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Lewis acidic aluminum in zeolites, particularly acidity that is inherent to the framework, is an indeterminate
concept. A fraction of framework aluminum changes geometry to octahedral coordination in the proton
form of zeolite mordenite. Such octahedrally coordinated aluminum is the precursor of a Lewis acid site
and its formation is accompanied by a loss in Breonsted acidity. Herein, we show that such Lewis acid
sites have a preferred location in the pore structure of mordenite. A greater proportion of these Lewis
acid sites resides in the side-pockets than in the main channel. By reverting the octahedrally coordinated
aluminum back to a tetrahedral geometry, the corresponding Brgnsted acid sites are restored with
a concomitant loss in the ability to form Lewis acid sites. Thereby, reversible octahedral-tetrahedral

aluminum coordination provides a means to indirectly switch between Lewis and Brensted acidity. This
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Accepted 25th January 2021 phenomenon is unique to Lewis acidity that is inherent to the framework, thereby distinguishing it from

Lewis acidity originating from extra-framework species. Furthermore, the transformation of framework
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aluminum into octahedral coordination is decoupled from the generation of distorted tetrahedrally

rsc.li/chemical-science coordinated aluminum, where the latter gives rise to the IR band at 3660 cm ™ in the OH stretching region.

adsorbed probe molecules.""* Not only can Lewis acid sites be
distinguished easily from Bregnsted acid ones, but finer
nuances, such as acid site strength and accessibility can also be

Introduction

Zeolites are extensively used as catalyst and support materials

for a wide array of industrially applied reactions."” The presence
of tetrahedrally coordinated aluminum in a zeolite framework
necessitates a charge-compensating cation to yield a neutral
material. When this cation is a proton, it results in a Breonsted
acid site (Fig. 1a),®> which is at the origin of industrial applica-
tion of zeolites as solid acid catalysts, replacing homogeneous
mineral acids in various processes.* Protonic zeolites are
extensively used for several reactions, in particular, cracking,
alkylation, and isomerization.>” Apart from Brensted acid sites,
certain aluminum species in zeolites possess Lewis acidic
character. Lewis acidic aluminum (Fig. 1b) plays a pivotal role
not only in traditional cracking reactions, but also in salient
biomass valorization reactions,*® which include the conversion
of trioses to alkyl lactates," and cellulose to glucose.'
Conventionally, one of the oft-used techniques to study the
above-mentioned acid sites in zeolites is FTIR spectroscopy of

“Institute for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, 8093 Zurich, Switzerland. E-mail: jeroen.vanbokhoven@
chem.ethz.ch

*Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen,
5232, Switzerland

T Electronic  supplementary
10.1039/d0sc06130a

information  (ESI) available. See DOL

4094 | Chem. Sci, 2021, 12, 4094-4103

assessed. For instance, evacuating adsorbed pyridine at
different temperatures provides information on the strength of
adsorption, which to some extent relates to acid site
strength." ¢ Likewise, using probe molecules of different sizes
sheds light on the accessibility of the sites."”

Alongside Lewis acidic aluminum species in zeolites,
Brgnsted acid sites engage in a cooperative fashion to catalyze
multi-step ‘domino’ reactions."® Examples of such reactions in
biomass valorization chemistry include the conversion of
glucose to 5-hydroxymethylfurfural (HMF) and of Cs-sugars to
lactic acid esters.”>' These conversions feature consecutive
reaction steps that take place over different active sites and
consequently, require a precise balancing of the number of
Lewis and Bregnsted acid sites in the zeolite. This is
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Fig.1 Sketch of (a) Brensted acid site and (b) three-coordinated Lewis

acid site in a zeolite.
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experimentally evident from the existence of an optimal Lewis
to Bronsted acid ratio to achieve the highest yield of the
product.**** Likewise, in glycerol dehydration over zeolites,
Bronsted acid sites are involved in activating the substrate, but
the selectivity to acrolein or acetaldehyde is dictated by the
Lewis acid content in the zeolite.”® Consequently, under-
standing the skew of these two different types of acid sites is
paramount for the catalytic applications of zeolites. However,
despite zeolites being used commercially on a large scale and
extensive research being carried out over a number of decades
now, the origin of Lewis acidity in these materials remains
a nebulous concept.*>**?° Several proposals for Lewis acidic
aluminum species exist, which include framework
aluminum,***”** extra-framework aluminum (EFAI),>>*** and
framework-associated aluminum.'?*® In a recently published
perspective, we discussed this classification in detail and illus-
trated that the multiple proposals point towards a plurality of
Lewis acid sites and mechanisms that generate these species.*
The uncertainty in demarcating the origin of Lewis acidic
aluminum in zeolites hampers the analysis of Lewis-Brgnsted
acid synergy in catalytic applications.***

The most extensively characterized mechanism for Lewis
acidity in zeolites is of that formed after dealumination via
steaming.*® This route entails the hydrolysis of framework Si-O-
Al bonds, translating in the removal of aluminum from the
framework.******* In comparison to this mechanism, the
proposal of Lewis acidity that is inherent to the zeolite frame-
work is less rigorously examined, but has received greater
attention of late.>****>* NMR experiments performed at high
fields have enabled the characterization of a second framework
Al(wv) site,” and the elucidation of the acidic nature of tri-
coordinated framework aluminum in dehydrated ZSM-5.** The
precursor to Lewis acid sites in this mechanism - unlike for the
Lewis acid sites generated from EFAI - is tetrahedral framework
aluminum.

Framework-associated aluminum refers to species that can
undergo reversible changes in coordination from octahedral to
tetrahedral.*® Through a combination of *’Al MAS NMR and
FTIR spectroscopy, we demonstrated that framework-associated
aluminum can be assigned Lewis acidic property in zeolite
mordenite.** It adopts an octahedral coordination in the proton
form of the zeolite after calcination in static air and exposure of
the sample to moisture under ambient conditions.'>*****” Such
an aluminum species is associated with Lewis acidity upon
dehydration.**** The octahedrally coordinated framework-
associated species can be reverted into a normal framework
tetrahedral coordination, and should therefore, not be
described as simply extra-framework. While the Lewis acidic
character of framework-associated aluminum was evidenced,
the nature of these species, its evolution as a function of
conditions, and its location in the pore system of zeolite mor-
denite remain unaddressed. Also, the potential role of distorted
tetrahedral and penta-coordinated aluminum in generating
Lewis acidity was not evaluated. As per current knowledge, the
extent to which the generation of these latter species are
coupled to the generation of framework-associated octahedrally
coordinated aluminum is unknown. By targeting these
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knowledge gaps, our objective is to arrive at a better under-
standing of the Lewis acidic property of framework-associated
aluminum and of zeolites in general. We demonstrate how
evolution in aluminum coordination with varying conditions
influences both Lewis and Brgnsted acidity in the zeolite, with
the two kind of acid sites being partially interchangeable.
Furthermore, we highlight the role of the side-pockets in mor-
denite in this phenomenon. Current knowledge on the gener-
ation of Lewis acid sites, irrespective of which kind of
aluminum species shows Lewis acidic property, is that they are
formed with a loss in Brensted acidity.>***** Overall, we report
a novel conceptual advance on the possibility to toggle between
Lewis and Brgnsted acidity, founded on the basis of aluminum
species that exhibit reversible octahedral-tetrahedral coordi-
nation. The Lewis acid sites generated from such aluminum
species are preferentially located in the side-pockets as opposed
to the main channel of mordenite.

Results and discussion
Aluminum structure from 2’Al MAS NMR

Fig. 2 illustrates that the coordination of aluminum in zeolite
MOR is a function of the charge-compensating cation and
treatment conditions, in line with what is typically observed for
zeolites.****® The details of sample nomenclature and treat-
ment procedure are provided in Table 1. Since the aluminum
structure is sensitive to many factors, such as water content and
temperature,*®** the structure determined by a conventional
>7Al MAS NMR experiment is the structure that prevails after
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Fig. 2 2’Al MAS NMR spectra of zeolite MOR under ambient condi-
tions of NH4,—MOR, H-MOR-450, H-MOR-550, MOR-450-NH, and
MOR-550-NH,. The broad shoulder at the high field side of the peak
corresponding to tetrahedrally coordinated framework aluminum in
H-MOR-550 is highlighted by the black arrow mark.
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Tablel Sample name and treatment procedure. A more detailed description of synthesis procedures is provided in the experimental section in

the ESI

Sample name

Treatment procedure

NH,~-MOR
H-MOR-450
H-MOR-550
MOR-450-NH,
MOR-550-NH,

hydration at room temperature.®? The >’Al MAS NMR spectrum
of NH,-MOR contains one resonance at around 56 ppm, char-
acteristic of tetrahedral framework aluminum. Upon calcining
NH,-MOR in static air at 450 °C and subsequent exposure to
ambient conditions (H-MOR-450), a fraction of aluminum
adopts an octahedral geometry, evidenced by the sharp reso-
nance at 0 ppm. There is an additional change in the spectrum
of the sample calcined at a higher temperature of 550 °C
(H-MOR-550). Besides the presence of octahedrally coordinated
aluminum, the tetrahedral feature at 56 ppm has a broad
shoulder stretching to lower chemical shifts. This broadening is
not present in the spectrum of NH,-MOR and is barely
discernible in that of H-MOR-450. Octahedrally coordinated
aluminum represents 11% of the total aluminum content
in H-MOR-550 and 10% of the total aluminum content in
H-MOR-450.

Octahedrally coordinated aluminum in mordenite, which is
characterized by a narrow resonance at 0 ppm by *’Al MAS
NMR, can be forced back into the typical framework tetrahedral

AN

Commercial mordenite zeolite in the ammonium form, Zeolyst CBV214, Si/Al = 11
NH,-MOR calcined at 450 °C in static air & subsequent exposure to ambient conditions
NH,-MOR calcined at 550 °C in static air & subsequent exposure to ambient conditions
H-MOR-450 after ammonium ion-exchange using aqueous solution of NH,NO;
H-MOR-550 after ammonium ion-exchange using aqueous solution of NH,;NO;

geometry on back-exchanging the zeolite to its ammonium
form.** This phenomenon of reversible octahedral-tetrahedral
aluminum coordination was first observed for zeolite BEA,* and
later confirmed* and generalized for other zeolites.'>?"85%53
Likewise, we observe that the octahedrally coordinated species
in both, H-MOR-450 and H-MOR-550, can be forced back into
a tetrahedral environment on ammonium-exchange (Fig. 2).
The sharpness of the feature at 0 ppm implies that the electric
field gradient surrounding this aluminum atom is small and
therefore suggests a high symmetry.

The conversion of tetrahedrally coordinated framework
aluminum to an octahedral coordination is driven by the
adsorption of water through hydrolysis reactions.****** The
original proposal for the octahedral framework-associated
species was that the aluminum is connected to the framework
via four oxygen atoms with a water molecule and a hydronium
ion being the two other coordinations.*® However, theoretical
work shows that hydrolysis of Si-O and Al-O bonds readily
occur and a fourfold coordination to the framework is
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Fig. 3 Al MOMAS NMR spectra measured under ambient conditions for NH,~MOR, H-MOR-450, H-MOR-550, MOR-450-NH, and
MOR-550-NH,. The F1 projection shows a purely isotropic dimension and the F2 projection depicts the corresponding 2’Al MAS NMR spectrum,

which is acquired in a separate experiment.
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unlikely.”* Despite the lack of certainty about the exact struc-
ture, enough experimental evidence has emerged to suggest
that such octahedrally coordinated aluminum cannot be trivi-
ally dismissed as EFAL***®

The *’A1 MQMAS NMR spectrum of NH,-MOR shows
a single feature assigned to tetrahedral framework aluminum
(Fig. 3). The spectrum of H-MOR-550 shows two types of
tetrahedrally coordinated aluminum species, one type of octa-
hedrally coordinated species and no penta-coordinated
aluminum. The *’Al MQMAS spectrum demonstrates that the
two types of tetrahedral species have different anisotropy.
Tetrahedrally coordinated framework aluminum denoted as
Al(v), hugs onto the F1 = F2 diagonal pointing to a very low
anisotropic quadrupolar interaction. In contrast, the significant
quadrupolar interaction for the Al(v), sites is evidenced by the
broad contours parallel to the F2 dimension. The absence of
penta-coordinated aluminum is in line with the findings from
Chen et al., who have previously detected five-coordinated
aluminum in mordenite only upon calcination at tempera-
tures in excess of 650 °C.*° The fraction of Al(wv), is a function of
calcination temperature. Such species is barely detectable in the
spectrum of H-MOR-450. However, this sample does contain
a substantial amount of octahedrally coordinated aluminum,
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suggesting that the Al(v),, species is not a precursor to the Al(vi)
sites.

Fig. 3 shows that the *’Al MQMAS NMR spectrum of
MOR-450-NH, is very similar to that of NH,~MOR, but the same
observation does not hold for MOR-550-NH,. In the spectrum of
the latter, the resonance of the Al(vi) species disappears and that
of Al(w), reappears but that of Al(wv), species continues to be
present. The population of distorted tetrahedral Al(wv), sites is
an important point of difference between the spectra of
MOR-550-NH, and NH,-MOR. Since the Al(w), sites are only
formed at a calcination temperature of 550 °C, these aluminum
species most likely represent irreversible thermal damage
inflicted on the zeolite framework, preventing their trans-
formation back into a framework T-site, unlike the framework-
associated octahedrally coordinated aluminum.

The phenomenon of reversible tetrahedral-octahedral
aluminum coordination in zeolite mordenite can be realized
independent of the Si/Al ratio. To illustrate this, we calcined
three ammonium-mordenite samples of different Si/Al ratio at
550 °C to obtain the corresponding proton forms (Table S17).
The percentage of octahedrally coordinated aluminum
decreases from 13% for zeolite MOR with a Si/Al ratio of 8.8 to
10% for a sample of a higher Si/Al ratio of 19.7. In comparison,
up to 19% of aluminum adopts an octahedral coordination in
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Fig. 4 FTIR spectra of (a) adsorbed pyridine over activated NH;,—MOR, H-MOR-450, H-MOR-550, MOR-450-NH4 and MOR-550-NHy; (b)
samples activated under vacuum at 450 °C for 4 h (solid line) and after pyridine adsorption—desorption at 150 °C (dashed line) in the OH
stretching region. The names of the samples refer to the form of the zeolite prior to heat treatment in the IR setup.
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the proton form of zeolite BEA with a Si/Al ratio of 9.” When the
protonic zeolites are exchanged back into the ammonium form,
we observe a quantitative transformation of octahedrally coor-
dinated aluminum into tetrahedral coordination (Table S17).

Relationship between aluminum coordination and Brensted-
Lewis acidity

Fig. 4a depicts the FTIR spectra of NH,~-MOR, H-MOR-450,
H-MOR-550, MOR-450-NH, and MOR-550-NH, after in situ
high temperature evacuation and pyridine adsorption—-desorp-
tion. The names of the samples in the figure refer to the form of
the zeolite prior to heat treatment in the IR setup; high
temperature activation of the samples under vacuum before
pyridine adsorption-desorption converts all the zeolites to the
proton form. The absorption features at 1455 and 1620 cm ™' in
Fig. 4a are assigned to pyridine bound to Lewis acid sites, while
those at 1545 and 1635 cm ™' correspond to protonated pyri-
dine. Activation of NH,~MOR under vacuum results in a minor
population of Lewis acid sites. In a previous study, we estab-
lished that framework-associated aluminum in proton-
exchanged zeolites adopts an octahedral coordination under
ambient conditions and is the precursor for Lewis acid sites.*
Upon activation, both H-MOR-450 and H-MOR-550 have
a lower concentration of Brgnsted acid sites (BAS, 1545 cm ™)
than NH,-MOR. Likewise, the spectrum of H-MOR-450 exhibits
a larger peak associated with Brgnsted acidity (1545 cm™*) and
a smaller feature corresponding to Lewis acidity (LAS,
1455 cm™ ') than that of H-MOR-550. Therefore, the generation
of Lewis acid sites is accompanied by a loss of Brensted acid
sites. In other words, some of the framework aluminum that
generate Brgnsted acidity convert into framework-associated
octahedrally coordinated species, which after dehydration
show Lewis acidity. Fig. 4a and Table 2 show that MOR-450-NH,
and MOR-550-NH, have lower Lewis acid and higher Bregnsted
acid concentrations after in situ activation than the corre-
sponding proton forms, H-MOR-450 and H-MOR-550. This
observation is consistent with the >’Al NMR results discussed
earlier, where aluminum in octahedral coordination in the
proton form of mordenite was shown to reinsert into the

Table 2 Analysis of total Brensted (BAS) and Lewis acidity (LAS) in the
different mordenite samples

LAS peak area LAS peak area

BAS peak as assessed using as assessed using
Sample area® [a.u.] pyridine® [a.u]  carbon monoxide® [a.u.]
NH,-MOR 52 3.9 1.2
H-MOR-450 41 4.1 1.6
H-MOR-550 26 6.5 1.8
MOR-450-NH, 49 3.5 1.2
MOR-550-NH, 37 3.6 1.1

“ Computed by integration of the peak at 3609 cm™" in the activated

sample. ° Computed by integration of the peak at 1455 cm™* in the
pyridine-adsorbed sample. ¢ Computed by integration of the peaks at
2224 cm ' and 2198 cm ' in the CO-adsorbed sample. The relative
error for all numbers listed in the table is +5%.
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framework upon converting to the ammonium form (vide
supra). Consequently, the conversion of the Lewis acid-forming
framework-associated aluminum to a typical tetrahedral
framework species results in increased Brgnsted acidity upon in
situ activation of the back-exchanged samples. The greater
intensity of the peak corresponding to pyridinium ion in the
FTIR spectra of the activated back ammonium-exchanged
samples duly reflects this.

Fig. 4b illustrates the FTIR spectra of the same samples in
the OH stretching region, before and after pyridine adsorption-
desorption. The most prominent absorption in the evacuated
samples is that at 3610 cm ™', which is attributed to bridging
hydroxyl groups (Brgnsted acid sites). The feature at 3745 cm ™
is the signature for silanols. FTIR spectra of H-MOR-550 and
MOR-550-NH, (Fig. 4b) show a shoulder at around 3660 cm ™,
which is attributed to the presence of Al-OH species.*® This
feature is barely visible in the spectra of NH,~MOR, H-MOR-450
and MOR-450-NH,. The peak area associated with Brgnsted
acid sites decreases in the order NH,~-MOR = MOR-450-NH, >
H-MOR-450 > MOR-550-NH, > H-MOR-550 (Table 2). The total
Brgnsted acidity measured after high temperature in situ acti-
vation of MOR-450-NH, is highly comparable to that of in situ
activated NH,~MOR. However, in the case of MOR-550-NH,, the
total Brgnsted acidity, while being appreciably higher than in
H-MOR-550, is still inferior to that of NH,~MOR. Therefore, the
extent to which Brensted acid sites are restored depends on the
temperature at which the proton form is calcined. A nearly
complete retrieval of Brensted acidity is possible with the
zeolite calcined at 450 °C, but not with samples calcined at
higher temperatures. The presence of irreversibly formed Al-
OH groups in MOR-550-NH, results in the total Brgnsted acidity
being inferior to that of NH,~MOR (Table 2).

After adsorption of pyridine at 150 °C followed by desorption
at the same temperature, the spectrum of activated NH,-MOR
shows a feature centered at approximately 3587 cm ™" in the OH-
stretching region (Fig. 4b). This corresponds to the fraction of
Brgnsted acid sites that are not probed by pyridine. The side-
pockets in mordenite present accessibility limitations for
sterically bulky molecules. While pyridine can access Brgnsted
acid sites in the main channel in a pristine mordenite sample, it
cannot probe bridging OH groups located in the side-
pockets.>*** The above-mentioned OH-stretch frequency at
3587 cm ! is representative of such inaccessible Brensted acid
sites. This feature continues to be present in the spectrum of
H-MOR-450, but is barely observed in the spectrum of
H-MOR-550 (Fig. 4b). The disappearance of this feature
suggests that only a small number of bridging hydroxyl groups
remain in the side-pockets of the H-MOR-550 sample and that
nearly all bridging hydroxyl groups can be accessed by pyridine.

Using carbon monoxide as a probe molecule enables the
distinction of Lewis acid sites in terms of their coordination
number. Assuming the assignment of IR signatures from pub-
lished literature, the interaction of carbon monoxide with three-
and five-coordinated Lewis acidic aluminum result in FTIR
absorption bands at 2224 cm ™" and 2198 cm™ ' respectively.®>*
Three-coordinated Lewis acid sites are typically found in mor-
denite zeolites of both high and low aluminum content, but

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 FTIR spectra of adsorbed carbon monoxide over activated
parent ammonium form NH4-—MOR, H-MOR-450, H-MOR-550,
MOR-450-NH4 and MOR-550-NHg4. The names of the samples refer
to the form of the zeolite prior to heat treatment in the IR setup.

five-coordinated aluminum species are detected in appreciable
amounts only in samples of low Si/Al ratio.*® Fig. 5 reveals that
a major portion of Lewis acid sites after activation of each
sample is three-coordinated. Calcining NH,-MOR ir situ under
vacuum results in an almost ideal proton form with a low
contribution of Lewis acid sites. While this sample is largely
devoid of five-coordinated Lewis acid sites, such sites are
present in non-negligible amounts in the other samples.

The findings presented in this section constitute an impor-
tant conceptual advance in the relationship between aluminum
coordination and Brensted-Lewis acidity in zeolites (Scheme 1).
Framework aluminum adopts a tetrahedral geometry in the
ammonium form of the zeolite. In situ activation of such sample
yields Bronsted acid sites through ammonia removal. On the
other hand, when NH,-MOR is calcined in static air and
exposed to ambient conditions, a fraction of the aluminum
described as being associated to the framework adopts octa-
hedral geometry. Upon high-temperature activation, this
aluminum species has Lewis acidic character. When the acidic
form of the zeolite is back-exchanged into the ammonium form,
the framework-associated aluminum reverts to a tetrahedral
geometry. In situ activation of such a back-exchanged sample
shows low Lewis and high Brensted acid concentration.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Reversible tetrahedral-octahedral coordination exhibited
by framework-associated aluminum and its impact on Brgnsted and
Lewis acidity.

Therefore, the property of reversible tetrahedral-octahedral
coordination exhibited by framework-associated aluminum
facilitates the indirect switching between Brgnsted and Lewis
acidity (Scheme 1). While the switch in acidity was experimen-
tally observed herein with mordenite, we believe that this can be
extended to zeolite topologies that allow the formation of
octahedrally coordinated framework-associated aluminum,
which have been observed in a range of different zeolites,
including BEA* and zeolite Y.*

Location of framework-associated aluminum in the pore
system of mordenite

The Lewis acid content detected with pyridine as the probe
molecule in H-MOR-450 is only marginally higher than that in
activated NH,~MOR (Table 2). However, there is a large differ-
ence in the Lewis acid site concentration between H-MOR-450
and H-MOR-550. From %’Al MAS NMR, we know that the frac-
tion of Al(vi) in these acidic zeolites are not substantially
different (vide supra). Therefore, the large difference in the
intensity of the peak at 1455 cm ™" for these two zeolites (Fig. 4a,
Table 2) might not reflect such a quantitative difference in acid
site density, but instead could be caused by differences in
accessibility of the Lewis acid sites for pyridine. Being a much
smaller molecule, carbon monoxide can probe all acid sites in
mordenite, including the ones located deep in the side-pockets.
From Fig. 5 and Table 2, we infer that the Lewis acid site
concentration detected with carbon monoxide in H-MOR-450
and H-MOR-550 differ minimally, while being higher than
that observed in in situ activated NH,~MOR. This suggests that
the much lower Lewis acid content, as measured with pyridine
in H-MOR-450 compared to H-MOR-550, is due to differences
in acid site accessibility for pyridine. Fig. 4b corroborates this
hypothesis from the context of Brensted acid site accessibility.
While a substantial portion of bridging hydroxyl groups in
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H-MOR-450 remain inaccessible to pyridine, nearly all
Brgnsted acid sites can be probed in H-MOR-550 (dashed lines,
Fig. 4b). Previous studies on zeolite mordenite of a comparable
Si/Al ratio suggested that pyridine can access a part of Brgnsted
acid sites in the side-pockets in the proton form calcined at
550 °C, which is not the case with the parent ammonium
form.****% Based on these findings, it appears that Lewis acid
sites originating from framework-associated aluminum tend to
be localized more in the side pockets than in the main channel
of mordenite. This would explain why the Lewis acidity
measured with pyridine in H-MOR-450, wherein pyridine has
considerable accessibility limitations in the side-pockets, is
much lower than the acidity measured in H-MOR-550, wherein
these restrictions are more relaxed. And notably, the use of
carbon monoxide reveals a smaller difference in Lewis acid
content between these two samples.

The Al-OH groups, which are present in H-MOR-550 and
characterized by the IR band at 3660 cm ™', do not engage in
a Lewis acidic interaction with pyridine. The corresponding
back-exchanged sample, MOR-550-NH,, continues to have
appreciable amounts of Al-OH moieties (Fig. 4b), but shows
Lewis acidity that is comparable to activated NH,~MOR and
MOR-450-NH, (Table 2), neither of which show signatures for
Al-OH. The Al-OH groups are also not Brensted acidic, since
the signature for these species in the OH stretching region
remains largely unperturbed after pyridine adsorption (dashed
lines, Fig. 4b). The low Lewis acid content in MOR-550-NH,, as
detected by pyridine, is unlikely to be caused by accessibility
limitations as most of the Brensted acid sites in this sample can
be accessed by pyridine (dashed line, Fig. 4b). Consequently,
the low Lewis acid content of MOR-550-NH, is truly reflective of
the transformation of Lewis acid-forming framework-associated
aluminum to tetrahedral framework aluminum, which is not
Lewis acidic. This observation is further validated by measure-
ments of Lewis acidity using carbon monoxide (Table 2).

While the concept of certain aluminum species exhibiting
reversible tetrahedral-octahedral coordination has been re-
ported in the past, we show that Lewis acid sites originating
from framework-associated aluminum has preferential site
occupancy in zeolites; in the case of mordenite, the side-pockets
are more favored to host these sites than the main channel. This
insight can have far-reaching implications for the rational
synthesis of Lewis acid sites in zeolites by virtue of controlling
aluminum distribution.®® Furthermore, such information on
site specificity can aid in the engineering of improved catalysts,
as realized in the case of Bregnsted acid-catalyzed carbonyla-
tion.*”” While the distribution of Brensted acid sites can be
assessed using "H DQMAS NMR of acetonitrile-d; adsorbed over
mordenite, catalytic activity in the carbonylation of dimethyl
ether correlates with the number of acidic protons in the side-
pockets.®**® Analogous to these findings on the specificity of
Bronsted acid sites in carbonylation reactions, knowledge on
the site specificity of Lewis acid sites in zeolites will enhance the
understanding of their role(s) in catalytic applications.

As is generally observed with different zeolite types, the
amount of octahedrally coordinated framework-associated
aluminum in the proton form of mordenite decreases with
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increasing Si/Al ratio.** The negligible amount of octahedrally
coordinated aluminum in the proton form of Si-rich zeolites
suggests that isolated aluminum atoms do not undergo this
phenomenon, and instead, two or more aluminum atoms in
close proximity might be needed for the generation of octahe-
dral framework-associated species. Based on the FTIR results
presented herein, the side-pockets in mordenite can be envi-
sioned to provide a more favorable environment in terms of
proximal aluminum location for the generation and stabiliza-
tion of octahedral framework-associated aluminum. In this
context, it is worth noting that the relatively stronger acidity of
Bronsted acid sites in the side-pockets compared to those in the
main channel of mordenite is assigned to the stronger
confinement effect imposed by the zeolite framework.®®

Al-OH groups and its relation to distorted tetrahedrally
coordinated aluminum

The FTIR spectroscopic signature at around 3660 cm ™" for Al-
OH groups correlates with the signature for distorted tetrahe-
drally coordinated aluminum on the >’Al MQMAS NMR. Fig. 4b
shows that AI-OH species is virtually non-existent in the spectra
of NH,-MOR and H-MOR-450, but present in substantial
amounts in the spectrum of H-MOR-550. Stacking this against
the corresponding >’Al MQMAS NMR spectra (Fig. 3) reveals
that AI-OH groups are linked to the distorted tetrahedral sites
(Al(v)p). The same interpretation can also be drawn from the
back-exchanged ammonium samples. MOR-450-NH, has
a negligible population of distorted tetrahedral sites, as evi-
denced by >’Al MQMAS NMR (Fig. 3) and correspondingly, no
pronounced feature for AI-OH groups in the FTIR spectrum
(Fig. 4b). MOR-550-NH, has a far more substantial number of
distorted tetrahedral sites on the ?’Al MQMAS NMR and
correspondingly, a distinct feature for AI-OH groups in the FTIR
spectrum. Consequently, the generation of the AlI-OH species
upon calcination at high temperatures corresponds to
a different aluminum species than the framework-associated
aluminum that changes coordination. H-MOR-450 is exem-
plar of this hypothesis as it has appreciable amounts of octa-
hedrally coordinated aluminum but barely any distorted
tetrahedral aluminum on the *’AI MQMAS NMR (Fig. 3) or
signature for Al-OH groups in the FTIR spectrum (Fig. 4b).
Therefore, octahedrally coordinated aluminum in morden-
ite, Al(vi), which is characterized by the narrow *’Al signal at
around 0 ppm under hydrated conditions - and which shows
Lewis acidic behavior after dehydration - is able to revert into
a framework site. However, distorted tetrahedrally coordinated
aluminum, Al(wv),, which has one or more OH coordinations
and is generated by calcination at a higher temperature,
behaves differently and does not change coordination upon
ammonium exchange. While substantial amounts of octahe-
drally coordinated aluminum is present under ambient condi-
tions in H-MOR-450 (Fig. 2), the accessibility limitations for
pyridine in this sample is comparable to that in NH,~-MOR
(Fig. 4b). Based on this observation and on the FTIR line shapes
of H-MOR-550 and MOR-550-NH, after pyridine adsorption
(Fig. 4b), it appears that it is the distorted tetrahedral sites, and

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc06130a

Open Access Article. Published on 26 2021. Downloaded on 2026/2/1 8:45:45.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

not the octahedrally coordinated species, that modify accessi-
bility for pyridine to acid sites in the side-pockets.

Evolution of aluminum structure with conditions in
mordenite

Scheme S11 summarizes the key findings from this study and
presents the evolution of aluminum structure in zeolite mor-
denite as a function of conditions. The NMR and FTIR spec-
troscopic signatures used for the assignment of different
species are listed in a table as part of Scheme S1.1 We further
indicate the nature of each species, as likely being/originating
from framework, extra-framework or framework-associated
aluminum. Calcining the ammonium form of mordenite at
450 °C in static air and subsequent exposure of the sample to
ambient conditions yields the proton form of the zeolite
(H_MOR_wet in Scheme S1%) with aluminum in two different
geometries: tetrahedral framework aluminum (Al(wv),) and
octahedrally coordinated framework-associated aluminum
(Al(v1)). The zeolite is devoid of penta-coordinated and dis-
torted tetrahedral aluminum moieties. Evacuating H_MOR_-
wet at elevated temperature converts the octahedrally
coordinated aluminum species into primarily three-
coordinated and some five-coordinated Lewis acidic species
(H_MOR activated in Scheme S1t) that are preferentially
localized in the side-pockets of mordenite.** Upon ammonium
exchange of the H_MOR_wet sample, the coordination envi-
ronment of aluminum in the zeolite reverts to being exclusively
tetrahedral (H_MOR_NH, in Scheme S17), as present in the
parent NH, MOR. While such a change in aluminum coordi-
nation from octahedral to tetrahedral has been observed with
several zeolite topologies, an elaborate mechanism on how
ammonium ion-exchange, or equivalently ammonia treatment,
facilitates this transformation is yet to be deduced and should
be a key research direction to be explored in the future.**
Evacuating H_ MOR_NH, under vacuum at high temperature
shows greater Bronsted acidity that in the preceding proton
form. This is because the conversion of octahedrally coordi-
nated aluminum to a tetrahedral geometry on ammonium
exchange restores the typical tetrahedrally coordinated frame-
work aluminum, which yield bridging hydroxyl groups upon
ammonia removal. The evolution of aluminum structure on
calcining the ammonium form of the zeolite at a higher
temperature of 550 °C in static air is largely similar to the
evolution observed with the sample calcined at a lower
temperature of 450 °C but for one important difference. The
treatment at the higher temperature generates distorted tetra-
hedral aluminum sites (H_MOR_highT_wet in Scheme S1t),
which result in anisotropic broadening in the *’Al MAS NMR
spectrum of this proton form. In the FTIR spectrum, the AI-OH
species are characterized by an absorption at 3660 cm ™" in the
OH stretching region and they do not interact with pyridine.
While ammonium ion-exchange renders it possible to convert
all octahedrally coordinated framework-associated aluminum
into tetrahedral coordination, the distorted tetrahedral
aluminum sites do not revert to the pristine tetrahedral
framework coordination (H_MOR_highT NH, in Scheme S17).
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Conclusions

Proton forms of zeolite mordenite, obtained by the calcination
of the parent ammonium form in wet static air, possess
framework-associated octahedrally coordinated aluminum
under ambient conditions. After high temperature activation of
such sample, the framework-associated aluminum shows Lewis
acidic property. The changes in aluminum coordination and
conversion of Brgnsted into Lewis acidity are partially revers-
ible. Exchanging the proton form back into the ammonium
form converts octahedrally coordinated aluminum back into
a framework tetrahedral coordination, with the bridging
hydroxyl groups being formed upon ammonia removal. The
degree of retrieval of Bronsted acidity is a function of the
calcination temperature. Higher calcination temperature yields
a distorted tetrahedrally coordinated aluminum species that is
irreversibly formed and is characterized by a high anisotropy of
chemical shift. This species contributes to the IR feature at
3660 cm ™' in the OH-stretching region, assigned to Al-OH
moieties. The presence of these AI-OH species modifies pyri-
dine accessibility to the acid sites in the side-pockets of mor-
denite. The attribute of framework-associated aluminum to
undergo reversible transformation in coordination from tetra-
hedral to octahedral enables the possibility to switch between
Brgnsted and Lewis acidity. Aluminum in the side-pockets in
mordenite are more prone to show such behavior. Therefore,
Lewis acid sites formed from framework-associated aluminum
are found to have a preferential site occupancy in the pore
structure of mordenite. These observations are fundamentally
different to the largely researched Lewis acidic extra-framework
aluminum and could enable a paradigm shift in the rational
design of Lewis acid sites in zeolites.
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