Issue 14, 2018

Achieving biopolymer synergy in systems chemistry

Abstract

Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid–peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.

Graphical abstract: Achieving biopolymer synergy in systems chemistry

Associated articles

Article information

Article type
Review Article
Submitted
05 3月 2018
First published
31 5月 2018

Chem. Soc. Rev., 2018,47, 5444-5456

Author version available

Achieving biopolymer synergy in systems chemistry

Y. Bai, A. Chotera, O. Taran, C. Liang, G. Ashkenasy and D. G. Lynn, Chem. Soc. Rev., 2018, 47, 5444 DOI: 10.1039/C8CS00174J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements