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Celebrating Soft Matter’s 10th anniversary:
Testing the foundations of classical entropy:
colloid experiments

Michael E. Cates*ab and Vinothan N. Manoharancd

Defining the entropy of classical particles raises a number of paradoxes and ambiguities, some of which

have been known for over a century. Several, such as Gibbs’ paradox, involve the fact that classical

particles are distinguishable, and in textbooks these are often ‘resolved’ by appeal to the quantum-

mechanical indistinguishability of atoms or molecules of the same type. However, questions then remain

of how to correctly define the entropy of large poly-atomic particles such as colloids in suspension, of

which no two are exactly alike. By performing experiments on such colloids, one can establish that

certain definitions of the classical entropy fit the data, while others in the literature do not. Specifically,

the experimental facts point firmly to an ‘informatic’ interpretation that dates back to Gibbs: entropy is

determined by the number of microstates that we as observers choose to treat as equivalent when we

identify a macrostate. This approach, unlike some others, can account for the existence of colloidal

crystals, and for the observed abundances of colloidal clusters of different shapes. We also address

some lesser-known paradoxes whereby the physics of colloidal assemblies, which ought to be purely

classical, seems to involve quantum mechanics directly. The experimental symptoms of such involvement

are predicted to be ‘isotope effects’ in which colloids with different inertial masses, but otherwise identical

sizes and properties, show different aggregation statistics. These paradoxes are caused by focussing one’s

attention on some classical degrees while neglecting others; when all are treated equally, all isotope

effects are found to vanish.

1 Introduction

Understanding the phase behaviour of colloidal suspensions
has been one of the crowning successes of classical statistical
mechanics. Their various equilibrium phases1 can be predicted
by computing the Helmholtz free energy F(T,V,N) = E � TS for
N particles in a volume V at temperature T.

For hard spheres, the interaction energy E is zero and the
entropy, S, is the sole determinant of the phase diagram. In
many colloids the suspended particles have a hard core, a steric
or electrostatic repulsion of short range compared to the size of
the core, and negligible interaction at larger distances. These
indeed behave like hard spheres and their properties confirm
all aspects of the theoretical phase diagram for such spheres.2

Adding attractions at larger distances complicates things

(since E and S both matter) but the calculations can still be
done, and agreement is just as impressive.1

There are two puzzling niggles with this success. First: what
happened to the solvent? The calculations are performed for
particles with hard sphere (and/or other) interactions, as though
they resided in a vacuum. Is it really true that the solvent can be
ignored altogether, once the effective interactions between colloidal
particles (which of course may depend on what the solvent is)
have been worked out? Secondly, a colloidal suspension may
contain, in a typical sample, of order 1012 nearly spherical
particles, each a micron in diameter. Each of these particles
contains in turn around 1012 atoms. It follows that, if we allow
for small variations in shape as well as in size, no two colloidal
particles are exactly alike. Despite this, the phase diagrams
observed for colloidal systems are the same as those calculated by
statistical mechanics on the basis that the interacting particles
concerned are indistinguishable.

We address the issue of the ‘missing solvent’ later in this
article, but focus first on the apparent role of indistinguishability.
Recall that this is a fundamentally quantum-mechanical concept,
and applies only to particles that are molecularly identical. This
does not hold for colloidal suspensions, for the reasons just given.
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Sethna has coined the term ‘undistinguished’ particles for
classical systems like these in which particles could be distin-
guished, but in practice are not.3 It seems deeply reasonable that
undistinguished and indistinguishable particles should have the
same thermodynamic behaviour, at least so long as one remains
firmly in the domain of classical physics. Within this domain,
fermions and bosons have the same statistics, and although
factors of �h might enter a calculation, they should all cancel out
in the end. Colloids are large enough to be classical in this sense.

Such an equivalence seems particularly reasonable if one takes
an ‘informatic’ definition4 of the entropy S. In this informatic view,
S = kB ln W where W is the number of distinct and equiprobable
microstates that we choose to treat as equivalent when defining a
macrostate. (Slightly more generally, S ¼ �kB

P
pi ln pi where pi is

the probability of microstate i as determined within an ensemble
of our choosing.) It follows that if we choose to make no distinc-
tion between colloidal particles—an attractive proposition for the
experimentalist, who would likely prefer not to label each of the
1012 individual particles she can follow in her microscope—then
all our calculations become the same as if there actually is no
distinction. (In technical terms, the classical partition function for
N labelled particles must always be divided by a factor N! to
account for permutations among them:5,6 this holds whether the
particles are actually indistinguishable or merely ‘undistiguished’.)
The informatic view thus neatly explains why the statistical
mechanics calculations capture the observed phase behaviour
of colloidal suspensions.

Intriguingly however, the equivalence of indistinguishable
and undistinguished particles is not accepted by all interpreta-
tions of classical statistical mechanics. In particular there is
one school of thought, most clearly elucidated in an influential
textbook by the distinguished physicist Shang-Keng Ma,7 that
asserts that for the entropy of a system to be objectively real, it
must be a dynamical quantity and not an informatic one. Accord-
ing to this ‘kinetic’ approach, S = kB ln W where W measures the
volume in phase space that the system can explore on the time
scale of an experiment. The precise definition of this time-scale
dependent volume is problematic, as discussed carefully by Ma.
(Specifically, only a tiny fraction of accessible states are ever
sampled in practice.) Nonetheless one can sympathise with his
view that the entropy ought to be a property of a thermo-
dynamic system alone, and hence definable without reference to
the informatic state of an observer. The ‘kinetic’ view of entropy
has carried significant weight, for instance in the community
working on glasses.8

The informatic and kinetic views of entropy would be in
harmony if they always gave equivalent predictions for macroscopic
behaviour such as phase equilibria. However, they do not; and
wherever this issue has been looked at carefully,9–11 the informatic
view has been found correct, and the kinetic one found wanting.

This point is best illustrated by a colloidal experiment that
has been done innumerable times in laboratories around the
world. If a suspension of monodisperse hard colloidal spheres is
prepared in a homogeneous fluid state at (say) a volume fraction
f = 56%, this state will crystallize. (In the phase diagram, this
initial state lies in the metastable fluid but has a density below

the glass transition. Crystallization is therefore rapid, and the
identity of the equilibrium state as a colloidal crystal is unambig-
uous.) In the fluid, the spheres can easily swap places whereas in the
crystal, they cannot. It is only a slight oversimplification to say that
the diffusivity of the colloidal particles in the crystal is negli-
gible, so that particle swaps are entirely absent on experimental
time scales.† For indistinguishable particles, the entropy gain
on transforming from liquid to crystal is extensive, and positive
at this density: as is well known, the ordered structure has more
entropy because particles have more room to wobble about
when their mean positions are localized on a lattice.1

However, within the kinetic approach, the additional entropy
cost of localizing distinguishable particles onto un-swappable
lattice sites contains a term Sperm = kB ln(N!) where N! counts
particle permutations. This term must be paid to collapse an
accessible phase-space volume in which distinguishable particles
can change places, into one where they cannot. This putative
entropy cost is supra-extensive (kBN ln N) and thus for large N
outweighs the extensive entropy on formation of the crystal. Thus
the kinetic approach to entropy predicts that colloidal crystals are
thermodynamically impossible. Yet they are observed every day.

How could a theory get it so wrong? The mistake of the
kinetic approach is that it counts the states accessible to only
one specific colloidal crystal (i.e., a single permutation of the
colloidal positions). But there are N! distinct crystals that might
arise, and the kinetic approach underestimates by this enormous
factor the probability of finding the system in one or other of
them. In the informatic approach, on the other hand, all the states
that we as observers deem equivalent are counted as members of
the same macrostate; the multiplicity of crystals with different
particles occupying different sites then cancels exactly Sperm,
recovering the same result as for indistinguishable particles. Thus
we correctly predict that at f = 56% (say) and N - N, formation
of some crystal or other occurs with probability one, even though
formation of any specified realization of the crystal occurs with
probability zero. The kinetic approach can of course finesse this
by adding on a ‘configurational entropy’ to count the number of
mutually inaccessible states.8 But this concedes defeat: the
original goal7 was to show that entropy counts only the states
the system can actually reach, whereas the configurational term
directly adds back all those—within an equivalence class set by
the observer’s choice of macrostate—that it can’t. For thermo-
dynamic purposes, this simply restores the informatic defini-
tion of entropy.

These arguments are not new9–11 but deserve to be more
widely known (and taught!). They illustrate two interconnected
points. First, not all reasonable-sounding definitions of entropy
for classically distinguishable particles are equivalent: some are
right and some are wrong. Second, experiments on colloidal
suspensions can resolve with striking clarity what the right
definitions are. This adds to the many other ways in which

† Of course, colloid diffusivity is not entirely negligible in the crystal, nor is it so
fast in the liquid as to explore all states on an experimental timescale. But
nonetheless, the liquid samples vastly more permutations than the crystal on
experimental timescales.
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colloidal experiments have clarified basic concepts in classical
statistical mechanics.2

In the rest of this article, we first reiterate the above discussion
from a slightly more formal angle (Section 2) and then explore
similar lines of reasoning in two further areas. In both of these,
pitfalls in defining the classical entropy can be illuminated by
laboratory experiments, or indeed thought-experiments, invol-
ving colloids. The two areas are the so-called ‘symmetry number’
in molecular partition functions (Section 3); and the paradoxical
dependence of rotational entropies on particle masses (Section 4).
Finally, in Section 5 we return to the first of the two niggles raised
above concerning the success of statistical mechanics: why is it
that the entropy of a colloidal system can be computed as though
the solvent were replaced by a vacuum? This will also resolve a
further paradox involving the role of particle masses in transla-
tional, rather than rotational, entropies.

2 Gibbs’ paradox and permutation
entropy

Classical statistical mechanics, as formulated by Gibbs12 rests on
the formula F =�kBT ln Z(T,V,N) for the Helmholtz free energy, F.
Here Z is the partition function, which after integrating over
momenta can be written for indistinguishable particles as

Z ¼ 1

N!

1

ldNparticle

ð
e�bHðqÞdq (1)

In eqn (1) the symbol d denotes the dimension of space; b = 1/kBT;
and H is the classical (configurational) Hamiltonian written as
a function of q, which is a dN-dimensional vector of particle
coordinates. Finally, lparticle is a constant, which Gibbs could not
calculate, but turns out to be the thermal de Broglie wavelength,

lparticle ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�
mparticlekBT

q
; (2)

where mparticle is the mass of the particle of interest, which
might later be a single colloidal particle or a molecule. This
correspondence is found by re-deriving eqn (1) as the semi-
classical limit of the quantum partition function: this procedure
gives an absolute determination of the integration measure in
the classical phase space whose integration over momenta yields
the l factors in eqn (1).

By definition, l (which involves �h) should cancel from any
physical observable that involves only classical physics. Its
apparent failure to do so—in calculations that are classical, but
not quite correct—lies behind some of the paradoxes discussed
later. But first let us focus on indistinguishability.

Gibbs was fully aware that for distinguishable particles the
N! divisor in eqn (1) is in principle absent, and that this absence
destroys thermodynamics as we know it.12 For instance, with-
out this divisor the entropy of an ideal gas is supra-extensive:

SIG(N,V)/kB C N ln(V/Nld) + N ln N (3)

Gibbs predated quantum mechanics, but understood (for instance)
that all helium atoms are equivalent, hence requiring inclusion
of the N! divisor, which restores extensivity by cancelling the

second term. Thus the observed extensivity of the thermo-
dynamic entropy in atomic and molecular substances was no
surprise to him.

He did however pose the following question. Suppose we
have two types of particle (red and blue) each indistinguishable
among themselves, for which SIG(Nr,Nb,V)/kB C Nr ln(V/Nrl

d) +
Nb ln(V/Nbl

d). This is not equal to SIG(Nr + Nb,V) for a single
species. A paradox now arises if one imagines red and blue
particles to smoothly and continuously become merged into a
single population of purple particles. How and when does the
entropy jump from one formula to another? This is Gibbs’
paradox, and one resolution of it is offered by quantum mechanics:
you cannot smoothly transmute one chemical species into another,
so ‘red is red and blue is blue and ne’er the twain shall meet’. This
resolution asserts that the problem is a mere artefact of classical
thinking.

Gibbs himself found a different resolution which, unlike the
quantum-mechanical one, makes sense even for classically
distinguishable particles such as colloids (which could in effect
be made in a continuous range of colours, if one so desired). He
considered how the probabilities of different collections of states
would change if the observer chose to ‘undistinguish’ specific
subsets of such particles. This act merges previously distinct
macrostates, whose probabilities therefore must be added
together. Gibbs found that the entropy switches from one form
to another at precisely the point where we choose to give up
distinguishing red particles from blue. His general analysis of
this class of problems remains useful today, for example when
considering colloids with a continuous distribution of sizes.13

And, in the case where all particles are undistinguished, the final
result is simple: the N! divisor reappears in eqn (1), and extensive,
single-species thermodynamics is restored.

Thus, although quantum indistinguishability offers a fast
and convenient derivation of the N! divisor in eqn (1), it is quite
wrong to believe that this factor defies classical explanation. While
many others have noted this fallacy, most recently Frenkel,14 the
belief is still widespread (and the supposed breakdown of classical
thinking itself often confusingly referred to as the ‘Gibbs
paradox’). The cause of the misunderstanding is perhaps that
most of us learn statistical physics from textbooks that rely solely
on the quantum mechanical explanation of the N! divisor. In a
textbook context—where atoms and molecules are typically the
main focus (e.g. ref. 15)—this represents sound pedagogy; but
the result is that many physicists remain unaware of Gibbs’
completely classical derivation of the same factor. Indeed it
seems that his derivation had been almost entirely forgotten
before its excavation by Jaynes about 20 years ago.16

3 Colloidal molecules: entropy and
symmetry numbers

Perhaps the simplest illustration of Gibbs’ argument—and of
how our experiment defines the macrostate under observation—
comes from experiments on ‘colloidal molecules’: small clusters
of micrometer-scale spherical particles that attract one another
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over a short distance. The short range of the attraction means
that, to a good approximation, the potential energy of a colloidal
molecule is proportional to how many ‘bonds’ (pairs of touching
particles) it has. Molecules with different structures but equivalent
numbers of particles are called ‘isomers’. In three-dimensions, six
spheres can form two isomers with 12 bonds, an octahedron and
a tri-tetrahedron17 (Fig. 1). Yet experiments show that the tri-
tetrahedron occurs 24 times as often as its more symmetric
isomer, the octahedron.18

The preponderance of the tri-tetrahedron cannot be explained
away by appeal to which structure is more likely to form first,
since the isomers can freely interconvert over the timescale of its
experiment. Having ruled out kinetics and potential energy as
reasons for the dominance of the tri-tetrahedron, we must
conclude that the tri-tetrahedron has a higher entropy than
the octahedron.

Where does this entropy difference come from? We shall
show, using the same statistical mechanical formalism used for
molecules,5 that the dominant factor is the difference in
symmetry between the two structures. For simplicity we sup-
pose our classical colloidal ‘molecule’ to be in vacuo (the role of
a solvent is considered in Section 5). In equilibrium, the
probability P of observing an isomer is proportional to Zmole

�bU,
where U is the potential energy of the isomer (which depends
only on its bond number) and Zmol, its molecular partition
function. To a good approximation, Zmol can be factored into
translational (T), rotational (R), and vibrational (V) parts:

Zmol = ZTZRZV (4)

The translational part, when converted to a free energy, yields
the ideal gas entropy defined above. It is the same for both

isomers, assuming the box containing them is large compared
to their dimensions:

ZT = V/lmolecule
3. (5)

The vibrational part can be calculated by assuming harmonic
interactions and taking the product of classical-limit contribu-
tions from the normal mode frequencies oi:

ZV ¼
Y3N�6
i¼1

kBT

�hoi
(6)

When this calculation is done, the lower-frequency vibrational
modes in the tri-tetrahedron lead to its being favoured by a
factor slightly smaller than two.

We are still off by a factor of approximately 12, which must
come from the rotational contribution. In three dimensions,
the classical-limit rotational partition function is

ZR ¼
p1=2 2kBTð Þ3=2

�h3

ffiffiffiffiffiffiffiffiffiffiffiffi
I1I2I3
p

s
(7)

where I1,2,3 are the three principal moments of inertia of the
molecule (more on these in Section 4) and s is the symmetry
number, defined as the number of ways that a molecule can be
rotated and still look the same. The octahedron, a Platonic solid,
has a symmetry number of 24, while the tri-tetrahedron, with
only one two-fold axis of rotational symmetry, has a symmetry
number of 2. The ratio of 12 between these symmetry numbers,
taken together with the factor close to two from vibrational
contributions and another close to unity from the moments of
inertia, yields the final 24-fold difference in probability.

Though it is reassuring that the calculation reproduces the
experimental results, it sheds little light on how the symmetry
of the octahedron could work against it so strongly. The usual
tactic to make sense of such results is to appeal to quantum
mechanics. There the appearance of the symmetry number in
the partition function makes perfect sense: the molecular wave
function has a symmetry determined by the placement of
atoms in the molecule, so that rotations commensurate with
this symmetry are fundamentally indistinguishable. If we did not
include the symmetry number, we would overcount the number
of rotational microstates. And indeed this is where many text-
books5 leave the matter.

But this explanation is wholly unsatisfying for colloidal
molecules, where the wavefunction, were we even able to
compute one, would not be symmetric unless each of our
particles were composed of exactly the same number and con-
figuration of atoms. Since that is certainly not the case, and the
particles can in principle be distinguished—by small differ-
ences in their size, for example—we must seek an alternative
explanation.

To do so, we return to the original derivation of the sym-
metry number by Ehrenfest and Trkal in 1921,19,20 which made
no recourse to wavefunctions or quantum mechanics in general.
We illustrate this argument with a simple example inspired by
Gilson and Irikura21 (see also ref. 22).

Fig. 1 Optical microscope images (left) and structures (middle) of tri-
tetrahedral and octahedral colloidal molecules. Each of these two isomers
contains six micrometer-scale polystyrene spheres bound together by
depletion forces, which are induced by nanoparticles that cannot be seen
in the micrographs. The depletion attraction, details of which are reported
in ref. 18, has a depth of about 4kBT and a range of about 80 nm, much
smaller than the size of the polystyrene spheres. Experiments show that in
an equilibrium ensemble, the probability of observing a tri-tetrahedron is
96%, compared to 4% for the octahedron. The difference in probabilities is
dominated by rotational entropy, which is a function of the symmetry
number s (right). (Images from Guangnan Meng.)
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Consider a colloidal molecule with N = 4 particles that are
constrained to two dimensions (Fig. 2). There are 4! = 24
possible ways they can be arranged to form a four-particle
molecule, for example a rhombus or a square. Writing the
partition function in terms of the coordinates of the particles
(or ‘atoms’) and integrating out the momenta yields

Zatom ¼
1

N!latom2N

ð
exp �bU q1 . . . qnð Þ½ �dq1 . . . dqn: (8)

The integral extends over all configurations in which the atoms
form the molecule of interest. Because the particles are undis-
tinguished, each configuration can be made in N! = 4! = 24
different ways, and so we divide by N!.

Why does the symmetry number appear in Zmol (eqn (4)–(7))
and not in Zatom (eqn (8))? And why does a factor of 1/N! appear
in Zatom and not in Zmol? The difference is that Zmol is
integrated over molecular coordinates. In writing eqn (4) we
assumed that our colloidal molecule is a rigid body that can
translate, rotate, and vibrate.

In molecular coordinates, permutations and rotations
are not independent operations but become ‘entangled’
(in the classical sense of that word!). To see this, we distinguish
the particles and assign them colours, as shown in Fig. 2. In the
distinguished system, the rotational partition function is pro-
portional to the number of permutations times the number of
possible orientations of the cluster: 4!�2p. But sometimes the
same configuration can be made in different ways. For the
rhombus, which has two-fold symmetry in the plane, each
configuration of labeled particles (Fig. 2B, top) can also be
made by permuting the particles and rotating the cluster by
p radians (Fig. 2B, bottom). The rotational partition function
is therefore proportional to 4!�p or 4!�2p/s, where s = 2. For
the square, which has four-fold symmetry in the plane,

each configuration can be made in four different ways, corres-
ponding to permutation plus rotation of p/2 radians, or an
integer multiple thereof (Fig. 2C). The rotational partition
function is therefore proportional to 4!�p/2 or 4!�2p/s, where
s = 4.

If, as in the experiment, the particles are undistinguished,
we must divide by N! = 4! in both cases, leaving a rotational
partition function that is proportional to 2p/s. We now see
why the symmetry number appears in Zmol and not Zatom, and
vice versa for the 1/N! term: both changes result from grouping
together the atomic degrees of freedom. The proportions of the
two isomers observed in an equilibrium ensemble will depend
inversely on the ratio of their symmetry numbers, as well as on
the differences in potential energy, vibrational entropy, and
moments of inertia. (We will see in the next Section that there
are some crucial cancellations between the moments of inertia
and the vibrational terms.) The same argument applies to the
octahedral and tri-tetrahedral colloidal molecules observed in
the experiments.

What if we chose to distinguish the colloidal particles in
the experiment, for example by labeling them with different
fluorescent colours? In that case it would be natural to con-
sider each different arrangement of coloured particles to
be a different molecule. There are 30 arrangements for the
octahedron (6!/s, where s = 24), and 360 for the tri-tetrahedron
(s = 2). If we were to count how often we saw each of these
isomers, we would find that each of the 360 tri-tetrahedral
isomers would occur twice as often as each of the 30 octa-
hedral isomers, because of the ratios of moments of inertia
and vibrational frequencies. It is only when we lump these
macrostates together—by ignoring the distinctions between
particles—that we obtain a result that depends on symmetry
numbers.

Fig. 2 The symmetry number accounts for the relation between permutations and rotations. (A) In this example, four particles come together to form
one of two isomers, a rhombus (top) or a square (bottom). We imagine each cluster to be confined to the two-dimensional plane, so that there is only one
rotational axis, which points out of the plane. Any given orientation of each isomer can be constructed from 4! = 24 permutations of particles. (B) For the
rhombus, which has two-fold symmetry in the plane, each configuration of labeled particles (top) is equivalent to a permutation of particles followed by a
rotation of p radians (bottom). (C) For the square, which has four-fold symmetry in the plane, each configuration can be made in four different ways,
corresponding to permutation plus a rotation of p/2, p, or 3p/2 radians.
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It is no coincidence that this argument is similar to that
made by Gibbs in resolving the paradox now named after him.
The aim of Ehrenfest and Trkal was in fact to to understand the
origin of the N! divisor in the canonical partition function, the
very same factor that we discussed in Section 2. The only way to
understand how the entropy of a gas depends on the number of
molecules, Ehrenfest and Trkal argued, is to consider a situa-
tion where the number of molecules N can vary in a reversible
process. Within the canonical ensemble, N is fixed when the
system contains only a single species, and we cannot add more
molecules reversibly. But when there are multiple species of
molecules in the same system that can interconvert, their
numbers Ni may vary reversibly. In this case, factors of Ni!
appear in the partition function without any appeal to quantum
mechanical argument. The symmetry number appears as a
side-note in this thought experiment. It is a historical irony
that most modern textbooks ascribe to it a quantum origin,
given that Ehrenfest and Trkal aimed to show exactly the
opposite (see ref. 21 and 23 for elegant and modern reformula-
tions of their arguments).

The broader point here is that our statistical mechanical
models must be consistent with the types of observation we
make, since those observations define the macrostate to be
modeled. Consider, for example, a flexible colloidal molecule
that can fluctuate between symmetric and asymmetric confor-
mations without changing its bond topology (Fig. 3). Does such
a molecule have a symmetry number, given that it spends most
of the time in asymmetric conformations? The answer depends
on what we observe. If our experiment measures only the
concentration of this molecule relative to other isomers, then
the symmetry number must appear in our calculation, because
it accounts for how identical conformations can be reached by
permuting particles followed by either rotation or flexing.21

This example shows that the symmetry number is more generally
understood as a property of the topology of the bond network of
a molecule rather than its geometry. This may seem like a deep
statement, but it is really a definition that follows from what
experiments typically measure (and what they do not). Put
differently, we have chosen to treat all three states of the chain
in Fig. 3 as states of the same molecule, not different molecules,
and we must calculate the symmetry number accordingly.

4 Colloidal entropies are
mass-independent

As already discussed, the relative abundance of different colloidal
‘molecules’ should be proportional to the partition function for
each type. The partition function of a molecule includes the
symmetry number as just described, but also factors counting
the number of translational, vibrational and rotational states.
In a quantum context, it is conventional to consider each of
these factors separately—in part because in many molecular
systems at room temperature rotations are almost classical,
while vibrations are not.

When used to address classical entropies, this artificial separa-
tion leads to another paradox. (Recall that a paradox is an apparent
contradiction that, on close inspection, disappears.) Let us con-
sider the rotational contribution to its partition function which in
three dimensions is eqn (7). For the simplest case of a diatomic
molecule, deriving this result is a standard undergraduate exercise:
one examines the small b limit of the quantum partition function
Z ¼

P
n

ð2nþ 1Þ exp �bEnð Þ where En = �h2n(n + 1)/2I is the rota-

tional energy and (2n + 1) the number of distinct quantum
states of that energy. Eqn (7) can be derived by generalizing this
quantum calculation, or by a purely classical integral over the
canonical coordinates for a rigid rotor.

The paradox is as follows. Imagine we have two species of
colloids of the same size and interactions but with two different
particle masses. For instance, the two types could comprise
inner spheres of gold and of aluminium, each coated with an
outer layer of polystyrene so as to create the same final size and
surface chemistry. For simplicity ignore gravity (assume the
experiment to be done in the space station), and consider
‘triatomic’ linear molecules that contain one gold and two
aluminium particles. Then according to eqn (7), the gold
particle is more likely to be found in either one of the edge
positions than in the middle position. More generally, given
two species of particles, placing the heavy ones at the periphery
of the molecule increases the moment of inertia and hence the
partition function. According to eqn (7) this should directly
influence the abundances of these different configurations,
favouring those with heavy particles outermost. In atomic physics
this would be called an ‘isotope effect’.

Can this really be true? A thought-experiment says no: colloids
explore their configuration space by over-damped Brownian
motion in which inertia is negligible, so how can the inertial
mass possibly control the abundances of different cluster geo-
metries? The paradox was raised in a commentary by one of us,24

with the tentative suggestion that eqn (7) might fail for particles
embedded in a molecular solvent rather than a vacuum (see
Section 5 below). But in fact the resolution of this paradox is
much simpler than that.25,26 The ‘colloidal isotope effect’ is a
mirage, caused by artificially separating classical rotations from
vibrations and translations.

It is true that for a molecule in vacuo the full classical partition
function is usually approximated by the factorized form, eqn (4).
But what matters is whether this object, not just one of its factors,

Fig. 3 Left, a flexible linear molecule that can fluctuate between high-
symmetry (top) and low-symmetry (middle, bottom) conformations without
changing its bond network. Right, a symmetric isomer. If our experiment
does not distinguish between the various states on the left and only counts
the abundance of any conformation on the left versus the one on the right,
we must assign a symmetry number of 2 to the flexible molecule, even
though it spends most of its time in asymmetric conformations.
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supports an isotope effect. It doesn’t, as we can see by side-
stepping the above factorization and using instead a more
fundamental ‘interacting atom’ representation:

Z ¼
ð
exp �b HT þHR þHVð Þ½ �dpdq

¼
ð
exp �b

X
pi

2
�
2mi þUðqÞ

� �h i
dpdq

¼ ZKZC

(9)

Here ZK and ZC are the kinetic and configurational contributions
arising from the p and q integrals, and U(q) is the potential part of
the Hamiltonian. Because the p and q integrals are separable, and
because we assumed by hypothesis that U(q) is mass-independent,
the probability of observing different configurations of the particles
is fixed solely by their interactions, and not by their masses. Eqn (9)
is written down for point particles; in principle extended objects
such as colloidal spheres will have a further factor from the
rotational kinetic energy of the spheres themselves, but this is
again factorable and makes no difference to the argument.

How does this outcome square with the ‘molecular’ repre-
sentation, eqn (4)? For a classical molecule of N atoms—
assuming harmonic vibrational states and no vibration–rotation
coupling—the molecular partition function (in d = 3) follows from
eqn (4)–(7):

Zmol ¼
V

lmolecule
3

p1=2 2kBTð Þ3=2

�h3

ffiffiffiffiffiffiffiffiffiffiffiffi
I1I2I3
p

s

Y3N�6
i¼1

kBT

�hoi
(10)

where the oi are the angular frequencies of the vibrational
states. The particle mass ratios enter not only the I’s but also the
o’s; and an exact cancellation between these two factors—while
far from obvious in this representation—is completely guaranteed
by eqn (9).25

5 Integrating out the solvent

Let us finally return to the first of the two niggles mentioned in
the introduction concerning the success of statistical mechanics:
the fact that colloids move through a solvent, not empty space.
To see what the problem is, consider the quantum statistical
mechanics of a dilute atomic gas. The ideal gas contribution to
the entropy (after allowing for the N! divisor in eqn (1)) is

SIG ¼ NkB ln
V

Nldparticle
þ d

2
þ 1

� �
NkB (11)

As is well known, the factors of l generally cancel out in the
entropy differences that control phase behaviour—specifically,
when comparing states with the same number of translational
degrees of freedom, such as a liquid and a gas of the same
chemical species. Suppose however that our particles can dimerize,
forming a rigid bond of binding energy D. Then one finds that the
equilibrium constant relating the concentrations of dimers (D) and
monomers (M) obeys

K � cD

cM2
¼ 2d=2ldM exp½bD�: (12)

This is a simple application of the Boltzmann distribution;
it shows that where processes are present that can change the
number of degrees of freedom, quantum contributions to the
ideal-gas entropy play a role.

Let’s now address colloids in a solvent. A good starting point is
the full semi-classical partition function for all particles present,
in which we retain the Nd colloid coordinates q but integrate out
the solvent ones Q. Integrating also over all momenta as usual,
we have

Zðp; qÞ ¼ 1

M!lMd
solvent

ð
exp �bHðp; q;QÞ½ �dQ � exp �bUðqÞ½ �

(13)

where M the number of solvent molecules.6 The second form
defines the effective interaction potential of the colloids U(q).
Eqn (13) is, of course, another example of strategically discarding
information (the solvent coordinates) that under other circum-
stances we might have chosen to retain.

So long as we can determine a good approximation for U(q),
then the solvent has indeed gone away; our colloids might as
well be in vacuo, so long as this effective interaction replaces the
one they would really have had there. The effective interaction
potential can include solvation forces and all manner of other
solvent-dependent interactions; nonetheless, all that we need
to know about the solvent is encoded in U(q).

The paradox lies in the continuation of this argument. The
colloid free energy is now F(T,V,N) = �kBT ln Z where

Z ¼ 1

N!lNd
colloid

ð
exp �bUðqÞ½ �dq (14)

This still contains the thermal de Broglie wavelength of the
colloids, lcolloid. It might appear then that if our potential U(q)
has a short range deep attraction, conventionally represented
by a bond energy D, eqn (12) will still apply. If so, the relative
populations of colloidal dimers (for instance in our mixture of
gold-cored and aluminium-cored colloids with identical inter-
actions) depends explicitly on their particle masses. This seems
very wrong, for the same reasons as discussed in the previous
section when comparing relative abundances of different cluster
shapes. What is more, the actual value of K seemingly involves
�h even though we ought to be dealing with purely classical
physics here.6

One resolution sometimes offered is that, as the solvent
gets integrated out, the effective phase-space measure for the
colloids—which roughly defines how far you have to move a
colloid before it counts as being in a ‘different’ configuration,
becomes set not by l but by a coarse-grained length-scale l̂
related to the solvent diameter.24 This is, for example, how the
world might appear to a lattice modeller where the solvent size
appears to set a natural discretization scale. The classical
quantity l̂ is then postulated ad hoc to replace l in eqn (14),
and hence in eqn (12) and all similar results for formation of
supra-dimeric clusters.

But in fact this is a specious argument, for reasons spelled
out below. Instead the astute reader will have noticed that the
paradox is based on the same flawed reasoning as the one
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discussed in the previous section: we have treated some degrees
of freedom as classical, but not all. Specifically, we assumed
that the binding energy D of a colloidal dimer was connected
with formation of a fixed bond—ignoring the fact that, classically,
all bonds have a vibrational entropy. Referring again to eqn (9), it is
once again clear that—because masses only enter the momentum
integral in the partition function, which is separable—all masses
must cancel, as must �h, once the full set of classical degrees of
freedom is treated on an equal footing.

The way this happens for colloidal bonding is easiest seen
for the case of a square well potential, of depth D and range l.
We treat for simplicity the case of d = 1, for which rotations do
not enter. However small l may be, in the classical limit there is
a finite entropy of confinement for the relative coordinate
between the two particles in our dimer; and for the square well
this is simply Sbond = kB ln(l/l). The equilibrium constant is now

(using eqn (12) for d = 1) K ¼ l
ffiffiffi
2
p

exp bDþ Sbond½ � ¼ ‘
ffiffiffi
2
p

exp½bD�.
Thus the equilibrium constant is independent of quantum
mechanics and there is, as promised, no isotope effect.

We now see why the replacement of l with l̂ did not offer a
true resolution to the paradox. If the physical behaviour is
classical, none of the actual results can depend on l; so replacing
l with l̂ can make no difference unless the calculations have
been wrongly executed. As the above example shows, the length
that replaces l in (say) the dimerization constant K of eqn (12) is
not some ad hoc coarse-graining scale l̂: it is instead a precisely
defined length that can be calculated directly from the effective
interaction U(q). And in our chosen example, it is simply the
range of the bonding interaction, l.

In summary, for classical systems such as colloids, the abso-
lute phase-space measure as set by quantum mechanics must
cancel from any observable physical quantity. This remains just as
true after integrating out the solvent (to get an effective interaction
U(q)) as it was before doing so. It is therefore never wrong to use
for the colloid partition function the measure set by the semi-
classical limit of quantum mechanics, in which factors of the
thermal de Broglie wavelength l appear, eqn (14). But if such
factors fail to cancel in any predicted observable, this is because a
mistake has been made. The most likely pitfall is to inadvertently
treat some of the classical degrees of freedom as frozen. (Indeed,
freezing a classical degree of freedom carries an infinite classical
entropy cost, which is cut off only by quantum mechanics.)
Because the phase-space measure must cancel, replacing l with
a classical coarse-graining length such as a solvent size, while it
may disguise an incorrect calculation, cannot change a correct one.

6 Conclusion

A century of quantum mechanics has had a profound influence
on the way we think about statistical physics. The paradoxes
and ambiguities we have discussed all arise from assumptions
and explanations based on the quantum viewpoint. Sometimes
these assumptions are so deeply embedded in the formalism
that we forget they are there. For example, the vibrations of most
molecules are quantized even at room temperature; we would get

nonsense if we interpreted molecular spectra using a classical
formalism. Consequently, a textbook might not even consider
the classical limit of the vibrational entropy. But only by taking
this limit can we understand why the thermal wavelength—an
absurdly small lengthscale for a macroscopic object like a
colloidal particle—cancels out in the equilibrium constant for
dimerization of such objects.

In other cases, assumptions carried over from quantum
mechanics are mostly harmless, but not if they cause one to
forget that the same results can also be justified classically. For
example, there is little danger in assuming that colloidal particles
are indistinguishable, since most experiments choose to leave them
undistinguished, which gives equivalent results in the classical
limit. Danger does lie in arguing that because colloids are distin-
guishable in principle, theory can be improved by treating them as
distinguished in statistical mechanics. By defining macrostates far
too narrowly, that line of thinking leads to predictions that are not
borne out by experiments: colloids would never crystallize, and
symmetric colloidal molecules would have the same rotational
entropy as asymmetric ones.

Experiments on colloids have helped to resolve other para-
doxes as well. The oldest and most famous of these is Maxwell’s
demon. In the 1980s Landauer and Bennett ‘exorcised’ the
demon by showing that erasing classical information carries
an entropy cost.27 But for decades afterward it was not unusual
to find articles28 claiming that the demon must produce entropy
when it makes a measurement. As Bennett noted,29 the tendency
to focus on the entropy cost of measurement, rather than of
erasure, may ‘have been a side effect of the great success of
quantum mechanics’. The question has been settled by recent
experiments on colloidal particles, which show that the cost of
erasing information agrees with Landauer’s prediction.30

These experiments and the others we have mentioned all
support the informatic view of entropy. The main argument
against this view is that it introduces subjectivity into the
definition of the entropy. This is true, but we see it as a strength,
not a weakness. We use the term ‘subjective’ in the same sense
as Jaynes4 did: ‘depending on the observer’. For classical systems
such as colloids, the observer has a choice of what to observe and
what to ignore; for example, she can treat each different arrange-
ment of six fluorescent particles as a different molecule, or she
can ignore the colours and keep track of only the bonds. The
macrostate therefore depends on the observer’s choice. So, too,
does the entropy, which is found by counting the number of
microstates that make up this macrostate. It is possible to define
the entropy non-subjectively—for example, by insisting that
colloids always be treated as distinguishable—but we have seen
that such a definition makes it difficult to reconcile theory with
experiment.

A subjective entropy might appear to create new problems.
After all, the heat transferred in a reversible process is propor-
tional to the change in entropy. If the entropy depends on the
observer, how can a measurement of the heat be consistent
from observer to observer? We note first that experiments can
measure only entropy differences, not absolute entropies. Each
observer is free to add an arbitrary (subjective) constant to
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the entropy, and even if each chooses a different constant, the
measurements are unaffected. But what if the heat were measured
directly, for example by measuring the motion of the particles
with an optical microscope? Would the heat flow really depend on
the choices of the observer? Perhaps surprisingly, the answer is
yes, because the observer can choose which degrees of freedom to
measure and which to ignore. In any reversible change, the energy
change associated with degrees of freedom that are measured
is called work; the remainder is called heat. The first law of
thermodynamics (which states that the sum of heat and work is
the change of internal energy) then directly requires that the heat
flow depends on which degrees of freedom are retained as state
variables, and which are ignored. But if each observer makes the
same choice, the heat measured will be the same from observer to
observer—and in that sense it remains an objective quantity.

Thus we would argue that the informatic view is the simplest
way to interpret experiments on colloids. As long as we clearly
specify our choices, all paradoxes vanish. The beauty of colloidal
systems is that the particles are fundamentally classical and
distinguishable in principle. This allow us consciously to make
choices about the macrostate in more than one way, and to
observe and compare the results. In so doing, we gain a better
understanding of Gibbs’ arguments and the effects of entropy
in the macroscopic world.
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