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networks
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Electrolyte solutions play a vital role in a vast range of important materials chemistry applications. For

example, they are a crucial component in batteries, fuel cells, supercapacitors, electrolysis and carbon

dioxide conversion/capture. Unfortunately, the determination of even their most basic properties from

first principles remains an unsolved problem. As a result, the discovery and optimisation of electrolyte

solutions for these applications largely relies on chemical intuition, experimental trial and error or

empirical models. The challenge is that the dynamic nature of liquid electrolyte solutions require long

simulation times to generate trajectories that sufficiently sample the configuration space; the long range

electrostatic interactions require large system sizes; while the short range quantum mechanical (QM)

interactions require an accurate level of theory. Fortunately, recent advances in the field of deep

learning, specifically equivariant neural network potentials (NNPs), can enable significant accelerations in

sampling the configuration space of electrolyte solutions. Here, we outline the implications of these

recent advances for the field of materials chemistry and identify outstanding challenges and potential

solutions.
1 Introduction

Electrolyte solutions are crucially important for materials
chemistry, particularly for energy and sustainability applica-
tions. For example, the choice of electrolyte solution impacts
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the efficiency and safety of battery storage, supercapacitor and
carbon capture/conversion technologies, in which they are
deployed. They are also fundamental to the water splitting/
treatment processes. In all of these applications the specic
ions that are present can have a dramatic impact on the overall
behaviour of the system.1 For example, sodium ions are more
weakly solvated than lithium ions. This can result in lower
desolvation energy barriers and hence improve the kinetics of
battery charging.2 Additionally, replacing potassium with
sodium has been shown to substantially accelerate the
Queensland and has just commenced as a Lecturer in Applied
Maths and Physics at Griffith University. He is working on
modelling and simulation of electrolyte solutions combining
continuum solvent models, ab initio molecular dynamics and deep
learning. He is focussed on developing these techniques for
application to improving electrochemical energy storage and CO2

capture and conversion. He completed his PhD in the Applied
Mathematics Department at the Australian National University in
Canberra before carrying out postdoctoral research at Pacic
Northwest National Laboratory in Washington State, USA. Junji
Zhang is completing her PhD at the University of Queensland in
Chemical Engineering. She completed a master's in chemical
engineering at the University of Queensland and a bachelor's of
biochemical engineering at Hebei University of Technology. Joshua
Pagotto is completing his undergraduate studies in Chemistry and
Chemical Engineering at the University of Queensland.

This journal is © The Royal Society of Chemistry 2022

http://crossmark.crossref.org/dialog/?doi=10.1039/d2ta02610d&domain=pdf&date_stamp=2022-09-26
http://orcid.org/0000-0001-5066-6298
http://orcid.org/0000-0003-3772-8057
https://doi.org/10.1039/d2ta02610d
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA010037


Perspective Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
6 

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
02

4/
10

/1
2 

23
:5

4:
19

. 
View Article Online
extraction of CO2 from air using hydroxide solutions.3,4 Finally,
the cation can have a signicant effect on the products
produced by electrocatalytic CO2 reduction5 and water
splitting.6

To address the energy and sustainability challenges faced by
modern society, signicant advances in the performance of all
of these applications are necessary. Towards these advances,
scientists and engineers need the ability to design electrolyte
solutions based on a quantitatively accurate molecular under-
standing of their properties. This ambition is depicted in Fig. 1.

Quantum density functional theory (DFT) is a crucial and
well established tool in understanding, designing and opti-
mising new solid state materials. Although, there are still some
limitations and challenges associated with the accuracy and
efficiency of these methods.7 In contrast, the use of DFT for
understanding, designing and optimising electrolyte solutions
has beenmore limited. In fact, even themost basic properties of
electrolyte solutions such as the solubility of sodium chloride in
water still cannot be predicted accurately from rst principles.8

Additionally, explaining specic ion effects remains a signi-
cant challenge.1,9 Knowing the properties of the electrolyte
Fig. 1 Electrolyte solutions composed of ions dissolved in a solvent
play a fundamental role in a vast range of important materials science
applications, such as electrochemical energy storage and CO2

capture/conversion, which are key to combating climate change.

This journal is © The Royal Society of Chemistry 2022
solution such as conductivities and solubilities is critical for
large scale models of important systems. Additionally, many key
phenomena occur at the electrode–electrolyte interface.5,10

Therefore, an accurate theoretical treatment of the solid state
alone is oen of only limited use. For example, intercalation in
batteries and electrocatalytic reduction are both interfacial
processes.

Currently, researchers rely heavily on experimental data-
bases of electrolyte solution properties. Unfortunately, these
oen contain unreliable data or are missing key pieces of
information.11,12 For instance, the activity coefficients of many
fundamental electrolytes such as lithium bicarbonate and
rubidium hydroxide in water have never been reported in the
experimental literature to the best of our knowledge.13

In recent years, researchers have focused on developing
predictive approaches to the design of electrolyte solutions for
battery applications using large datasets14,15 such as the elec-
trolyte genome project.16 This work could be accelerated by
improving the availability and reliability of the underlying data
they rely on.

Our understanding of electrolyte solutions lags behind that
of solid state electrodes because electrolytes are inherently
more dynamic. This means that any reliable treatment of elec-
trolyte solutions requires a well converged statistical descrip-
tion to determine the relative prevalence of various
congurations, which signicantly increases the computational
cost of studying electrolyte systems. Additionally, long range
electrostatic interactions play a key role in the behaviour of
electrolyte solutions requiring large system sizes. Finally, small
inaccuracies in the predicted energies of different structures
can bias the statistical sampling leading to signicant errors in
predictions. This means that high levels of quantum mechan-
ical (QM) theory are required. In contrast, solid materials,
normally occupy a well dened minimum energy conguration,
removing the need for statistical sampling and reducing the
sensitivity to minor errors in the predicted energies.

Given the challenging nature of this problem, signicant
approximations are almost universally used. One is to abandon
the expensive quantum mechanical description, and instead
employ classical molecular dynamics simulations (CMD).
Alternatively, the complicated statistical description is aban-
doned and calculations using xed ion–solvent clusters (ISC) of
molecules are performed. Both of these methods can be useful
in certain circumstances. However, despite their wide use, these
methods have never been demonstrated to predict various basic
benchmark properties of electrolyte solutions and cannot
therefore be expected to provide quantitatively accurate
predictions of realistic systems. This is a fundamental limita-
tion of these approaches as they neglect key aspects of the
system.

Research into systems involving electrolyte solutions has
been held back by this fundamental challenge for decades. We
believe a fundamentally new and different approach is long
overdue. In this perspective we outline how exciting recent
developments in the eld of deep learning, specically equiv-
ariant neural network potentials (NNPs), have the potential to
nally provide such an approach. These methods enable long
J. Mater. Chem. A, 2022, 10, 19560–19571 | 19561
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time and large spatial scale simulations of electrolyte solutions
while maintaining a high level of quantum chemical accuracy.
Before the utility of this method can be demonstrated with
application to real systems of direct practical relevance, it is
important to demonstrate its validity by reproducing key
fundamental benchmark properties of electrolyte solutions. In
this article, we provide such a demonstration, showing that the
hydration structure of a sodium ion in water can be adequately
reproduced. We also outline additional fundamental properties
of electrolyte solutions that should also serve as key bench-
marks. Specically, we focus on predicting the radial distribu-
tion functions, chemical potentials, diffusivities and reaction
rates. In addition to providing key benchmarks, these proper-
ties are also necessary inputs into large scale modelling of
practically important systems. Their determination is therefore
highly important in cases where these values are not experi-
mentally available.

We believe this technique is approaching a level where it will
soon have real predictive value for designing the next genera-
tion of materials for critical energy and sustainability
applications.
2 Key properties

Firstly, we discuss in greater detail some of the key benchmark
properties of electrolyte solutions that any approach should aim
to predict quantitatively. Once these fundamental properties
are reproduced using these methods, we can move on to more
complex and practically relevant systems such as electrode–
electrolyte interfaces.
2.1 Chemical potential

The chemical potential is one of the most fundamental prop-
erties of any electrolyte solution. The chemical potential of
a given species is dened as the rate of free energy change with
addition of that species to the system. In simplied form, it is
given by:

mi ¼ m0i + kBT ln cigi (1)

m0i is the chemical potential of a single ion in water at innite
dilution, or equivalently the solvation free energy, ci is the
concentration of the species i, and gi is the activity coefficient of
the species i at the concentration ci.17 In essence, this quantity
represents the stability of a particular species. It is the key
thermodynamic property for determining chemical and phase
equilibria, as it describes the tendency of a chemical species to
change phase or undergo chemical reactions. For example, the
chemical potential is required to predict salt solubilities and ion
speciation.18 Chemical potentials can be related to many other
important properties of electrolyte solution systems such as
redox potentials, standard electrode potentials, pKa's etc.19
2.2 Activity and osmotic coefficients

Activity coefficients describe the deviation of a given species
from ideal (Raoultian) solution behaviour. They are closely
19562 | J. Mater. Chem. A, 2022, 10, 19560–19571
related to the osmotic coefficients, which capture the deviation
from ideal behaviour of the osmotic pressure, another key
thermodynamic property of electrolyte solutions. Osmotic
coefficients can be converted from activity coefficients based on
the Gibbs–Duhem equation.18 Researchers have focused on
developing theoretical methods to calculate thermodynamic
properties such as activity/osmotic coefficients for over
a century.18 However, this problem remains largely unsolved.
Essentially, all processes of practical interest occur at concen-
trations where the non-ideal behaviour captured by these
coefficients can neither be neglected nor accurately estimated
with classical theories. The only option currently to describe
these effects is to use equations with parameters extensively
tted to experiment, such as the Pitzer equations.20 However,
this approach fails for any case that isn't well characterised, and
in practice oen these non-ideal effects are ignored entirely.
2.3 Radial distribution function

The radial distribution function (RDF) is another critical prop-
erty that describes the structure of electrolyte solution. It
corresponds to the normalised average density of atoms around
a given reference atom. In general, it can be dened as the ratio
of the averaged local density of particles at the distance r, to the
bulk density of the particles, as follows:

g(r) ¼ r(r)/r(N) (2)

where r is the density. The radial distribution function can be
calculated directly from molecular dynamic simulations, or
through integral equation approaches, such as the Ornstein–
Zernike equation with a closure approximation. It can be used
to connect microscopic information to macroscopic properties
such as activity/osmotic coefficients and many other thermo-
dynamic properties via Kirkwood–Buff theory.21,22
2.4 Potential of mean force

Changes in the free energy are critical for understanding the
thermodynamics and kinetics of electrolyte solutions. The
potential of mean force (PMF) describes the free energy of two
species as a function of separation averaging over all other
molecular congurations. For electrolyte solutions, the PMF
can be calculated directly from the radial distribution function
as:

w(r) ¼ �kBT ln [g(r)] (3)

It can therefore be indirectly computed by Monte Carlo or
molecular dynamic simulations. While in principle the PMF
depends on concentration, its innite dilution limit is a partic-
ularly important quantity that is useful for determining ther-
modynamic properties.21,23
2.5 Kinetic properties

While most equilibrium properties can be related to the
chemical potential, kinetic properties can be more challenging
to determine, particularly for cases involving rare events.
This journal is © The Royal Society of Chemistry 2022
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However, some important kinetic properties can be related to
thermodynamic properties such as the chemical potential. For
instance, activities can also be related to chemical reaction rates
via the Brönstead–Bjerreum equation24 and free energy barrier
heights or even binding energies can oen be a good predictor
of kinetic processes.2 Some kinetic properties, such as diffusion
coefficients, can be determined directly from MD simulations
when they are run sufficiently long. For rare-event problems,
enhanced sampling techniques such as metadynamics or
umbrella sampling can be employed.

3 Theoretical methods

Currently there is no well established method for quantitatively
predicting any of the properties outlined above. It is important
to understand the reason for this inadequacy of existing
approaches in order to contextualise the usefulness for the
latest deep learning advances.

A summary of the key points of this section is provided in
Table 1.

3.1 Continuum solvent models (CSM)

Continuum solvent models (CSMs) or implicit solvent models
are widely applied in modelling aqueous electrolyte solutions,
especially for thermodynamic property prediction. While there
are a diverse range of these models, they are dened by the fact
that they treat the solvent as a continuous medium rather than
being composed of explicit molecules. Compared with explicit
solvent models, continuum solvent models have far fewer
degrees of freedom, and hence much lower computational
requirements. Continuum solvent models applied to electro-
lytes originated over a century ago with the work of several
Nobel prize winning scientists.18,25 Subsequently, computa-
tional methods were developed that enabled continuum solvent
models to be combined with quantum mechanical calcula-
tions.26 In continuum solvent models, a cavity is constructed
with an appropriate shape and size that contains the solute. The
key parameters needed for these models are the ionic cavity size
and solvent dielectric constant. Born developed a model
calculating the solvation free energy of ions with this
approach,25 which shows good qualitative agreement although
it requires some improvements.27 Debye and Hückel also
developed a continuum solvent model for activity coefficients
computation which works quantitatively at low
concentrations.18
Table 1 A summary of the different approaches to theoretical study of ele
criteria of accuracy efficiency, simplicity and interpretability

Approach Accur

Continuum solvent models (CSM) Low
Classical molecular dynamics (CMD) Mode
Ion–solvent clusters (ISC) Mode
Ab initio molecular dynamics (AIMD) High
ISC/CSM Mode
AIMD/CMD (a.k.a. QM/MM) Mode
Neural network potential molecular dynamics (NNP-MD) High

This journal is © The Royal Society of Chemistry 2022
The use of these techniques is extremely common in mate-
rials science applications where particular implementations
such as the Poisson–Boltzmann equation, PCM, SMD or
COSMO26 are most oen used. Sophisticated implementations
of these methods have enabled the study of electrolyte solutions
at electrode interfaces.28,29 The essential problem with these
models is that they do not include realistic short range inter-
actions of ions with other ions and solvent molecules. This
limits their rigorous range of validity to very low concentrations.
Some success has been made with building modied
continuum solvent models with more realistic short range
interactions to extend the theory to higher concentrations but
some reliance on adjustable parameters invariably
remains.28,30,31
3.2 Classical molecular dynamics (CMD)

Classical molecular dynamics (CMD) simulates molecules as
explicit particles with charges to account for the electrostatic
interactions; Lennard-Jones potential to characterise short
range Pauli repulsion and medium range dispersion interac-
tions; and harmonic potentials to capture chemical bonds.
More sophisticated models have been developed to describe
effects such as polarisation and charge transfer. The potential
energy/forces are calculated and then Newton's second law is
used to compute a trajectory of all the atoms as a function of
time. These methods are now highly developed and applied in
many scientic elds, such as material design and drug
discovery. CMD simulations can be run for very large systems
with relatively moderate computational cost without signicant
technical difficulty. However, their key limitation is that they
require many parameters which can be very difficult to deter-
mine. These parameters have to be adjusted to reproduce
properties such as solvation free energies and activity coeffi-
cients.22,32 This limits the generalisability and usefulness of
these models as they are only applicable to electrolyte solutions
that are already well characterised experimentally. Further-
more, signicant effort needs to be invested to optimise and
adjust their parameters and generalising these parameters to
new systems can lead to new issues. For example, parameters
optimised for bulk may fail when used to simulate an
interface.33

CMD can reproduce experimental properties such as activity
and osmotic coefficients in some cases, if the parameters are
carefully adjusted. However, almost invariably signicant
ctrolyte solutions and a subjective assessment of their properties in the

acy Efficiency Simplicity Interpretability

High High High
rate Moderate Moderate Moderate
rate Low Moderate Moderate

Low Moderate Low
rate Low Moderate Moderate
rate Low Low Low

Moderate Moderate Low

J. Mater. Chem. A, 2022, 10, 19560–19571 | 19563
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Fig. 2 A depiction of the fundamental accuracy/efficiency tradeoff
between the different methods currently used to model electrolyte
solutions and the potential for neural network potential molecular
dynamics (NNP-MD) to breakthrough the accuracy/efficiency
tradeoff.
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deviations and breakdowns occur compared with experiments
due to difficulties associated with the accurate determination of
the parameters.21–23

Sophisticated many-body inter atomic potentials extensively
tted to high level quantum chemistry calculations on small
clusters is a promising pathway currently being explored to
overcome the challenge of parameter determination of classical
methods.34–36

3.3 Ion–solvent clusters (ISCs)

In cases where reliable parameters do not exist, and where
CSMs fail to provide sufficient accuracy, researchers oen use
quantum chemistry calculations on small ion–solvent clusters
(ISCs).37,38 These clusters are oen embedded in a continuum
solvent model. However, it is difficult to make denitive
conclusions from this approach because the range of congu-
rations the clusters can occupy is extremely large. This makes it
very difficult to obtain a representative sample. As a result it is
oen unclear whether the conclusions drawn are reliable or an
artefact of the particular cluster structures used. The additional
effort associated with identifying the correct representative
minimum energy structures and limited improvements in
accuracy also limit the usefulness of this approach.

3.4 Ab initio molecular dynamics (AIMD)

Ab initio molecular dynamics (AIMD) calculates the energies
and forces on the nuclei using quantum chemistry rather than
with a classical force eld. This means it bypasses the param-
eter determination problem of CMD. The key challenge for
AIMD is nding approximations capable of solving the
Schrödinger equation with sufficient accuracy and efficiency.
DFT is the most common level of theory used. It usually relies
on the Born–Oppenheimer approximation, which assumes that
electronic motions and nuclear motions are separable.
Although AIMD is much more expensive computationally than
CMD, there is still a signicant and growing amount of research
into using AIMD to research structural properties of electrolyte
solutions39 and even a few cases where it has been used to study
thermodynamic properties.31,40,41 For example, AIMD has been
used to demonstrate the iodide anion is not strongly adsorbed
to the air–water interface, contradicting the predictions of CMD
simulations.33 AIMD has also been used to compute ion solva-
tion energies accurately41 and even activities in a moderate
concentration range where like ion interactions can be neglec-
ted.31 However, the high computational demand of this
approach limits its practical use. Specically, it is only available
to researchers with access to large computational resources and
can only be applied to small scale, simple properties. Addi-
tionally, even at a quite high level of theory some inaccuracies
can remain that need to be corrected.42 We are therefore stuck
in a trade off between efficiency and accuracy reminiscent of the
well known trade off between energy and power density
observed for electrochemical energy storage systems as shown
in Fig. 2.

These approaches can be combined in various ways such as
QM/MM simulation where AIMD and CMD are combined43 or
19564 | J. Mater. Chem. A, 2022, 10, 19560–19571
QM/CM where AIMD and ISC models are combined.44 While
these methods are promising, the challenges associated with
interfacing these different methods introduces signicant
additional complexity, requiring signicant careful and detailed
assessment.
3.5 Neural network potential molecular dynamics (NNP-MD)

The use of neural network potential molecular dynamics (NNP-
MD) has the potential to allow large spatial and long temporal
scale molecular simulations while maintaining a DFT level of
accuracy. The underlying theoretical details of these methods
are beyond the scope of this review and we refer the reader to
several excellent reviews of these methods that have recently
been published for more detail.45–51 At a high level these
methods work by dening a mapping between atomic coordi-
nates to energies and forces (occasionally virial tensors also).
This mapping contains a large number of parameters (weights
and biases) that can be systematically adjusted to minimise the
error on a set of training data, combined with an algorithm to
systematically optimise the parameters (Backpropagation). The
training data consists of a set of coordinates and their respec-
tive energies/forces. This training data can be obtained from
short AIMD runs or from resampling of classical MD runs with
DFT calculations. A standard approximation is to treat the total
energy as the sum of individual atomic energies.

Once these parameters have been optimised the network can
be used to predict the energies and forces, for any set of coor-
dinates at a much lower computational cost than the original
method. This enables much longer temporal and larger spatial
scale simulations. Additionally, because the energy is a sum of
individual atomic energies, these methods can be applied to
simulate much larger scale systems than the training data.
This journal is © The Royal Society of Chemistry 2022
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These methods have already been scaled up to simulate simple
systems containing billions of atoms.52 They have also very
recently been incorporated into an automated workow to
enable calculation of redox potentials, acidity constants, and
solvation free energies.53

An additional key advantage of these approaches is that
thermodynamic integration can be rigorously implemented
relying only on a neural network trained on the initial and nal
states.53,54 This is because the intermediate states can be created
by a linear combination of the two force elds. Thermodynamic
integration is a key tool for the calculation of the chemical
potential and related properties so this is an important
advantage.

3.5.1 Architectures. A standard (NNP) architecture converts
the atomic coordinate information of some local cluster of
atoms into a descriptor vector, these descriptors are then fed
into a standard neural network that predicts a single energy
value for each atom. These can be summed to compute the
energy of the whole system, and differentiated to compute the
force. DeePMD-kit55 is an example of a soware package, which
implements this architecture. While this type of approach has
shown promise in various applications52,56–59,59–63 it can have
large training data requirements, which limits its usefulness as
the generation of sufficiently large training data is still
computationally very demanding.

Therefore, a signicant amount of research effort is currently
focused on developing improved, more sophisticated architec-
tures to describe the potential energy surface, which in prin-
ciple should be able to reduce the amount of required training
data.64–74 Many of these approaches incorporate new and
exciting architectures known as graph neural networks (GNNs)
or message passing neural networks (MPNNs). These
approaches normally represent each atom as a multidimen-
sional feature vector, which is a function of the atomic number
and is iteratively updated using information about the distances
and feature vectors of surrounding atoms. These features are
combined with more standard neural networks to determine
atomic energies.

A crucial feature of these architectures is that they are care-
fully designed to maintain invariance to molecular rotation,
translation and permutation. Recently, there has been an
increased focus on building models that are additionally
equivariant to rotations.48,75,76 In essence, this assures that
rotating the molecular conguration input into the neural
network, results in equivalent rotations of the tensors associ-
ated with the atoms. An example of this is the recently devel-
oped Neural Equivariant Interatomic Potentials (NequIP)
approach.69 NequIP has been shown to perform with high
accuracy based on a much smaller data set compared with
DeepMD, i.e.,using three orders of magnitude less AIMD
training data. Equivariance was demonstrated to be key to this
improvement.

The specic speed up possible with these methods depends
signicantly on the particular methods and implementation
used. In the application we demonstrate below, NequIP enables
a speed up of approximately three orders of magnitude
compared to the original AIMD method. While this is still
This journal is © The Royal Society of Chemistry 2022
slower than standard CMD, it still enables qualitatively new
phenomena to be studied using only a single GPU. This is
a rapidly developing eld with many new approaches from the
eld of deep learning being incorporated and tested with
promising results,77 indicating that further improvement is
likely possible.

These methods are now mature enough to be applied to
compute structural and kinetic properties of many systems,
particularly electrolyte solutions, at an ab initio level of accu-
racy. Below, we provide a simple demonstration of these
methods by applying them to simulate the structure and
diffusivity of a sodium ion in water. These properties can then
be fed into well-established theories such as Kirkwood–Buff
theory,78 the modied Poisson–Boltzmann equation28,79 and
kinetic models to predict important practical properties. We
demonstrated an example of such an approach for computing
the activities/osmotic coefficients of aqueous sodium and
chloride ions in a recent preprint.80

Once the reliability of this approach is rmly established it
should be scaled up to many cases to contribute to a database of
key properties of electrolyte solutions such as IonSolvR81 to
eventually improve and supplement the experimental databases
relied on today. This crucial information can then be used to
design and optimise electrolyte solutions for the many impor-
tant materials science applications where they play a role.
Additionally, it should be possible to use these techniques to
directly simulate more complex phenomena such those that
occur at the electrode–electrolyte interfaces.82 For example,
charge transfer of an ion with a battery electrode material.
Additionally, the linear scaling characteristic of these methods
allows very large scale systems to be studied.74,83 Although,
additional effort will be needed to incorporate long range
electrostatic and Casimir–Lifshitz forces into these large scale
simulations. These methods hold particular promise for elec-
trolyte solutions with slower dynamics where the long equili-
bration time makes direct AIMD particularly challenging, such
as the organic electrolytes used in batteries, as well as water in
salt electrolytes and ionic liquids.

The scaling of deep learning methods using much larger
models and training data sets has recently been demonstrated
to be surprisingly impressive and effective in the elds of
natural language processing and image recognition. The
potential for similar gains in this eld is also exciting and
should be further explored.84
4 Example application

To demonstrate the promise of this approach, we outline the
use of NequIP to compute the hydration structure and diffu-
sivity of a sodium ion. As outlined above reproducing these
basic features is the key rst step toward predicting many more
practically important properties of electrolyte solutions.
4.1 Workow

Fig. 3 outlines a workow for computing important properties
of electrolyte solutions. First, high quality short AIMD
J. Mater. Chem. A, 2022, 10, 19560–19571 | 19565
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simulations are performed using soware such as CP2K and the
highest level of DFT functional feasible. In this case we use the
strongly constrained and appropriate normalised functional
(SCAN).85 Secondly, calculations are performed on small clus-
ters extracted from the AIMD simulation at a more accurate
level of theory, in this case MP2, in order to conrm the reli-
ability and accuracy of the DFT level of theory. Correction terms
can potentially be derived if necessary. We have previously
shown that SCAN can very reliably describe the sodium ion–
water interaction so no correction for this term is required.42

Next NequIP is used to train a NNP. This is then used to run
much longer time scale NNP-MD simulations by using the
NequIP interface with LAMMPS. Computational details are
provided below. We train on a 2.4 M simulation of sodium
chloride using the SCAN functional.
4.2 Sodium–oxygen RDF prediction

Fig. 4 shows the sodium oxygen RDF computed with the NequIP
NNP, showing excellent agreement with pure AIMD results and
rescaled XRD data previously reported.42,86

Most impressively only 2000 frames from a short AIMD
simulation were used in the training of the NNP demonstrating
the remarkably low training data requirements of this
approach. There is some disagreement in the second solvation
Fig. 3 A depiction of the proposed workflow to compute electrolyte
solution properties. Starting with a short AIMD simulation a neural
network potential is trained using NequIP to accurately and efficiently
predict the energies and forces. Correction terms are determined
using higher level quantummechanical calculations on small clusters if
necessary. These are combined with the neural network potential to
perform large scale/long time scale molecular dynamics simulations.
Structural and kinetic information can then be extracted from these
simulations and be used in statistical mechanical theories to predict
important practical properties such as chemical potentials.

19566 | J. Mater. Chem. A, 2022, 10, 19560–19571
layer compared with the original AIMD SCAN simulation. This
is attributable to the fact that the SCAN RDF is not fully
converged due to the signicant computational expense asso-
ciated with using this functional. This is demonstrated by the
fact that the second peak agrees well with the better converged
previously published simulation of Na–O RDF using the cor-
rected revised Perdew–Becke–Ernzerhof with Grimme disper-
sion correction DFT functional (revPBE-D3-corr.)87–89 shown in
red.39

The longer time scale accessible with this method enables
the calculation of properties that would otherwise be too diffi-
cult to converge with direct AIMD simulation such as diffusiv-
ities as shown in Fig. 5.
5 Challenges

There are several challenging problems which remain to be
solved with this approach.
5.1 Ab initio accuracy

The rst and perhaps most signicant problem is that the DFT
functionals used to generate the training data can have signif-
icant inaccuracies associated with them.90–92 One potential
solution to this problem is to add correction potentials adjusted
to minimise this error using either higher level calculations on
small clusters39,42,93 or experimental information. Using
machine learning to determine the corrections is also a possi-
bility.94 Alternatively, training a full NNP purely on data from
small cluster calculations, which can be performed at higher
levels, may also be feasible.95 Another potential solution is
employing a substantially higher level of theory such as the
random phase approximation (RPA), second order Møller–
Plesset (MP2) or double hybrids DFT functionals, which are now
becoming feasible for periodic systems.96–98 However, these
Fig. 4 Sodium oxygen radial distribution function predicted using
a neural network potential showing excellent agreement with scaled
X-ray diffraction data (black dashed), direct AIMD simulations using
SCAN (brown) and with a corrected version of the revPBE-D3 func-
tional (red).87–89

This journal is © The Royal Society of Chemistry 2022
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Fig. 5 Sodium ion diffusivity predicted using a neural network
potential showing good experimental agreement.
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levels of theory also require signicantly larger basis sets, which
can be a challenge.
5.2 Long range interactions

An additional problem is that most NNPs currently only use
local structural information to determine energies. However,
oen long range interactions can be important.99,100 In partic-
ular, the electrostatic interactions are long ranged.101 Such long
range interactions are likely to be particularly important for
asymmetric systems or low concentrations. A lot of sophisti-
cated work is focused on addressing this problem for complex
systems.102–106 But for electrolyte solutions these interactions are
already known analytically, i.e., a dielectric screened Coulomb
interaction. It is therefore not clear that it is essential to capture
them with a NNP. Delta learning can be applied instead, where
everything except the long range interaction is learnt with the
NNP, which is then added to the explicit long range interactions
for full MD simulations.80,107
5.3 Stability

Finally, these methods can have stability issues which do not
necessarily correlate with the error observed on a validation
data set.108 This can result in simulations crashing or making
nonphysical or inaccurate predictions. This is normally attrib-
utable to insufficient training data. Using better architectures
with smaller training data requirements is one way to address
this problem. Alternatively, a larger and more diverse training
data set can be built by using high temperature MD simulations
to make sure it covers a larger range of conguration space. It is
common to use randomly sampled data from an AIMD simu-
lation to generate the training data. A better approach could be
to bias this sampling towards low probability/high energy
structures to counteract the thermodynamic bias to lower
energy regions. Another option is the use of active learning
which involves identifying structures where the NNP cannot
provide reliable predictions and adding these to the training
data set.53,82,109–112 This approach can be used to signicantly
This journal is © The Royal Society of Chemistry 2022
lower training data requirements. A downside of this approach
is that it requires repeating the NNP training process several
times. It is also important to identify any underlying noise/
errors in the training data itself which can lead the NNP to
learn nonphysical behaviours.
5.4 Interpretability

Molecular dynamics simulation is already generally less inter-
pretable than more traditional methods such as continuum
solvent models, as the key explanatory information must be
extracted from the large trajectories. NNP-MD and AIMD are
generally even less interpretable than CMD as they cannot
provide a partitioning into different intermolecular interac-
tions. However, in our view it is more important to obtain
accurate simulations from which interpretable information can
be extracted from additional calculations such as energy
decomposition analysis, rather than relying on directly inter-
pretable but less accurate methods.
6 Other uses of deep learning

There are various other exciting potential uses of deep learning
in this area. While these are less developed at this stage, they are
also extremely promising. This could result in the near future
with the entire simulation process outlined above being
replaced with neural networks. For example, one promising
approach is to replace the full QM calculations with a deep
learning architecture to predict the energies. DM21 (ref. 113)
and Orbnet114 are two examples of this. DM21 has recently been
used for this purpose to enable the simulation of water,
although some issues remain.115 The other method is to use
deep learning to directly predict the molecular trajectories
themselves rather than relying on direct solution of Newton's
second law to predict the motion of the atoms.116–118 Other
exciting developments are more generalisable neural networks
able to predict forces and energies for general classes of mole-
cules such as ANI.119
7 Conclusion

The use of neural network potentials offers a pathway to break
through the fundamental efficiency/accuracy trade off that has
plagued the eld of electrolyte solution modelling for decades.
This approach, in the near term, should enable the prediction of
many important properties of electrolyte solutions from rst
principles. The inability to do this has been a major factor
preventing the use of rst principles methods in the design and
optimisation of electrolyte solutions for many important
materials science applications where they play a fundamental
role. Here, we have demonstrated a pathway to use these tech-
niques to determine important fundamental properties of
electrolyte solutions. We have also addressed some challenges
this approach faces and outlined promising pathways to over-
come these. This is a rapidly developing and exciting area of
research that holds the promise to lead to signicant advances
in the eld of materials science.
J. Mater. Chem. A, 2022, 10, 19560–19571 | 19567
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8 Computational details

The computational details for the SCAN and corrected revPBE-
D3 functional AIMD simulations of sodium in water are
provided in a previous publication.39 We used Born–Oppen-
heimer ab initio molecular dynamics simulations within the
constant volume NVT (at 300 K) ensemble using periodic
boundary conditions, which are performed within the CP2K
simulation suite (https://www.cp2k.org) containing the
QuickStep module for the DFT calculations.120 The D3
dispersion correction due to Grimme89 was used for revPBE. A
0.5 fs time step was used. We used a double z basis set that
has been optimized for the condensed phase121 in conjunction
with GTH pseudopotentials122 using a 400 Ry cutoff for the
auxiliary plane wave basis for the revPBE-D3 simulations and
a 1200 Ry cutoff for the SCAN85 simulations.123,124 A Nosé–Hoo-
ver thermostat was attached to every degree of freedom to
ensure equilibration.125 The energies were accumulated forz12
ps aer 3 ps of equilibration. The sodium and potassium
simulations for revPBE-D3 consisted of one sodium ion in a box
of 96 water molecules of xed dimensions of 14.3 (ref. 3) Å3

giving a density of 1 g cm�3. The same settings were used for the
corrected revPBE-D3 simulations with the exception that the
multiple force evaluation option was used to combine the DFT
forces with the pairwise forces computed using the FIST
method.
8.1 NequIP

To train the NNP, we ran 2.4 M NaCl SCAN simulations at 300 K
and 400 K in CP2K using the above details for 12 and 8 ps
respectively. Forces and energies from 2000 frames extracted
from these simulations were used to train the NNP with NequIP.
500 frames were held out as a validation set. An equal weighting
on forces and energies was used in the default loss function.69

We decrease the initial learning rate of 0.01 by a decay factor of
0.5 whenever the validation RMSE in the forces has not seen an
improvement for three epochs. A radial cutoff distance of 5 Å
was used. Two interaction blocks were used with themaximum l
set to two each with 8 even scalars, vectors and tensors. Only
even parity was used. All the other parameters were set to the
defaults. The NequIP plugin for LAMMPS126 was used to
perform NVT simulations at 300 K for 600 ps. A Nosé–Hoover
thermostat was attached to every degree of freedom to ensure
equilibration.125
8.2 Diffusion coefficients calculation

Diffusion coefficients were computed from the mean squared
displacements (MSD) of sodium ions in our NNP MD trajecto-
ries. This conversion was carried out using the following
diffusion coefficient-MSD relationship:

D ¼ MSD

6t
(4)

The results were nally adjusted by nite size corrections.127

We have used the experimental value for the viscosity of pure
19568 | J. Mater. Chem. A, 2022, 10, 19560–19571
water when determining the nite size correction. The experi-
mental values compared with are for the sodium ion diffusivity
in a 2.4 M NaCl solution.128
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