Issue 22, 2020

Medical micro/nanorobots in complex media

Abstract

Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of “swallowing a surgeon”.

Graphical abstract: Medical micro/nanorobots in complex media

Article information

Article type
Review Article
Submitted
31 3月 2020
First published
29 6月 2020

Chem. Soc. Rev., 2020,49, 8088-8112

Author version available

Medical micro/nanorobots in complex media

Z. Wu, Y. Chen, D. Mukasa, O. S. Pak and W. Gao, Chem. Soc. Rev., 2020, 49, 8088 DOI: 10.1039/D0CS00309C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements