-based spi-
rocyclic tetrahydro-1,2-oxazine in catalytic enantioselective
reactions using spirocyclopropyl oxindoles. Surprisingly,
acetophenone-derived ketonitrones are also good substrates
and can be used to make spirooxindoles with nearby quaternary
and tetrasubstituted carbon stereocenters. Notably, this is the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 16 Synthesis of convolutamydine difluoro analogue.

Scheme 17 Mukaiyama aldol reaction of isatins.

Scheme 18 Mukaiyama–Michael addition reaction.

Scheme 19 Implications of phosphoramide.

Scheme 20 Triple asymmetric sequence.
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rst method to use the inactivated ketonitrones in enantiose-
lective catalytic synthesis; however, this eld has not received
much attention.78–83

It is common practice to modify the pharmaceutical prop-
erties of organic molecules by selectively adding a uoroalkyl
group. Consequently, oxindoles with a uoroalkyl group at the
C-3 position make intriguing targets for the creation of phar-
maceuticals and biological probes. However, although enan-
tioselective triuoromethylation has been extensively
investigated, enantioselective mono- or diuoroalkylation
techniques have not.84,85 The creation of chiral carbons with an
easily accessible mono- or diuoromethylated ketonemoiety via
selective uoroalkylation86 is challenging. It has been revealed
that amines can activate uorinated silyl enol ethers (FSEEs) for
enantioselective synthesis with the bifunctional tertiary-amine-
catalyzed Strecker reaction using TMSCN. Consequently, the
highly enantioselective Mukaiyama-aldol reaction involving
isatin 84 and diuoroenoxysilane 85 was catalyzed by urea
© 2023 The Author(s). Published by the Royal Society of Chemistry
derived from quinine 86, producing 3-hydroxyoxindoles 87
(Scheme 15).87

Given that the conguration of convolutamydines is R, they
are generated by the reaction of isatin 88 with olen 85 in the
presence of quinidine-based catalyst 89. The diuoro analogue
of convolutamydine E (91) was easily produced in 52% yield
aer the Baeyer–Villiger oxidation of 90 generated 92 in 85%
yield without the loss of ee (Scheme 16).19,88–90

According to Liu, the reaction of isatins 50 and 93 catalyzed
by 94 generates a quaternary chiral centre at the C-3 position of
oxindole. Even aer 3 days, the reaction in THF at 20 °C moved
slowly, producing the desired product 95 in 95% yield and with
modest stereoselectivities (Scheme 17).91

Monouorinated enol silyl ethers 97 derived from either an
a-uoroindanone or benzofuranone were also effectively acti-
vated by the chiral secondary amine phosphoramide 98 for
reaction with isatylidene malononitrile 96 to produce adjacent
and fully substituted carbon stereocenters. However, in this
instance, 98, which had a 1-pyrenylmethyl group on the
secondary amine moiety, had the best outcome. Mono-
uorinated oxindole derivatives 99 were produced under these
reaction conditions in excellent yield with high to excellent dr
and ee values (Scheme 18).92–94 Surprisingly, catalyst 102
enabled the reaction between 100 and 101 to be completed in
about 16 h at room temperature with acetone as the solvent,
producing 103 in 99% yield (Scheme 19).94

A novel MBH/bromination/annulation sequence made up of
three intermolecular reactions to build on the highly
RSC Adv., 2023, 13, 14249–14267 | 14257
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Scheme 21 Catalysis of asymmetric triple sequence.

Scheme 22 Tertiary amine nucleophilic catalysis with Au(I).

Scheme 23 Cyclopropanation of diazooxindole and styrene.

Scheme 24 Spirocyclopropyl oxindoles-based DOS (diversity-
oriented synthesis).
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enantioselective Morita–Baylis–Hillman (MBH) reaction of isa-
tins 84 and acrolein 105 has been developed. The oxindole-
based tetrasubstituted alkenes were produced by the tertiary-
amine-catalyzed MBH reaction, and then they underwent
a highly stereoselective [3 + 2] annulation with a variety of
activated ketones to produce bis(spiro)oxindoles 107 and spi-
rocyclic oxindoles with adjacent quaternary/tetrasubstituted
carbon (Scheme 20).95–97 Using 10 mol% of bifunctional thio-
urea 89 produced from quinine in Et2O at room temperature,
the range of the asymmetric 6p electrocyclization was investi-
gated. The required spirocyclic oxindole derivatives 109 were
produced in good yield by a variety of malonate–ketimines 108
with various substituents on the isatin framework (Scheme 21).
This process effectively combined the hydrogenation of nitro-
benzene by Pd, keta-imine formation by Brønsted acid, and
asymmetric electrocyclization by bifunctional tertiary amine in
one step. Because the one-pot process avoided racemic cycli-
zation of malonate–anilines during the purication by column
chromatography and signicant yield losses linked to the
purication of malonate–ketimines 108, the synthetic efficiency
signicantly increased. Also, the background electrocyclization
was suppressed and the bifunctional tertiary-amine-mediated
enantioselective reaction was not adversely affected by using
only 4 mol% TsOH to promote ketimine formation.98,99

Chiral tertiary amine 112 serves as a Brønsted base to
deprotonate and activate the nucleophilic reaction partner of
the Michael addition or amination reaction, while the Au-
catalyzed reaction provides the 3-substituted oxindole as the
nucleophile. As an alternative, the synthesis of chiral 3-alkeny-
loxindoles 113 from diazo-oxindoles 110, disubstituted furans
111, and TMSCN was highly enantioselective due to the inte-
gration of Au-catalyzed enone formation and tertiary-amine-
mediated cyanosilylation of ketones (Scheme 22).100
14258 | RSC Adv., 2023, 13, 14249–14267
Diazooxindoles are multifunctional cyclic diazo reagents for
the diversity-oriented synthesis (DOS) of substituted oxindoles
through reagent-controlled catalytic diversication, including
insertion, cyclopropanation, and cycloaddition reactions.
Diazooxindoles 114 are easily produced from isatins on a large
scale. When the counteranion was changed fromOTf to PF6, the
less reactive disubstituted alkenes were also suitable substrates
for this reaction. Consequently, when 5.0 mol% of in situ-
created catalyst 75/Hg(PF6)2 was utilised, R-methylstyrene 115
produced 116 in moderate yield, with two neighbouring
quaternary stereogenic carbon centres (Scheme 23).76
6. Miscellaneous reactivities of 2-
oxindole and related derivatives

Although protocols were restricted to substituted cyclopropane-
1,1-dicarboxylates or diketones, the cycloaddition of doubly
activated cyclopropanes is a successful method for the enan-
tioselective synthesis of cyclic compounds. A particular variety
of mono-activated cyclopropane is spirocyclopropyl oxindoles.
The low reactivity of these substances prevents the development
of new reactions and the associated catalytic enantioselective
studies, whereas Carreira invented and demonstrated the value
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 25 Catalysis of tertiary amine by asymmetric Au(I).

Scheme 26 Pd-catalyzed carboiodination reaction.

Scheme 27 Polyiodinated compounds employed in the carboiodi-
nation reaction.
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of their cycloaddition with imines. A method for activating
spirocyclopropyl oxindoles 117 using anN-protecting group that
draws electrons was described. This modication allows for the
bidentate coordination of oxindoles to chiral metal complexes
for improved enantiofacial control and effectively stabilizes the
negative charge developed at C-3 of an oxindole through charge
separation upon the activation of a Lewis acid (Scheme
24).78,81,82 Due to the superiority of cationic Au(I) catalysis in the
olen cyclopropanation of diazooxindoles, the advantage is the
previously unrecognized sequential Au(I)/chiral tertiary amine
catalysis as an alluring method to develop diversity-oriented
asymmetric tandem reactions, enabling the quick creation of
scaffold diversity from diazooxindoles. The success of these
tandem reactions, brought about by the high activity of cationic
Au(I) catalysis, allowed the use of only 1.0 mol% gold complex to
realize these transformations of diazooxindoles, although
cationic Au(I) catalysis is known to be incompatible with tertiary
amine catalysts. The performance of chiral tertiary amines,
which are used at a 10 mol% concentration, is not signicantly
impacted by the remaining gold catalyst.

The successful synthesis of multifunctional enone 123 paved
the door for the one-pot synthesis of chiral 3-alkenyloxindoles
by combining gold-catalysed enone production with catalytic
enantioselective addition of a nucleophile to the carbonyl group
of 123. Based on our ndings in the Strecker reaction employing
TMSCN catalysed by bifunctional tertiary amines, the authors
initially attempted the asymmetric cyanosilylation of enone.
Fortunately, bifunctional quinine-derived squaramide or (thio)
urea 112 could mediate this reaction, and up to 69% of the
desired product 124 was produced when 112 was utilised but
the reaction progressed slowly even with a 20% catalyst at 25 °C
(Scheme 25).100
7. Miscellaneous synthetic
approaches for 2-oxindole and related
heterocycles

The palladium-catalyzed Mizoroki–Heck reaction has been
a staple in the arsenal of organic chemists ever since it was
discovered in the 1970s. A C–X electrophile is added oxidatively
in this reaction, and followed by 1,2-migratory insertion. Base-
mediated HX reductive elimination regenerates the Pd(0) cata-
lyst, while a subsequent b-H elimination produces the unsatu-
rated cross-coupled product. The suppression of b-H
© 2023 The Author(s). Published by the Royal Society of Chemistry
elimination has historically been accomplished in several ways,
including electronic and steric bias of the catalyst or the
production of a neopentyl organometallic species devoid of b-
hydrogens. By using a tethered disubstituted olen in an
intramolecular 6-endo-trigtype cyclization of 125, the Grigg
group developed a method to disrupt the typical Mizoroki–
Heck-type mechanism in the early 1990s (Scheme 26).101–104

In a migratory insertion, a neopentyl species is formed,
which is incapable of undergoing b-H elimination in the pres-
ence of Pd(Q-Phos)2 129 and 1,2,2,6,6-pentamethylpiperidine
128 in toluene at 100 °C. Under these conditions, 130 was iso-
lated in 68% yield. With the optimized reaction conditions in
hand, the authors examined a series of diiodinated compounds
127. By extending these ndings to a one-pot multistep reaction
where both the carboiodination reaction and a conventional
palladium-catalyzed Mizoroki–Heck reaction on the other
halogen moiety were carried out, it showed that these scaffolds
could be used as an “oxindole linchpin” molecule in organic
synthesis (Scheme 27). Product 130 from both the intra-
molecular carboiodination reaction and the intermolecular
Mizoroki–Heck reaction were identied by in situ NMR analysis
of these reactions (precyclization).100 According to these nd-
ings, the catalyst may be able to reversibly add to each carbon–
iodine bond, enabling the two reactions to take place simulta-
neously with perfect selectivity.105

Fortunately, ve members of benzo-fused lactam 132 were
also easily isolated in 42% yield when compound 131 was used
as a substrate in these reaction conditions. In addition to the
carboiodination product 132, Heck reaction product 133 was
obtained with a yield of 32% probably by the 6-end cyclization
method (Scheme 28).106

When substrate 134 reacts with the precursor of benzene 136
in MeCN 90 °C with CsF and a Pd-(OAc)2/PPh3 (OAc) catalyst,
RSC Adv., 2023, 13, 14249–14267 | 14259
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Scheme 28 Enantioselective carbamoyl iodination reaction catalyzed
by nickel.

Scheme 29 Synthesis of Pd-catalyzed spirocyclic oxindole.

Scheme 30 Synthesis of Pd-catalyzed spirocyclic oxindole: potential
mechanisms.

Scheme 31 Chlorocarbamoylation reaction of Pd(II–IV).

Scheme 32 Borylated oxindole production catalyzed by copper.
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a small proportion of the expected product 137 was formed.
Subjecting 134 to these reaction conditions gave trace amounts
of 138 and 139. The spirocyclic structure 138 was conrmed by
spectroscopy and X-ray crystallography of single crystals. Taking
advantage of this initial result, the reaction conditions were
optimized to produce 138 in a yield of 79% and minimize the
formation of side products (Scheme 29).107–109 With the help of
an o-haloacrylamide substrate, it was possible to successfully
isolate and characterize a spirocyclic oxindole palladacycle. In-
depth research was done by the Garcia-Lopez group to clarify
how these reactions work (Scheme 30). Palladacycle was
synthesized from a halo acrylamide substrate and examined
using single-crystal X-ray crystallography. The important ve-
membered palladacycle was formed aer the s-alkylpalladium
complex was treated under C–H metalation conditions. Inter-
estingly, spirocyclic oxindole 142 was produced aer the alkyl-
palladium complex was treated with in situ-produced benzyne.
This provides evidence for both mechanisms. Inconclusive
attempts were made to isolate any intermediates produced
when benzyne was inserted into ve-membered palladacycle
141. Only the starting material and the nal product were
visible during NMR (nuclear magnetic resonance) reaction
monitoring, indicating that the organometallic intermediates
produced by benzyne insertion quickly broke down.108,109

Using a PdCl2L2 catalyst, the chlorination of an alkyne can be
achieved via chloropalladation reaction. The concurrent cycli-
zation of carbamoyl chloride 143 enabled the highly Z-selective
production of oxindoles 145 with the help of catalyst PA-Ph 144
14260 | RSC Adv., 2023, 13, 14249–14267
(Scheme 31).110 Subsequently, the oxindole products were
produced by cyclization with carbamoyl chloride through
a possible palladium(IV) intermediate. The teams of Hoveyda,
Ito, and Yun made signicant contributions to this eld. Using
styrenes containing tethered electrophiles, it is planned to apply
this technique intramolecularly to quickly access heterocyclic
scaffolds. In this procedure, the authors reported the use of
carbamoyl chlorides in a copper-catalyzed cyclization method to
synthesize enantioenriched substituted borylated oxindoles
148, continuing our interest in carbamoyl chlorides 146 as
electrophiles in metal-catalyzed reactions.

The active bis(diphenylphosphane) 147 catalyst is used in
the enantioenriched oxindole synthesis via cyclization into the
tethered carbamoyl chloride (Scheme 32).111 The chemistry
made possible by iodo-oxindoles is complemented by the
divergent approach of this methodology to oxindole function-
alization. Although conventional boronate oxidation produced
the oxidized product, Suzuki coupling of the boronate handle
produced the arylated oxindole with no erosion of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 33 Enolate arylation and domino addition catalyzed by Rh.

Scheme 34 Reductive arylation induced by enantioselective Rh
catalysis.

Scheme 35 Enantioselective Rh-catalyzed reductive arylation.

Scheme 36 Enantioenriched 3,3-disubstituted oxindoles through
a dual-metal approach.

Scheme 37 Synthesis of oxindole derivative by intramolecular a-
arylation.
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enantioselectivity. It should be noted that using a strong base
caused the hydroxyoxindole product to completely lose its
stereochemistry. This is probably because a retro-aldol-
oxidation sequence took place. The desired oxidation was ach-
ieved with no loss of enantioselectivity by using a milder base.

Researchers conducted a study on different a-arylation
techniques, and in the 1990s, Hayashi and Miyaura made the
initial discovery of rhodium-catalyzed addition to unsaturated
systems, which yielded metal enolates in a safe and consistent
manner. Amine 149 was treated with [Rh(COD)Cl], [PhB(OH)2],
and KOH at 50 °C in dioxane/water solution (10 : 1). Aer 3 h,
150 was isolated with a yield of 21% of a mixture of 151 and 152,
which was eliminated through Rh(I)-catalyzed Heck-type
processes. Attempts to suppress these by-products using
substrates such as 152 resulted in complex mixtures (Scheme
33). Although a crucial component of this strategy is the
oxidative addition of an Rh(I) species into a C(aryl)X bond, there
are fewer examples of this than for palladium and nickel.112–119

The objective to make enantioselective chiral quaternary
oxindole using ferrocene chiral ligands 154 was revealed. The
investigation into other substitutes and nucleophiles was
sparked by this result, specically the addition of a hydride to
acrylamide 153. The 3,3-disubstituted oxindoles 155 were
delivered efficiently in up to 86% yield (Scheme 34).120

Conversely, 153 was subjected to the sodium deuterate format
and H2O, makingmonodeuterated 157 the main product, which
conrmed that the hydroxide actually came from sodium
formate. In addition, small quantities of multi-deuterium and
non-deuterium products were also observed in mass
© 2023 The Author(s). Published by the Royal Society of Chemistry
spectroscopy, possibly suggesting that deuterium incorporation
can be a reversible process through the elimination of b-
hydrides (Scheme 35).120

Numerous groups have extensively researched the use of
allylic electrophiles such as p-allylpalladium species, with the
pioneering work by the Tsuji and Trost group. The authors
optimized the transition metal-catalyzed C–H functionalization
of a-diazoamide 159 substituting 4(triuoromethyl)-phenyl-
succinate to produce a high yield of enantioenriched oxin-
doles 161 based on Pd-catalyzed asymmetric allylic alkylation
(AAA) using amine-based catalyst 160. In 2016, allyloxindoles
were synthesized under the inuence of Ru- and Pd-based
catalysis (Scheme 36).121–124

An interesting procedure to synthesize substituted oxindoles
by intramolecular a-arylation of uoro- and chloro-substituted
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Scheme 38 One-pot mechanism through radical addition reaction.

Scheme 39 Effect of the acyl group on the O-to-C rearrangements.

Scheme 40 Oxidative carbonylation of alkenes with aldehydes.

Scheme 41 Main approaches to CF3-containing oxindoles.

Scheme 42 Transition-metal-catalyzed aryltrifluoromethylation of
alkene.

Scheme 43 Applications of isatin-derived p-QMs for the synthesis of
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anilides 162 in dimethylformamide at 80 °C, mediated by
potassium tert-butoxide was revealed. Consequently, product
163 was produced in 61% yield (Scheme 37).125

A three-component reaction involving N-(arylsulfonyl)acryl-
amides 164, DABSO (DABCO-bis(sulfur dioxide)), and phenyl-
diazonium tetrauoroborates and Cu(OAc)2 was used to access
sulfonated oxindoles 165. When aryldiazonium tetra-
uoroborates and DABSO react, arylsulfonyl radicals are
produced in situ, which initiates this transformation. Then, the
formation of four new bonds occurs sequentially in one pot
through radical addition, radical cyclization, and desulfonyla-
tive 1,4-aryl migration to produce the nal product. This
method exhibits high product yield and strong functional group
tolerance (Scheme 38).126

The common natural product 168 derived from indole has
a quaternary stereocenter at the C-3 position of heterocycle.
Catalyst 167 promotes the asymmetric synthesis of these
compounds by rearranging O-acylated oxindole 166 (Scheme
39).127 An effective method for the chiral synthesis of oxindole
was established by carbonylation with aldehydes 170 and N-
arylacrylamide 169. Three functionalized oxides 171 were
smoothly synthesized in high yield with FeCl3 as the catalyst
and tertiary butyl hydro-peroxide as the oxidizer. The obtained
oxindoles can be used for further transformation to give various
indole alkaloid structure motifs (Scheme 40).128
14262 | RSC Adv., 2023, 13, 14249–14267
Under metal-free conditions, a light and efficient tri-
uoromethylation of oxindole 173 was developed using N-aryl-
acrylamide 172. This method is catalyzed by PhI(OAc)2 and
mediated through TMSCF3. This method provides practical
access to a variety of useful CF3-containing oxides with
moderate to good yields (Scheme 41).129

The intramolecular triuoromethylation of N-arylacrylamide
169 catalyzed by copper leads to oxide derivatives from the
stable and cheap Langlois (CF3SO2Na) reagent to give corre-
sponding oxindoles 174. These reactions occur through
a radical process in water at ambient temperature. This method
is advantageous in terms of being a green approach (Scheme
42).130

A catalyst-free and controllable reaction was developed
between para-quinone methides derived from isatin 175 and
sulfur ylides 176. This protocol allows the synthesis of different
valuable oxindole derivatives 177 in a wide spectrum with high
stereoselectivity (Scheme 43).131 An asymmetric palladium and
copper sequential Heck/Sonogashira reaction between o-
iodoacryl anilides and nal alkyls was developed to synthesize
chiral oxindoles 181 by the reaction of methyl 178 and para-
methoxyphenyl (PMB) 179 in the presence of catalyst 180. A
wide range of CF3-substituted O-iodoacryl anilides react with
terminal alkynes and provide the corresponding chiral oxin-
doles with quadruple stereogenic triuoromethylated centres in
high isolated yields and excellent enantioselectivity. This
oxindole derivatives.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 44 Enantioseletive synthesis of CF3-substituted oxindoles.

Scheme 45 Synthesis of bioactive spirocyclic oxindoles.

Scheme 47 Multi-component cascade reactions.

Scheme 48 Carbamoyl chlorination reaction catalyzed by Pd(0).
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asymmetric Heck/Sonogashira reaction provides a general
approach for the insertion of oxindole derivatives containing
quaternary stereogenic centers, including those that replace CF3
(Scheme 44).132

The activation of cyclohexanone by enamine formation for
cascade reactions is crucial for synthetic chemists. This concept
was revealed using cyclohexanone 182, nitrostyrene 38, and L-
proline 183. Subsequently, the rst test reaction using substrate
184, in the presence of the basic organic catalyst DBU and
MeOH to promote the domino Michael-aldol reaction was re-
ported. The chiral oxindole having quaternary centre 185 was
isolated in mild yield (Scheme 45).133

Using 3-alkyloxindole 186, a derivative of oxindole was
synthesized, beginning with the C-3 nitrogen atom. These
derivatives were tested in ve human tumor cell lines and in
healthy donor primary cells (PBMCs), providing compounds
with high anticancer effects in low micromolecular areas of all
cancer cells. The authors reported the green synthesis of
iminophosphorane-based oxindole derivatives 187, which are
potentially useful in medicinal chemistry (Scheme 46).134 The
Rh2(OAc)4-catalyzed multi-component reaction of in situ-
generated ethyl diazoacetate (EDA) 189 and isatylidene malo-
nonitrile 100 in the two-phase solvent of water and ethyl acetate
using copper triate was described for the synthesis of chiral
oxindole. The Michael-type adducts of hydroxyl oxonium ylide
Scheme 46 Synthesis of 3,3-disubstituted oxindole derivatives.

© 2023 The Author(s). Published by the Royal Society of Chemistry
and malononitrile isatylidene underwent so inner-molecular
ring closure to obtain 190 as the nal product with the excel-
lent yield of 98% yield at 50 : 50 diastereoselectivity (Scheme
47).135

The desired products 192 were only produced in very small
amounts because this strategy was incompatible with the synthesis
of methylene oxindoles. Using carbamoyl chloride 191 tethered to
an alkyne moiety, a different approach that may provide access to
the highly desired halogenated methylene oxindole scaffold was
discovered. The reaction, which made use of Pd2(dba)3 and the
large phosphaadamantane ligand 144, proved to be extremely
selective by directing the reductive elimination trans to the initial
carbopalladation site (Scheme 48).136

Due to inability of nickel to form a C(sp3)–Cl bond, an
external iodide source had to be added to carry out in-place
halogen exchange and enable the reductive elimination of the
C(sp3)–I bond. The nickel-catalyzed cross-coupling cyclization
reactions were carried out with carbamoyl chlorides 193 as the
electrophiles. The asymmetric transfer of a carbamoyl chloride
surrogate across a tethered disubstituted styrene using Ni-t-
BuPHOX catalyst in the presence of Mn(0) and a nucleophilic
Scheme 49 Carbamoyl iodination process catalyzed by enantiospe-
cific nickel.
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Scheme 50 Reaction of arylcyanation catalyzed by nickel.
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source of iodide (KI) produced oxindole derivatives 195 having
a chlorine moiety (Scheme 49).137

The authors reported that Zn(CN)2 was used as the source of
cyanide in the NiCl2(glyme)DIOP catalytic system, which
produced cyanated oxindole products (Scheme 50). By adding
activated zinc dust to the reaction mixture, the air-sensitive
Ni(COD)2 was avoided, enabling the use of the manageable
(S,S)-DIOP 197 as the catalyst. The “chain walking” reaction,
which was popularized by the work of Martin and Marek and
others, produced a remotely cyanated oxindole 198 scaffold in
one substrate.138,139
8. Conclusions

In this account, we discuss the outcomes of the design, develop-
ment, and use of synthetic methodologies for the catalytic enan-
tioselective synthesis of 3,3-disubstituted oxindoles. We reported
several effective protocols based on different techniques that are
categorized by the oxindole synthons used, making it simple to
access oxindole-based natural products and synthetic derivatives
with a wide range of structural diversity. Also, we reported the
synthetic methodologies with a variety of potential bioactive
applications. The development of quinine, thioquinine, and
phosphoramide-based chiral bifunctional catalysts or ligands is
important given that the success of bifunctional catalysts in the
Michael addition, which have some advantages over other H-bond
donors. Additionally, the chemical reactivity of 2-oxindole-based
derivatives was also described to understand the chemical reac-
tivity pattern of this class of molecules. The use of Mizoroki–Heck-
inspired domino cyclization reactions, 1,2-addition–cyclization
domino sequences, and MCR strategy involving C–H functionali-
zation can produce and derivatize these valuable structures.
Although all these methods build the basic oxindole scaffold, each
one has advantages and depends on a wide variety of fundamental
reactivity. We anticipate that the techniques and approaches
created will serve as models for developing approaches for other
biologically signicant scaffolds.
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