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Non-graphite carbon materials are composed of basic carbon layer units, such as soft carbon, hard carbon,
and reduced oxide graphene, and an increasing number of studies on various non-graphite carbon
materials are being performed in sodium-ion batteries (SIBs). However, it is difficult to relate the different
non-graphite anodes, and a systematic analysis of the correlation between the non-graphite carbon
structure and sodium storage properties is lacking. Moreover, there is no strategy to screen for high-
performance electrode materials by using the database from the Web of Science. In this study, the
effects of crystallinity, an essential attribute of basic microstructural units, on the sodium storage
properties have been identified and analyzed. The key structural parameters characterizing the
crystallinity were explored. A structure—property database was built based on these parameters (L., L,
dooz. and Ip/lg) and the main performance data. The data analysis results were used in conjunction with

thermodynamic and kinetic analysis to systematically evaluate the effects of these parameters on the
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structural parameters, and a standardized process was proposed for the preparation of high-
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1 Introduction

Non-graphite carbon materials, such as soft carbon, hard
carbon and reduced graphene oxide (rGO), are cutting-edge
electrode materials used in the research and commercial
application of secondary batteries.' All types of non-graphite
carbon material have been widely studied as anodes of
sodium-ion batteries (SIBs). In particular, soft carbon has been
used as a commercial anode material for SIBs on a certain scale,
because of its abundant resources, low cost and environment
friendliness.* More importantly, non-graphite carbon materials
with low crystallinity generally have high Na" (de)intercalation
ability in ester electrolytes. Extensive studies on various
precursors and different heat treatment temperatures (HTTs)
have shown that non-graphite carbon materials generally
exhibit excellent sodium storage performance; additionally,
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effectively guide the scientific research and engineering application of non-graphite carbon materials.

some types of hard carbon can be used as self-supporting or
flexible electrodes, which is expected to be applied in flexible
devices in the future.>® For example, Hou et al.” synthesized self-
supporting hard carbon paper with a disordered carbon layer
arrangement and extended interlayer spacing, and found that
the material had an initial coulombic efficiency (ICE) higher
than 90% and a reversible capacity up to 200 mA h g~ %; the
paper could deliver 170 mA h g~ " even at 2 A g~ ". Subsequently,
Sun et al® used the relationship between the carbon layer
structure and sodium storage mechanisms to classify the
microstructure of hard carbon into three types, ie., highly
disordered carbon, pseudo-graphitic carbon and graphitic
carbon. The proportion of the three types can be adjusted by
HTT to optimize the sodium storage performance. However, the
sodium storage mechanism and performance remain quite
different for hard carbon obtained from different precursors
and heat treatment processes, which is confusing for further
research. Soft carbon and rGO also have a high sodium storage
capacity. Jian et al.>'® prepared soft carbon at a low temperature
that exhibited a stable capacity and rate performance, and its
charge-discharge curves had a clear slope and a higher voltage
plateau than that of hard carbon. In 2018, Zhao et al. prepared
porous rGO and proved that an enlarged carbon interlayer
spacing and a large number of pores enhance the Na* (de)
intercalation rate performance.” Although this material
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delivers 365 mA h g " at 0.1 A g~ ', the charge-discharge curves
have a clear slope, indicating a distinctly different sodium
storage mechanism from that of hard carbon. Overall, non-
graphite carbon materials represented by soft carbon, hard
carbon and rGO are expected to be prime candidates for sodium
storage anode materials, and numerous researchers have
extensively investigated the sodium storage law of different
carbon anodes.

An in-depth analysis of many studies clearly shows that
various carbon materials have been widely researched.
However, structures and sodium storage properties have only
been intensively studied within a single material system, and
systematic classification and an in-depth analysis have not been
carried out between the structures and sodium storage prop-
erties of various non-graphite carbon materials. Specific prob-
lems remain with using non-graphite carbon materials as SIB
anodes. (i) A systematic analysis of the sodium storage mecha-
nism and performance has not been performed for all the types
of available non-graphite carbon material based on the intrinsic
carbon layer units (crystallinity). (ii) The key structural param-
eters need to be explored and classified, and a structure-prop-
erty database based on the structure and performance needs to
be constructed. (iii) Most studies on the sodium storage char-
acteristics have been limited to isolated systems (such as iso-
lated hard carbon or rGO systems), and a strategy for using the
Web of Science database to screen for high-performance
carbon-based anodes has not been developed.

In response to these problems, many studies have been
analyzed and summarized about sodium storage of non-
graphite carbon materials in the Web of Science database in
this work (retrieval form and results are shown in Fig. S1, ESIT).
To systematically determine how the structural parameters
affect the sodium storage mechanism and performance,
intrinsic non-graphite carbon materials (without foreign
dopants) with relatively ideal and simple structures were
selected as a research subject. Furthermore, we systematically
searched the quantitative data of key structural parameters
(doo02s Lay L, and Ip/l) characterizing the crystallinity of non-
graphite carbon materials (as depicted in Fig. S2, ESIT), and
obtained the capacity, rate performance, average discharge
voltage plateau and other sodium storage data from previous
studies. Then, a structure-property relationship database was
established based on the key structural parameters and main
sodium storage performance. The crystallinity of the carbon
layer was used to analyze all the non-graphite carbon materials
and thereby relate different systems, which can be used to
identify a relatively universal structure-property relationship.
Finally, the structure-property database of non-graphite carbon
materials was used in conjunction with machine learning to
design suitable models to effectively screen for reasonable
structural parameters that produce optimal sodium storage
performance. The database and its construction method
represent a new direction for the application of structure-
property data in the literature, as well as a paradigm for the
engineering application of test data, enabling the large quantity
of available research data to effectively guide future scientific
research and engineering applications.
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2 Sodium storage mechanism and
performance of non-graphite carbon
materials

2.1 Overview of the structure and data extraction

Over the past decade, some non-graphite carbon materials, such
as soft carbon, hard carbon and rGO, have generally exhibited
interesting sodium storage properties.”> In order to clarify the
structural characteristics of various carbon materials, the evolu-
tion of the carbon layer stacking form is shown in Fig. 1. Two-
dimensional carbon layers with different crystallization and
stacking can form amorphous layered carbon materials with
different morphologies including graphite, graphene, soft
carbon, hard carbon, etc. With graphite as a raw material,
expanded graphite can be obtained when the graphite layers are
slightly oxidized and uniformly expanded; if the graphite layers
are strongly oxidized, graphene oxide can be obtained via exfo-
liation, and rGO can be synthesized via reduction."*** At the same
time, monolayer graphene can be obtained from a graphite
precursor by mechanical exfoliation and other methods.*® Taking
graphite as the standard, if a precursor can be transformed into
an (artificial) graphite structure during heat treatment, it is called
soft carbon, otherwise it is called hard carbon. Compared with
hard carbon materials, soft carbon materials have a relatively
higher ordering of carbon layers and are usually obtained by
carbonizing precursors such as polyvinyl chloride (PVC), petro-
leum coke, pitch, coal, polyvinyl acetate (PVA) and benzene.'®
Additionally, the carbon layers still have a certain number of
defects (including cavities, edge structures, five-membered or
seven-membered rings that cause the carbon material to bend
and wrinkle, heteroatoms such as oxygen, etc.)."”” The hard carbon
is mainly obtained by a thermal or chemical process involving
organic compounds and biomass, such as resin and sucrose.’
Hard carbon generally has a low-degree ordering, which is re-
flected in the large interlayer spacing, small crystallite size and
abundant pore structures. The carbon layers also contain
hydrogen, oxygen and other heteroatoms, which further leads to
a decrease in the crystallinity of hard carbon.'® After high
temperature treatment (>~2000 °C), hard carbon can be trans-
formed into crystallite graphite structurally, but its carbon layer
size is much smaller than that of graphite. While non-graphite
carbon materials are widely applied in SIB anodes, the sodium
storage mechanisms and performances are quite different for
various carbon materials and difficult to relate to each other. A
systematic exploration and quantitative analysis of the crystal-
linity of non-graphite carbon materials are still lacking, which
hinders the in-depth understanding of the relationship between
structure and property.

Based on a large number of experimental studies, XRD is
a common experimental method to analyze the crystal structure
of two-dimensional carbon layers. The interlayer spacing doo,
(eqn (1)) can be obtained through Bragg's law. The dimensions
along the g-axis (L,) and the c-axis (L) are calculated using the
Debye-Scherrer formula (eqn (2)).***

2d sin § = nA (1)

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Schematic diagram of the structural evolution of different pure carbon materials: graphite can be transformed into graphene or rGO by
physical or chemical methods; soft carbon can be obtained from PVC, coal, pitch, etc. after graphitization at high temperature, soft carbon can
be transformed into artificial graphite; hard carbon is mostly obtained from biomass, and can be transformed into crystallite graphite after

graphitization.

K2
L=
B cos

(2)

In eqn (1), ¢ is the diffraction angle, n is the diffraction order
and 2 is the X-ray wavelength (0.15406 nm, Cu Ka). In eqn (2), L
represents the average thickness of the grain perpendicular to
the crystal plane. g is the full width at half maximum (FWHM,
in radians), and the K values of the (100) and (002) planes are
1.84 and 0.90, respectively. With similar carbon layer units for
all kinds of non-graphite carbon material, statistical averages of
the carbon layer size and interlayer spacing can be obtained
from XRD results.

Additionally, the precursor and HTT have an important
influence on the molecular structure of non-graphite carbon
materials, especially for hard and soft carbon. Firstly, the
formation and arrangement of carbon layers are influenced by
the precursor structure and atom type, and secondly, non-
graphite carbon materials are formed by many carbon layer
units with a disordered arrangement. In both cases, the main
defects in carbon materials are intrinsic heteroatoms and
stacking disorder. Raman spectroscopy has become a key
technology for characterizing various carbon allotropes and
disordered structures, because it has high resolution and
sensitivity to local changes in the carbon structure.””?* In the
Raman spectra, layered carbons have two main features, i.e., the
G and D bands. The G band is related to the bond stretching of
sp” atoms in both rings and chains (E,, symmetry), while the D
band is related to the breathing modes of sp® atoms in rings (A4

This journal is © The Royal Society of Chemistry 2022

symmetry). The intensity ratio between the D and G bands (Ip/
Ig) is generally used to evaluate the defect level of carbon
materials, which is often used in many literature reports.>**
In summary, the crystallinity of the carbon layers is the key
structural factor for non-graphite carbon materials and has an
important effect on sodium storage properties. A quantification
of crystallinity is helpful to obtain universal structure-property
rules. By XRD and Raman, these key structural parameters can
be easily obtained to identify the crystallinity levels of different
non-graphite carbon materials. However, as for the doped or
composite carbon materials, there are too many interference
factors on the key structural parameters, resulting in complexity
in the thermodynamics or kinetics.”® Therefore, because of the
relatively ideal and simple structures, intrinsic non-graphite
carbon materials are selected as the research object to study
how the crystallinity systematically determines the sodium
storage mechanism and performance. The specific process of
data extraction is as follows. Firstly, for the structural parame-
ters, XRD data were carefully extracted from the figures in the
literature by using a figure digitization tool. The peak position
and FWHM data were immediately analyzed according to the
unified rules. Further, the grain size (L, and L) and interlayer
spacing (dg,) are calculated using eqn (1) and (2). For Raman
data, the figure information in the literature was also trans-
formed into data, and the Ip/Ig was calculated from the peak
intensity ratio. Secondly, for performance data, the capacity was
taken from the specific capacity at a current density of
100 mA g '. The rate factor was obtained by uniform
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processing: the capacity under different current densities was
taken, and the slope was fitted. The reciprocal of the slope was
taken to express the rate performance. The higher the value was,
the better the rate performance. The working plateau was the
average working voltage in the main discharge range. To avoid
interference from other factors, all SIB electrolytes for non-
graphite carbon materials are ester solvents (intercalation or
other behaviors of Na" alone), and the counter electrode is
sodium metal. By sorting the key structural and performance
parameters of pure layered carbon anodes, a database is
established to represent the structure-property relationship for
sodium storage (see Section S1, ESIY).

2.2 Hard carbon

Different from the orderly carbon layer arrangement of
graphite, hard carbon has a small carbon layer size (usually
below 10 nm) with a random arrangement, causing abundant
defects and pore structures.* Non-graphitizable hard carbon
has many kinds of precursor and a changeable structure at
different HTTs. Therefore, there are many studies on the
sodium storage properties of hard carbon. In order to fully
understand the structure-property relationship, we first
analyzed the sodium storage mechanism of hard carbon.
Previous studies on hard carbon are shown in Fig. S3 (ESIT).
Sodium storage behaviors of hard carbon can be divided into
three kinds: pseudocapacitive adsorption, intercalation, and
pore-filling (as shown in Fig. S3a, ESIt), which dominate the
sodiation process.**** So far, a variety of sodium storage
mechanisms and models have been proposed. In fact, the hard
carbon derived from various precursors and HTTs can be
described by a “house of cards”, but this model is not enough to
accurately reflect its microstructure, so the sodium storage
mechanism for different structural parameters has been veri-
fied. Meanwhile, extensive studies have found that hard carbon
has excellent sodium storage performance and is expected to
become a commercial anode. Although hard carbon has been
extensively studied, the change trends of sodium storage
properties with crystallinity are likely very complex. Thus, there
is an even greater need to develop the analysis of the key
structural factors and sodium storage properties to discover the
laws and reveal the relationship.

In this section, the effect of key structural parameters on the
performance is analyzed. Moreover, we also added specific
surface area (SSA, read directly in the literature) as an adjust-
ment factor since the pseudocapacitive behavior and ICE are
closely related to the SSA. Hence, important structural param-
eters (dooz, Lay Ley In/lg, and SSA) and main performance data
(capacity, rate, working plateau, and ICE) are sorted and listed
in Table 1. The comprehensive impact of multiple structural
parameters on performance is difficult to be pinpointed
experimentally. Therefore, we tried to introduce big data anal-
ysis to determine the relationship between the structure and
performance. In statistics, the Spearman rank correlation test is
a nonparametric technique used to evaluate the correlation
between two independent variables. It requires that the two
variables be pairs of rating data, or ranked data converted from
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continuous variable observations, without considering the
overall distribution of the two variables and the size of the
sample.*® When the data does not follow a normal distribution
or the population distribution is unknown, Spearman correla-
tion should be used. The Spearman rank correlation coefficient
between random variables is defined as follows:

65 d?
lefm (3)

Let X and Y be the two variables, and they both have n
elements. The i-th (1 = i = n) value of the two variables is
expressed as X;, Y;. Subsequently, x; and y; can be obtained after
rearrangement of X; and Y; in ascending or descending order,
where element x; is the rank of X; in X, and y; is the rank of Y; in
Y. And then, a new set d can be obtained by subtracting the
corresponding elements of x; and y; (d; = x; — y;, 1 =i = n).

According to the structure-property data characteristics
(independent, abnormal distribution), we chose the Spearman
rank correlation test to analyze the correlation between vari-
ables. The significance (two-tailed) p value represents the reli-
ability degree of the data. A small p-value (approaching 0) is
generally considered as high significance, indicating that the
correlation can be extended from the sample to the whole. The
correlation coefficient p value represents the degree of correla-
tion. The closer the absolute value of the correlation coefficient
is to 1, the more significant the correlation, and a negative value
indicates a negative correlation.***” After the Spearman rank
correlation test, Fig. 2a shows the correlation degree between
key structural parameters and performances (capacity, rate, and
plateau). Each sodium storage performance is found to be
mainly affected by one key structural parameter. The main
impact factor for capacity is L, (p = 0.223, p = 0.024). The rate
and plateau are highly correlated with Ip/Ig with correlation
coefficients of 0.296 and 0.201 (significances of 0.001 and 0.02),
respectively. Considering the migration and diffusion mecha-
nism of alkali metal ions, different energy storage performances
reflect the different motion states in the carbon layer. The data
analysis results above indicate that the motion state is closely
related to the structure information. Hence, the effective
extraction of key structural parameters is helpful in establishing
the structure-property relationship. For example, by improving
the morphology, intercalation routes could be controlled;
adsorption behavior could be optimized by adjusting the pore
structure and so on.*® Consequently, it is significant to establish
the structure-property relationship for designing carbon
materials with excellent sodium storage performance.

In fact, a certain sodium storage performance is affected by
many structural parameters; for example, the size of the carbon
layer (L, and L) has a great influence on the diffusion kinetics of
Na". Single-factor analysis cannot reasonably reveal the change
laws of non-graphite carbon with great structural differences.
According to the thermodynamic and kinetic analysis for
structure and performance in previous studies, a certain
structural parameter can be mainly related to a corresponding
performance parameter. For example, intercalation potential

This journal is © The Royal Society of Chemistry 2022
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Table 1 Hard carbon structures and sodium storage performance”
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SSAgeT Initial CE  Capacity Working
HTT (°C)  Precursor dooz [nm] L, [nm] L.[nm] I/l [m’g '] Ratefactor [%)] [mAhg '] plateau [V]
600 Peat moss®’ 0.384 2.09 1.08 0.86 369 0.23 44 189 1.02
600 Waste tea bag*’ 0.389 1.61 0.67 0.95 415 0.33 58 170 0.54
700 Pomelo peel® 0.371 1.84 0.88 1.04 1272 0.16 27 203 0.79
700 Platanus bark*! 0.372 1.62 0.76 0.84 602 0.19 34 234 0.87
700 Sepals*? 0.333 2.33 0.78 0.94 183 0.14 70 202 0.63
800 Banana peel*® 0.380 4.51 1.58 1.48 217 0.14 61 275 0.77
800 Mangosteen shell** 0.367 2.71 1.04 0.97 540 1.17 22 50 0.59
800 Shaddock peel* 0.386 1.91 0.81 0.95 25.5 0.16 62 216 0.73
800 Cedarwood bark*® 0.402 2.25 0.68 0.95 441 0.23 44 254 0.69
900 Peat moss>’ 0.387 2.36 1.08 0.98 271 0.17 50 207 0.78
900 Apricot shell*” 0.377 1.93 0.67 1.01 27.9 0.23 73 282 0.63
900 Reed straw™® 0.394 1.95 0.77 1.01 325.3 0.22 49 116 0.62
900 Water caltrop shell*®  0.385 1.82 0.83 1.01 48.1 0.14 76 257 0.70
900 Bio-o0il*° 0.359 1.70 0.86 1.09 820 0.23 56 200 0.93
950 Sugarcane bagasse®  0.369 3.43 0.81 0.97 3 0.19 70 232 0.58
1000 Cellulose®? 0.375 2.72 0.83 1.05 377 0.13 59 235 0.68
1000 Shaddock peel*® 0.382 2.25 0.79 0.99 68 0.12 63 281 0.65
1000 Switchgrass®? 0.368 1.93 1.07 1.16 619 0.13 42 199 0.59
1000 Lotus seedpods® 0.377 2.57 0.90 1.08 751.6 0.11 45 222 0.88
1000 Cherry petals® 0.404 1.65 0.63 1.02 2 0.13 67 235 0.54
1100 Peat moss>’ 0.374 3.49 0.87 0.99 197 0.12 57 281 0.63
1100 Sucrose® 0.412 3.33 0.56 1.30 7 0.10 84 151 0.62
1100 Rice husk®” 0.395 2.75 0.86 1.01 3 0.16 64 332 0.58
1100 Apricot shell*” 0.385 2.29 0.72 1.03 56.7 0.18 77 328 0.65
1100 Reed straw*® 0.394 1.94 0.76 1.02 82 0.11 73 260 0.68
1200 Shaddock peel*® 0.390 2.60 0.73 1.00 82 0.08 67 315 0.60
1200 Lotus stem®® 0.371 2.36 0.48 1.06 25.8 0.19 69 194 0.54
1200 Lotus seedpods™* 0.386 2.69 0.86 1.04 140.7 0.08 50 279 0.81
1200 Tamarind shell® 0.392 2.50 0.73 1.02 11.3 0.08 70 270 0.62
1300 Mangosteen shell** 0.364 3.33 1.12 1.28 82 0.20 74 182 0.56
1300 Rice husk®” 0.388 3.08 0.93 0.99 0.3 0.13 66 365 0.59
1300 Reed straw*® 0.397 2.26 0.75 1.03 36 0.09 77 237 0.62
1300 Walnut shell® 0.363 2.83 0.98 1.13 154 0.16 46 166 0.59
1300 Lignin® 0.364 3.11 1.26 1.11 10.8 0.06 79 283 0.61
1400 Peat moss>° 0.373 4.19 0.99 1.03 92 0.11 60 240 0.50
1400 Sucrose®? 0.403 2.99 0.74 1.05 8 0.10 82 206 0.60
1400 Peat® 0.339 3.38 2.19 0.98 6 0.08 80 303 0.51
1400 Shaddock peel* 0.383 3.27 0.84 1.69 39 0.09 69 223 0.58
1500 Mangosteen shell** 0.359 3.87 1.17 1.40 8.96 0.14 83 134 0.55
1500 RF resin®* 0.390 2.88 0.78 1.07 450 0.13 57 69 0.73
1500 Reed straw*® 0.381 2.99 0.90 1.05 23.9 0.09 79 210 0.62
1500 Water caltrop shell*®  0.376 3.25 0.95 1.01 7.4 0.11 86 236 0.56
1600 Sucrose®? 0.395 3.95 0.88 1.17 5 0.09 85 275 0.60
1600 Cellulose® 0.386 4.03 0.79 1.16 2 0.12 81 51 0.52
1600 Lotus stem®® 0.350 2.73 1.21 1.24 23.7 0.08 56 240 0.49
1600 Corn straw piths®® 0.360 2.19 0.72 0.93 10 0.15 55 180 0.76
2050 Switchgrass®? 0.352 3.07 1.48 1.05 23 0.21 64 204 0.56

“ The values of dyo,, Lq, and L. are derived from XRD. Ip/I; is the intensity ratio between the D and G bands. The capacity is taken from the specific
capacity at a current density of 100 mA g~ . The rate factor is obtained by uniform processing: the capacity under different current densities is taken,
and the slope is fitted. The reciprocal of the slope is taken to express the rate performance. The higher the value is, the better the rate performance.
The working plateau is the average working voltage in the main discharge range.

could be calculated using the Nernst equation, and diffusion
barrier using density functional theory. Similarly, the ion
diffusion rate can be studied by kinetic theory and is closely
related to specific structural parameters, such as ionic diffusion
coefficient and pseudocapacitive contribution (see the ESIt for
a detailed description). Generally, the SSA is closely related to
the ICE, and similarly for Ip/Ig and adsorption behavior.®”

This journal is © The Royal Society of Chemistry 2022

Therefore, based on the data analysis as well as thermodynamic
and kinetic investigations, we found and analyzed the two
structural factors that have the main impact on a certain
performance parameter (as shown in Fig. 2b-g). Fig. 2b shows
the influence of structural factors (L, and L) on the sodium
storage capacity. A small L, and large L, could mainly facilitate
stable (de)intercalation of Na“ and provide a relatively large
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Fig. 2 Structure and performance analysis of hard carbon: (a) Spearman rank correlation analysis of structural and sodium storage performance
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is inserted in the table. (b—g) 3D surface graphs of change trends for dual structural parameters and performance parameters (capacity, rate, and

plateau).

capacity (as shown in the dotted line area of Fig. 2b). A small L,
size favors reducing the number of layers, making it easy for
hard carbon to form the “house of cards” structure. Meanwhile,
the pore structure will be rich and diverse with the decrease of
L., which increases the pore-filling sites and promotes the
capacity eventually. Another high-capacity region in Fig. 2b is
located in the large L, (3-4.8 nm) and L, (1.4-2.4 nm) region,
which reflects different energy storage processes. A large carbon
layer size will bring about more intercalation sites, but it is not
conducive to the dynamics. Therefore, a large L, can cause Na*
to (de)intercalate in the carbon layers at a low current density so
that the reversible capacity is high. Additionally, the influence
of the other two key structural parameters on the capacity is also
evaluated. As shown in Fig. 2c¢, the reversible capacity is high in
the region with medium SSA and high Iy/I, which is consistent
with most of the reports.®® But the plateau capacity is low when
SSA is high (600-1200 m”> g~'). The main energy storage
behavior of hard carbon is dominated by the surface adsorption
process as the SSA is high, which leads to the rise of working
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voltage plateau.”™® Finally, the energy density lowers to
a certain extent and irreversible capacity loss occurs inevitably.

The rate performance depends on the kinetic process. A high
rate performance requires the microstructure to be conducive to
large-scale ion diffusion. According to many research results, L,
and doo, determine the “length and width” of the Na" diffusion
process. Within a certain range, the smaller the carbon layer
size is, the shorter is the ion intercalation path, which reduces
the energy barrier and overpotential for Na* diffusion. More-
over, the interlayer spacing of hard carbon is generally large,
which is also helpful in the ion diffusion process. On the other
hand, big data analysis shows that Ip/I; has a significant
negative correlation with the rate performance. According to the
above analysis, the law between the rate performance and the
two structural parameters is summarized. First, according to
the variation law of rate performance versus changing L, and L,
(as shown in Fig. 2d), small L, and L, values contribute to the
rate performance over a certain range, but the mechanism is
complicated, involving electron transfer and charge migration
processes. In the results of Balogun et al., when alkali metal
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ions diffuse through etched carbon cloth (with increases in the
pore content and diffraction intensity of the (100) crystal plane),
the diffusion energy barrier rapidly decreases.®® The larger the
L, size is, the longer is the intercalation path, which is not
conducive to high rate performance. Next, the influence rule of
L. and Ip/I; on rate performance is shown in Fig. 2e. A carbon
layer structure with a moderate Ip/Ig (0.8-1.0) and small L,
(<~0.8 nm) is more conducive to high rate performance. The I,/
I value is closely related to the structural defects of the carbon
layer. In general, DFT is an important research method, and the
adsorption and diffusion processes of alkali metal ions at defect
or edge sites can be explained based on DFT.”*”* The adsorption
behavior will occur before the intercalation process due to the
relatively smaller energy barrier. The increase in defects
(decrease of crystallinity) enhances the adsorption behavior,
which improves the rate performance but simultaneously leads
to obvious sloping charge-discharge curves.>”> However, there
are some high rate values in the slightly large I,/ (1.1-1.3) and
small L, (0.8-1.1 nm) regions (the dotted line area in Fig. 2e),
which may correspond to different structural characteristics
and sodium storage processes, and need to be further explored.

As shown in Fig. 2f, L, and L, have a relatively significant
impact on the plateau. A slightly large L, (1.6-2.3 nm) and
a small L, (<~1.5 nm) make the plateau lower than those in
other areas. Based on the analysis for the sodium storage
mechanism, intercalation and pore-filling behaviors exhibit
a very low plateau. Those behaviors could be promoted with
large L, and small L., which lower the working plateau. Simi-
larly, as shown in Fig. 2g, the large Ip/I; value also reflects the
disorder of carbon layer arrangement. To a certain extent, the
increase of defects caused by micropores is conducive to the
pore-filling process, and thus the working plateau decreases.
Therefore, Na* can be stably intercalated and filled into the
microstructure with a low working voltage plateau by adjusting
the carbon layer size and defect degree. In anode material
research, the low working plateau plays a significant role in
improving the energy density of the battery.” Hence, it is
significant to design the structure to keep high capacity and rate
performance while lowering the working plateau. According to
the above results, L, and L, have a very significant effect on the
performance, but the data range and overall regularity is not
integral.

In summary, with a disordered structure and low crystal-
linity, hard carbon has been widely studied due to its high rate
performance and highly adjustable microstructure. Although
hard carbon has been widely studied in recent years, the
complex “house of cards” structure is difficult to be quantita-
tively described due to its low crystallinity. The structure and
sodium storage properties of hard carbon are easily affected by
different precursors and HTTs, so the structure analysis is
complex. Therefore, in this section, the key structural parame-
ters and performance data were extracted, and the structure-
property relationship of hard carbon for sodium storage was
described quantitatively by a data analysis method. The excel-
lent rate performance may be owed to the small carbon layer
size and many defects. Such a structure is favorable for main-
taining a stable microcrystalline structure, avoiding the
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structural damage caused by excessive volume expansion and
improving the (de)intercalation process simultaneously. In
addition, pore-filling behavior is also promoted owing to the
high pore content and reduced Na" diffusion distance. There-
fore, fast and stable charge-discharge can be achieved.
Although many efforts have been made to improve the perfor-
mance, the energy storage process is still complex. According to
the research results, further regulation of carbon layer size can
effectively improve the sodium storage performance and
exploring new preparation processes will be conducive to
achieving this goal.

2.3 Soft carbon

Compared with hard carbon, soft carbon has a relatively higher
ordering structure with reduced pores at the same HTT. Soft
carbon can be graphitized at high temperature (artificial
graphite). When the HTT is ~1000 °C, the microstructure of the
soft carbon contains some disorder region, which provides sites
for the Na* adsorption; when the HTT is higher than 1200 °C,
the arrangement of the carbon layer gradually becomes regular
with obvious lattice fringes, which is significantly different from
that of hard carbon. As a result, the sodium storage mechanism
and performance of soft carbon are quite different from those of
hard carbon. As shown in Fig. S4 (ESI), during the processes of
sodiation/desodiation, the soft carbon only shows a certain
slope with no extended plateau area in the charge-discharge
curve. The sodium storage behavior has the following rules:
firstly, sodium storage in the sloping region has better revers-
ibility than that of hard carbon. But with many more defects,
soft carbon has higher overall potential for sodium storage than
hard carbon. Secondly, when Na’ ions are inserted into the
carbon layers of soft carbon, local structural expansion will
occur and some of the Na" ions are trapped in the carbon layer,
resulting in irreversible capacity loss.'®”*7® Certainly, the
carbon layer crystallinity of soft carbon has a great influence on
its sodium storage properties. Exploring the relationship
between the key structural parameters and sodium storage
properties will further promote the understanding and appli-
cation of soft carbon.

The structural and performance data of soft carbon synthe-
sized with different precursors and HTTs are shown in Table 2.
Compared with hard carbon, the carbon layer size of soft carbon
is larger at the same HTT. The changes in these structural
parameters lead to even greater differences in sodium storage
performance. This section continues to explore the effect of key
structural parameters on performance. The structure-property
relationship is directly analyzed for soft carbon according to the
existing data because of the small amount of data.

The effect rules of two structural parameters on the sodium
storage performance are shown in Fig. 3a-f. As shown in Fig. 3a,
high capacity mainly corresponds to a region of medium L,
(~3.5-4.7 nm) and small L, (0.5-1.8 nm). Meanwhile, a small
SSA (<300 m* ¢~ ') and medium L, (2.75-4 nm), as shown in
Fig. 3b, is beneficial for obtaining high reversible capacity. The
analysis shows that the carbon layer size is closely related to the
capacity. Alvin et al.*®* also reported a positive correlation
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Table 2 Soft carbon structures and sodium storage performance”

SSAgeT Rate Initial CE Working
HTT (°C)  Precursor dooo [nm] L, [nm] L. [nm] Ip/lg [m>g '] factor [%] Capacity[mAh g']  plateau [V]
500 NTCDA"® 0.357 3.11 1.10 0.94 15 0.43 46 75.5 0.82
550 Copolymer”’ 0.383 3.73 0.63 0.97 1106 0.18 71 215 —
700 PTCDA’ 0.362 — 1.52 — 13.6 0.19 62.6 171 —
700 pitch”® 0.351 3.41 1.15 0.87 0.1 0.15 66 139 0.62
800 PTCDA”® 0.348 2.87 1.56 1.52 471 0.17 29 197 0.69
800 Polymerized 0.369 2.22 0.81 — 467 0.12 34 — 0.73
acetone®
800 pitch®' 0.353 3.85 1.05 1.04 3 0.12 71 224 0.77
800 Pitch®' 0.349 2.97 1.43 0.91 113 0.11 45 135 0.64
900 PTCDA’ 0.356 3.69 1.92 — 20 0.30 67.6 167 0.59
900 PTCDA® 0.356 3.84 1.41 1.04 14 0.21 80 — 0.91
1100 PTCDA’® 0.353 4.59 2.43 — 32 0.56 60.5 95 —
1000 HC-SC*? 0.356 1.66 1.11 0.94 589 0.38 57 240 (at 60 mA g~ ") 1.43
1000 MP/THF®* 0.363 2.80 1.27 0.87 59 0.12 80 260 0.63
1300 MP/THF®* 0.352 3.62 1.74 0.90 89 0.16 72 211 —
1300 Coal*® 0.371 2.63 0.89 1.02 4.53  0.08 79.5 155 0.58
1400 pitch/lignin® 0.37 3.74 1.17 1.09 1.3 0.16 82 245 (at 60 mA g~ ") 0.48
1400 Pitch/phenolic  0.39 3.27 0.92 1.17 3 0.08 88 255 (at 60 mA g~ ') 0.51
resin®®

1500 MP/THF** 0.352 4.65 1.97 1.35 32 0.12 74 241 —
1500 pitch®’ 0.354 2.95 1.75 1.07 119 0.24 60 189 0.64
1600 PTCDA’ 0.346 5.53 5.27 — 26 0.68 47.5 68 —

¢ — indicates missing data. The values of dy,, Ls, and L, are derived from XRD. I,/I;; is the intensity ratio between the D and G bands. The capacity is
taken from the specific capacity at a current density of 100 mA g~ ' unless otherwise stated. The rate factor is obtained by uniform processing: the
capacity under different current densities is taken, and the slope is fitted. The reciprocal of the slope is taken to express the rate performance. The
higher the value is, the better the rate performance. The working plateau is the average working voltage in the main discharge range.

between L, and the plateau capacity. In the case of medium L, data demonstrate the rationality and highlight the change
size, both the sloping and plateau regions can provide high regularity of the structure-property relationship. As a result, it is
capacity. A small L, will increase the disorder degree of the important to choose the appropriate carbon layer size to
carbon layer, which also leads to a high reversible capacity improve the sodium storage capacity. Additionally, there are
mainly contributed by the adsorption process. Therefore, the still many blank areas in the figure to be further explored to
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f) plateau.
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reveal the law. There are still lots of unexplored areas for L, and
L., and further research is required to reveal the law.

Regarding the rate performance, L, and dyo, are two main
influencing factors. As shown in Fig. 3c, large L, (4.3-5.5 nm)
and medium dy, (~0.345-0.355 nm) values contribute to the
rate performance over a certain range. It can also be seen from
the influence of SSA and L, on the rate performance (as shown
in Fig. 3d) that the carbon layer structure with small SSA (<~400
m?> g ') and large L, (4.0-5.5 nm) is associated with high rate
performance. Inspired by the research results of Qiu et al., the
diffusion energy barrier of Na* will decrease significantly in the
carbon layer with moderate interlayer spacing.®® As a result,
medium d,, is helpful to promote Na" reversible (de)interca-
lation at high rate and alleviate the volume expansion. The large
L, and medium d,,, should be to obtain the optimum rate
performance. However, large L, may make the adsorption
behavior dominant, because of the large resistance to Na'
intercalation. Although large L, is associated with high rate
performance, the rate factor obtained by uniform processing
does not reflect the capacity value. Hence, combined with the
analysis for capacity, medium doy, (~0.345-0.355 nm) and
moderate L, (~3.5-4.5 nm) are helpful to obtain high capacity at
large current density. The impact mechanism of soft carbon is
different from that of hard carbon, and the effect of the carbon
layer size still needs to be further explored in order to fill the
gaps in the current experiment, so as to improve the structure-
property relationship.

As shown in Fig. 3e, L, and SSA have a relatively significant
impact on the plateau. A larger L, and a smaller SSA make the
plateau lower than those in other areas (as shown in the dotted
line area of Fig. 3e), which are consistent with the effect of the
structure on the rate performance. A large L, will increase active
sites, and low SSA does reduce the contribution of adsorption
behavior to capacity, thus effectively lowering the plateau. But
the effect rules, as shown in Fig. 3f, are not obvious for L, on
a plateau, and the low plateau area is widely distributed. The
plateau performance is relatively low in the area of small L. and
SSA (as shown in the dotted line in Fig. 3f). On the one hand,
there are many research studies on low-temperature soft
carbon. The adsorption behavior is enhanced due to the poor
crystallinity and many defects, and so the average working
voltage plateau will rise. On the other hand, according to ther-
modynamics, the entropy change will be significant in the
energy storage process on the basis of Boltzmann's entropy
equation:

S=klnQ (4)

where Q is the generalized microscopic state number, S is the
macroscopic system entropy, & is the Boltzmann coefficient, and
the microscopic state number is related to the number of
vacancies and intercalated atoms.*>** Therefore, the voltage
drop of soft carbon is larger than that of hard carbon due to its
more chaotic carbon layer arrangement. Yet it's worth noting
that, even though the high graphitization degree leads to the
sodium storage mechanism and performance gradually
approaching that of graphite, there is still much room to adjust
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the carbon layer structure of soft carbon when the HTT is higher
than 1200 °C. It is still worth studying and of significance how
to reasonably adjust the carbon layer structure to optimize the
sodium storage performance.

In conclusion, with different precursors and HTTs, the
crystallinity of soft carbon changes in a certain range. The Na*
storage behavior of soft carbon has been changed owing to the
distinction of key structural parameters. The main mechanism
of soft carbon is interlayer intercalation, and most of the
expansion is reversible. The results of data analysis show that
the low-temperature soft carbon has high rate performance,
which benefits from moderate expansion of interlayer spacing
and disordered structure. The available data show that the
medium L, (~3.5-4.5 nm) size is helpful to improve the three
performances at the same time. It is still worth studying how to
adjust the carbon layer structure of high-temperature soft
carbon to optimize the comprehensive sodium storage
performance.

Based on the relevant thermodynamic analysis, the statis-
tical analysis of the structure-property data shows that the
structure has a significant effect on the performance. The
existing data point out that when the key structural parameters
are in a specific range, comprehensive performance would be
generally excellent. For example, when L, is large (~1.6-4.8 nm)
and L. is slightly small (<~2.4 nm) for hard carbon, the
comprehensive performance is generally outstanding. Simi-
larly, when the range of L, and L, is ~2-5.5 nm and ~0.5-
1.8 nm, respectively, most of the performance is usually good.
Although there is a certain law when selecting two highly
correlated parameters to analyze the performance data, here are
also large errors and the laws are still complex. The influence of
other structural parameters cannot be ignored. Therefore, it is
necessary to use an accurate machine learning model to analyze
the influence of all structural parameters on sodium storage
performance.

3 Structure—property relationship
and structure prediction

From the analysis of non-graphite carbon materials, the key
structural parameters characterizing the crystallinity are the key
factors affecting the sodium storage properties. However,
various factors including structure and test conditions will
affect the sodium storage mechanism and performance, and
they are coupled with each other. Thus, the mechanisms that
lead to changes in performance are very complicated. It is also
difficult to use traditional research methods to analyze the
influence of multiple structural parameters on a performance
parameter at the same time. Previous research methods can
only identify some influencing mechanisms, and the method of
regulating and predicting the sodium storage performance
through traditional structural research not only lacks accuracy
but also has a certain lag.®* In addition, Section 2 of this work
also shows that the rules of sodium storage based on the big
data analysis are not accurately predicted. Large amounts of
information about material structure and performance are
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stored in the databases, which currently cannot play a substan-
tial guiding role, causing a serious waste of information
resources. Most noteworthily, based on research advances in
recent years, machine learning is currently undergoing
a massive development that is affecting many areas of science
and engineering, including catalysis and energy storage.’>** In
this work, in order to predict and screen the data of structural
parameters with potentially excellent sodium storage perfor-
mance, the model will be established in the basis of the struc-
ture-property database (Section S1, ESIT). The model makes it
possible to predict different sodium storage performances with
multiple structural parameters. Therefore, this research work
aims to combine material structure-property data with machine
learning technology to promote the development of high-
performance electrode materials, so as to contribute to
solving problems for scientific research and enterprises.
Firstly, we summarized the structure and properties of non-
graphite carbon materials. Furthermore, to facilitate a compre-
hensive understanding of the structure-property relationship,
we comprehensively sorted out the structural and performance
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data of non-graphite (hard carbon, soft carbon, and rGO) and
graphite-like (graphite, few-layer graphene and expanded
graphite) carbon materials for sodium storage (Tables S1 and S2
in the ESIt). As shown in Fig. 4a, for graphite-like carbon
materials, there are few structural defects and low heteroatom
content, and regularly arranged carbon layers. Graphite-like
carbon materials show significantly small interlayer spacing
as well as micron-scale L, and L, which are much larger than
those of non-graphite carbon materials. On the one hand, non-
graphite carbon materials have short range order with an
amorphous structure, and the carbon layer structure gradually
forms with the rearrangement, assembly of carbon atoms and
escape of unstable heteroatoms during the thermal treatment
process. Due to the structural stress/strain, the layer-to-layer
arrangement gradually becomes compact and flat with
increasing HTT. On the other hand, under the influence of
various precursors and HTTs, the carbon layer will form a large
number of disordered regions, and the residual heteroatoms
constitute intrinsic doping defects and cause local structural
changes. Regardless of whether it is prepared from top-down or
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(@ and b) Summary and comparison of the structure and properties of different types of carbon material. (c—e) Performance prediction

results of machine learning for ICE, capacity and rate factor. (f—h) Final prediction performance for ~20 000 sets of artificially constructed

structure data.
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bottom-up, a specific evolution law can be applied to the carbon
material, such as for soft carbon and hard carbon. For non-
graphite carbon materials, the interlayer spacing is larger
than that of graphite, and the Ip/I; also increases to a certain
extent, but the carbon layer sizes of L, and L. are much smaller
(within tens of nanometers) than those of graphite-like carbon
materials.

Next, the performance comparison of the two types of
layered carbon material is clearly shown in Fig. 4b. The results
show that the graphite-like carbon materials have excellent rate
performance but a high plateau, which is mainly due to the co-
intercalation mechanism in ether electrolyte.®® However, in the
ester electrolyte system, the capacity performance of non-
graphite carbon materials shows obvious advantages, and the
plateau is also significantly reduced. This is because the sodium
storage mechanism is mainly controlled by adsorption, inter-
calation and pore-filling. As for the ICE, it is mainly related to
the electrolyte reduction on the electrode surface and the Na*
storage behavior inside the carbon layer, so the average value of
the ICE is at a similar level for the two types of layered carbon
material. Through comparative analysis, it can be found that
the non-graphite carbon materials with low crystallinity have
obvious advantages in the capacity and plateau performance,
and there is still significant room to improve the high-rate
capacity and ICE. Therefore, the reasonable design for carbon
material structure plays a decisive role in improving its sodium
storage performance. Importantly, it is necessary to predict the
performance from the time when the structure is designed.
Therefore, we tried to establish models and use computers to
understand the change rules between the structural parameters
and the sodium storage performance, and to consequently
predict the performances. For several performance data,
different basic models were selected to preliminarily verify the
effect of machine learning according to previous research (see
Section S2 for details, ESIT).”>* The R and root mean squared
error (RMSE) are displayed in Fig. S5 of the ESIt and there are
some relatively good models with high R*> and low RMSE
(bagging model for ICE, XGBoost for capacity and gradient
boosting for rate). The prediction value and mean absolute error
(MAE) are given in Fig. 4c-e, respectively. Overall, the results
show that the predicted values are in good agreement with the
measured values and the deviations are within the acceptable
range. The predicted results indicate that the effectiveness of
basic models is generally satisfactory. At the same time, the
feature importance analysis also points out the degree of
influence for different structural parameters (Fig. S6, ESIT). The
above analysis urges us to establish accurate models to reduce
errors for guiding future research.

Based on the structure-property database and machine
learning, we planned to predict the structural parameters
required to obtain the optimal performance. According to the
existing value range of structure-property data for each
performance, the ~20 000 sets of artificially constructed struc-
ture data were successfully built through permutation and
combination (as depicted in Section S3 of the ESIf). Now the
machine learning modeling for the above complete structure—
property database is continued. The computer code reads in
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~100 sets of existing data for each performance parameter first,
and the original data are divided into a training set and a testing
set at a ratio of 8: 2. Then, a suitable model could be estab-
lished by analyzing the rules of the original data through
multiple iterations (see the ESIt for the source code). Finally,
prediction models are trained and tested. The results of
~20 000 sets of artificially constructed structural data are
substituted into the model to obtain the final prediction data.
The prediction results are shown in Fig. 4f-h after filtering out
the data that do not conform to the thermodynamic or kinetic
results. Then, two key structural parameters were selected to
illustrate the change rules for obtaining a specific structure and
performance. As shown in Fig. 4f, high-capacity values are
concentrated around the large L, and L, area, which are the
same as the results described above. This carbon layer structure
provides a substantial number of sites for Na" intercalation but
also has a certain hindrance effect on the diffusion kinetics. As
for the rate performance (Fig. 4g), the high values are concen-
trated in the region with slightly large Ir,/I (1.0-1.2) and large L,
(2.5-2.8 nm), which may correspond to the sodium storage
mechanism of adsorption and pore-filling. However, the kinetic
differences between different sodium storage mechanisms still
need to be further explored. Finally, as shown in Fig. 4h, the L,
shows a significant impact on the plateau, and the large L, area
(4.0-5.0 nm) corresponds to the low value of the plateau. As for
dooz, the small dyo, (<0.35 nm) significantly increases the
plateau, and the plateau decreases as d, increase (~0.35-0.42
nm). Like the above research results, the large d,,, and L, also
reflect the disorder of the carbon layer, which is helpful for Na*
intercalation and pore-filling to a certain degree, thus reducing
the plateau. The above results show that the prediction is
kinetically and thermodynamically reasonable, which also
indicates the effectiveness of the predictions.

Furthermore, a part of the excellent predicted data is pre-
sented in Table 3. Notably, those data were carefully screened
according to the results of statistical analysis based on the
thermodynamic and kinetic results in Section 2. Therefore, we
predicted and screened the specific structural parameters with
potentially excellent sodium storage performance according to
the results of machine learning and data analysis. Taken
together, a structure with integrated excellent performance
should have the following features, and the origin of each
optimal range is revealed from the view of the sodium storage
mechanism: d,, is slightly large (mainly 0.36-0.4 nm), which
enables the intercalation behavior;*® L, should be in the range
of 2.5-5 nm and L, 1.5-2.5 nm, which promotes the stable
intercalation process and fast rate capacity; and Ip/Ig ought to
be medium (0.8-1.5) and SSA small (below ~300 m* g ') to
avoid excessive plateau and reduced ICE.*”*” Thus, the sodium
storage mechanism of such carbon material should be domi-
nated by intercalation behavior and include partial adsorption
and pore filling behaviors. The moderate crystallinity ensures
that the carbon material has high capacity and a low plateau,
and the medium defect degree promotes the rapid (de)interca-
lation of Na' and maintains the structural stability during the
cycling. These data show that excellent sodium storage perfor-
mance can be obtained by designing the carbon layer size,
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Table 3 Potential optimal sodium storage performance and specific structural parameters based on machine learning

Initial CE Capacity Working plateau

dooz [nm] L, [nm] L. [nm] Inllg SSAger [m” g7 '] Rate factor [%] [mAhg V]

0.365 3.5 2.3 0.43 2 0.43 89 380 0.75
0.365 4 1.8 0.83 2 0.25 96 326 0.56
0.365 4 1.8 1.03 2 0.19 94 355 0.57
0.365 4.5 1.8 0.63 2 0.37 97 310 0.80
0.365 5 0.8 0.83 2 0.19 86 361 0.72
0.38 2.5 1.8 1.63 325 0.13 85 392 0.70
0.38 1.5 1.8 1.23 325 0.09 85 388 0.64
0.38 1.5 1.8 1.63 587 0.12 98 391 0.71
0.38 3 1.8 1.63 160 0.13 87 381 0.72
0.38 3.5 1.8 0.83 2 0.27 87 379 0.51
0.38 4.5 1.8 1.63 2 0.15 94 352 0.75
0.38 5 1.8 1.63 2 0.15 98 328 0.72
0.395 3.5 1.8 1.63 160 0.15 87 399 0.77
0.395 2.5 1.3 1.63 160 0.13 93 309 0.65
0.395 2 1.3 1.63 325 0.13 93 316 0.66

interlayer spacing and defect degree. Unfortunately, these
layered pure carbon materials with excellent sodium storage
performance have not yet been confirmed by researchers.
However, this study provides future directions for designing
carbon anodes, as well as an effective demonstration of
machine learning in the performance prediction for other
scientific areas. Additionally, if more data are available in the
future, then reliable predictions can be made. Therefore, it is
a useful exploration to analyze the existing data by machine
learning, which not only fills the gaps in existing research but
also predicts the specific structural parameters that may have
the optimal sodium storage performance. The present study
provides a promising route for the development of high-
performance carbon materials. Both the material database
and machine learning will contribute to the development of
new energy materials for scientific research and enterprise.

It must be recognized that the research of the structure-
property database is still in its infancy, the reliability of the
machine learning model in this work still needs to be improved,

Standardization of
data processing

Future experiments
XRD: Raman: I/l

L BET: Pore size

Constantly updated
structure-property database

and equal attention should be paid to other structural infor-
mation, such as porosity and defect sites. To prepare high-
performance electrode materials efficiently and flexibly
through big-data analysis and material design, the potential of
the structure-property database might be jointly developed by
interdisciplinary researchers. Herein, we call for a standardized
test specification for material research, and a proposed process
is presented for the preparation of high-performance electrode
materials programmatically (as depicted in Fig. 5): firstly, we
suggest a standardized data processing method: based on the
main material characterization technologies (including XRD,
Raman, BET, etc.), the key structural parameters and energy
storage performance data of layered carbon materials can be
obtained through a standardized processing method. The L,
and L. should be calculated by fitting the FWHM of XRD and the
doop from Bragg's law. The Ip/Ig, pore size distribution and SSA
should be obtained from Raman and BET results, respectively.
It is also suggested that the electrochemical performance be
standardized. The ICE, capacity and plateau data should be
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Fig. 5 The proposed content of standardization data processing for non-graphite carbon materials, and the ideas for updating the structure—

property database and optimizing machine learning.
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Fig. 6 Integrated thinking for the construction of a high-performance SIB based on layered carbon materials: aiming at the deficiency of sodium
storage performance of non-graphite carbon materials, data-driven materials design is attempted in this research work. Machine learning is used
to analyze structure—property data, so as to point out the research direction for potential high-performance carbon materials. Through the
standardized test of future researchers, the structure—property relationship will be further improved.

tested at low current density (e.g. 100 mA g~ * in this work). For
rate performance, each current density should be cycled for
a specified number of times (the battery could be cycled ten
times at each current density). Furthermore, the cycle perfor-
mance might be tested for a long time at low and high current
density, respectively. Following the standardized testing and
data processing methods, secondly, these structure parameters
and performance data of future research will be integrated into
the structure-property database established in this work,
forming a constantly updated database to gain a comprehensive
understanding of various non-graphite carbon materials; lastly,
at the design end and implementation end, machine learning is
supplemented to further update and improve the prior experi-
ence. Thus, the optimal structural parameters could be pre-
dicted precisely to achieve the screening effect for electrode
materials and finally guide the future material design.

4 Summary and prospects

In summary, based on the crystallinity of the carbon layer, this
research work clearly defines the microstructure relationship of
non-graphite carbon materials. As illustrated in Fig. 6, the
microstructure information (L,, L., dooz, In/ls, and SSA) and
sodium storage performance data (ICE, capacity, rate factor,
and plateau) of non-graphite carbon materials in the existing
literature are comprehensively sorted out, and a structure—
property relationship database is preliminarily established,
which can be supplemented and updated by subsequent
research data. At the same time, we also call for a standardized
processing specification for microstructure and sodium storage
performance tests, so as to improve and update the sodium
storage structure-property relationship database of non-
graphite carbon materials in the future. Moreover, a data
analysis method is used in conjunction with thermodynamic
and kinetic analysis to clarify the correlation between sodium
storage performance and structural parameters, and the rela-
tively universal structure-property relationship of non-graphite

This journal is © The Royal Society of Chemistry 2022

carbon materials is also summarized. The sodium storage
mechanism of hard carbon, soft carbon, rGO and other non-
graphite carbon materials with poor crystallinity is mainly
dominated by adsorption, intercalation and pore filling to
different degrees. A small carbon layer, large interlayer spacing
and high defect degree lead to different sodium storage prop-
erties for non-graphite carbon materials. The sodium storage
mechanism and performance of different carbon materials
change in a well-defined way with the structural evolution.
Machine learning exploits this regularity to predict the sodium
storage performance from the structural parameters. Further-
more, machine learning is employed to successfully screen for
key structural parameters to achieve excellent comprehensive
sodium storage performance, which can be used to guide the
design of novel carbon-based materials. Finally, the following
research directions on the sodium storage of carbon-based
anodes are identified based on the synopsis provided here.

(I) For non-graphite carbon materials, only low HTT perfor-
mance has been considered, and few detailed studies have been
performed on the structure and properties of high HTTs.
Although a low HTT increases the number of active sites, a high
HTT does not cause the dynamic process to completely deteri-
orate. The gaps in the sodium storage properties of non-
graphite carbon materials at high HTTs still remain to be
understood. Lastly, more comprehensive structural parameters
of soft and hard carbon obtained through machine learning can
lead to a better understanding of the effect of structure on
performance.

(IT) According to the statistical analysis of data, the carbon
layer size (L, and L.) should have an important influence on the
sodium storage mechanism and performance. However, most
previous studies focused on how the interlayer spacing and
defect types influence the sodium storage performance of
layered carbon materials. Non-graphite carbon materials with
large nanosized carbon layers may have distinctly different
sodium storage properties. Exploring the influence of carbon
layer size combined with machine learning will provide a new
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idea for seeking the balance of performance. The effects of the
carbon layer size will be studied at nanometer to submicron
regions to improve the understanding of non-graphite carbon
materials and promote commercial application of these
materials.

() The machine learning model can be optimized to
guarantee the accuracy of the predicted structure by expanding
the amount of data and enriching structural parameters. Some
key technologies, such as natural language processing and
image recognition, can be applied to obtain rich structural
information (like the pore structure and heteroatom type) and
reduce errors. Furthermore, to increase the utilization efficiency
of data, we call for a standardized data processing method on
the carbon material structure and sodium storage performance.
With the help of accurate machine learning models, the
constantly updated structure-property database can be used to
guide the preparation of high-performance electrode materials
programmatically.

In this work, the essential nature of crystallinity is shown to
be the key structural information required for systematically
developing an understanding of sodium storage mechanism
and performance for non-graphite carbon materials. We con-
structed a database containing key structural parameters and
main sodium storage performance to explore their relation-
ships, resulting in an overall understanding of structure and
performance. Then, big data analysis and basic theories were
used to illustrate the effect of structure on the sodium storage
performance and its mechanism, which can provide important
guidance in the field. Finally, with the help of machine learning,
the structure-property relationship was revealed to predict and
screen the optimal structure for the best sodium storage
performance, thus filling the gaps in experimental results and
identifying research directions. Therefore, the database
collected from the previous reports can be combined with
machine learning to identify the structure-property relation-
ship, which promotes the design and application of novel
electrode materials and provides a new paradigm for research-
ing other materials.
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