Cell-Scale Dynamic Modeling of Membrane Interactions with Arbitrarily Shaped Particles

Abstract

Modeling membrane interactions with arbitrarily shaped colloidal particles, such as environmental micro- and nanoplastics, at the cell scale remains particularly challenging, owing to the complexity of particle geometries and the need to resolve fully coupled translational and rotational dynamics. Here, we present a force-based computational framework capable of capturing dynamic interactions between deformable lipid vesicles and rigid particles of irregular shapes. Both vesicle and particle surfaces are represented using triangulated meshes, and Langevin dynamics resolves membrane deformation alongside rigid-body particle motion. Adhesive interactions between the particle and membrane surfaces are modeled using two numerical schemes: a vertex-to-vertex mapping and a vertex-to-surface projection. The latter yields more accurate wrapping energetics, as demonstrated by benchmark comparisons against ideal spheres. The dynamic simulations reveal that lower particle-to-vesicle mass ratios facilitate frequent particle reorientation and complete membrane wrapping, while higher mass ratios limit orientation changes and stabilize partial wrapping. To illustrate the framework’s versatility, we simulate interactions involving cubical, rod-like, bowl-shaped, and tetrahedral particles with spherical, cigar-shaped, or biconcave vesicles. This generalizable modeling approach enables predictive, cell-scale studies of membrane–particle interactions across a wide range of geometries, with applications in environmental biophysics and nanomedicine.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 May 2025
Accepted
29 Aug 2025
First published
29 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025, Accepted Manuscript

Cell-Scale Dynamic Modeling of Membrane Interactions with Arbitrarily Shaped Particles

D. A. Redwan, J. Reicher and X. Yong, Soft Matter, 2025, Accepted Manuscript , DOI: 10.1039/D5SM00567A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements