Issue 34, 2021

A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair

Abstract

Diatoms are unicellular eukaryotic algae that have a distinctive siliceous cell wall (frustule) with unique architectures. The nanotopography of the frustule is perfectly replicated between generations, offering a source of highly intricate and identical silica microparticles. In recent years, the ability to alter their cell wall chemistry both in terms of functionalisation with organic moieties or by incorporation of the metal ions in their frustules has increased interest in their utility for catalysis technologies, and semiconductor and biomedical applications. Herein we review the fundamental biological mechanisms in which diatoms produce their frustule and their ability to substitute different metal ions in their frustule fabrication process. The review focuses on the potential of diatom frustules as a naturally derived biomaterial in bone tissue engineering applications and how their cell walls, comprising biogenic silica, could either partially or fully incorporate other bone therapeutic metal ions, e.g., titanium or calcium, into their frustule. The use of diatom frustules in bone repair also potentially offers a ‘greener’, more environmentally friendly, biomaterial as they can naturally synthesise oxides of silicon and other metals into their frustules under ambient conditions at a relatively neutral pH. This process would negate the use of harsh organic chemicals and high-temperature processing conditions, often used in the fabrication of silica based biomaterials, e.g., bioactive glass.

Graphical abstract: A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair

Article information

Article type
Review Article
Submitted
15 2月 2021
Accepted
10 7月 2021
First published
03 8月 2021
This article is Open Access
Creative Commons BY license

J. Mater. Chem. B, 2021,9, 6728-6737

A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair

A. Reid, F. Buchanan, M. Julius and P. J. Walsh, J. Mater. Chem. B, 2021, 9, 6728 DOI: 10.1039/D1TB00322D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements