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Abstract

Rotational dynamics in crystal lattice is a characteristic attribute of fullerenes caused by their spherical shape. 

It lies in the background of various multifaceted phenomena, ranging from sever disorder, often hampering 

diffraction studies of fullerenes, to rotational order-disorder transitions or controlled switching of molecular 

orientations in nanoscale devices. Understanding these dynamics and its real-space presentation still remains 

a complex problem, especially for endohedral metallofullerenes, as their encapsulated species may show 

additional rotational degrees of freedom. In this work, we used variable-temperature single-crystal X-ray 

diffraction (VT SC-XRD) to elaborate the phase transition in Sc3N@C70 crystals caused by rotation of fullerene 

molecules. Snapshots of molecular rotation taken with 10 K steps in a broad temperature range provided in-

depth description of the process and revealed details usually overlooked by SC-XRD studies of 

metallofullerenes. In particular, analysis of thermal ellipsoids at various temperatures allowed to distinguish 
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hidden static disorder from apparent dynamic disorder caused by thermal motion. The results mark a leap to 

the fundamental understanding of the unique metallofullerene structural characters, paving the way to control 

fullerene movement state in single molecule devices built from fullerenes.

Keywords

Metallofullerene, single-crystal, x-ray diffraction, phase transition, thermal ellipsoids

Introduction

Endohedral metallofullerenes (EMFs) are molecules with metal ions encapsulated inside fullerene cages. The 

coordination of metal ions to the inner wall of carbon cage with its extended π-system results in unique 

physicochemical properties, promising wide potential in biomedicine, energy, and emerging molecular 

devices.1-7 The coordination between encapsulated metal ions and the fullerene cage is fundamentally 

important to understand the structure-property relations.6, 7 As one of the most interesting properties of 

metallofullerene molecules, the intrinsic dynamics of metallofullerene molecules in solid state is still poorly 

understood, in strong contrast to the deep understanding of structural versatility of metallofullerenes.8-20 A 

strategy to tackle this challenge is to observe the metal movement driven by temperature with variable 

temperature single crystal X-ray diffraction (VT SC-XRD). A few notable examples of this strategy include 

observing the standing still La/Gd ions in adamantane derivatized C82 cage until 293 K;21, 22 standing still of two 

La ions in adamantane derivatized C80 cage till 273 K;23 jumping of Yb ion in C80 cage;24 moving of M3N (M3 = 

Ho2Lu, Lu3, Dy2Sc, and Sc3) in C80 cage;25-28 rotation of Dy2 in benzyl derivatized C80;29 moving of UN in C82;30 and 

rotation of the whole Sc3N@C70 molecule with C2v(7854) carbon cage31 in the crystal lattice (Fig. 1 and Fig. S1 

in the supporting information).32 The current state-of-the-art variable temperature single crystal X-ray 

diffraction studies captured the movement information with coarse precision, but the detailed information on 

the movement in high precision is still missing, although such information is pivotal to evaluate the intra/inter-

molecular interactions. The strong coordination between Sc ions and the adjacent pentagon pairs of C70 in 
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Sc3N@C70 effectively excludes the degree of freedom for metal ions movement relative to the fullerene cage 

in the studied temperature range,33-35 thus disentangles the complicated simultaneous movements of metal 

ions and fullerene cage in the crystal lattice. Therefore, this crystal exemplifies an ideal system to study the 

details of metallofullerene movement in the crystal lattice. In this work, we took a lot of snapshots for fullerene 

rotation with VT SC-XRD, to unravel the hidden details of fullerene movement in the crystal lattice.

Figure 1. Coordination of Sc3N@C70 molecule to the NiOEP in two orientations present in different ratio in all 

crystals of Sc3N@C70∙NiOEP∙0.5(C6H6)∙C7H8 studied in this work. The shown structures are for crystal 2 at T = 50 

K, the major orientation I has occupancy of 79%, the minor orientation II has occupancy of 21 %. Color code: 

grey for C in NiOEP, blue for N, white for H, magenta for Sc, red and cyan for C in fullerene cages. The probability 

of thermal ellipsoids was set to 30%.

Results and Discussion

The crystals Sc3N@C70∙NiOEP∙0.5(C6H6)∙C7H8 were grown by layering the toluene solution of Sc3N@C70 on the 

benzene solution of nickel octaethylporphyrin (NiOEP).32, 36 Analysis of the VT-SC-XRD data in this work is based 

on the studies of three crystals from two growth batches. Crystal 1 was studied in Ref. 32 at 100, 160, and 220 

K and revealed first indication of the phase transition below 160 K. Two orientations of the fullerene molecule 

present at occupancy ratio of 0.76/0.24 at 100 K, attained an equal occupancy at 160 K, while the crystal space 

group changed from P21/c to C2/m. In the following discussion, the main/minor orientations in the low-
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temperature crystals are denoted as orientation I/II (Figure 1). Since the crystal had small solvent molecules 

(toluene and benzene) tending to slowly escape from the lattice, more recent attempts to perform detailed 

VT-SC-XRD study of crystal 1 showed that it degraded over time of ~6 months. New batch of crystals was 

therefore grown in this work reproducing the growth conditions from Ref. 32. The composition and a structure 

of new crystals closely reproduced those of crystal 1, aside from the small variation of the solvent content as 

will be discussed in more details below. One crystal from the new batch (crystal 2 hereafter) was studied at 

temperatures below 100 K applying cooling with He stream, while another one (crystal 3) was measured with 

small temperature steps above 100 K using cooling with N2 stream. X-ray diffraction data collection was carried 

out at the BESSY storage ring (BL14.2 and BL14.3, Berlin-Adlershof, Germany).37 XDSAPP2.0 suite was employed 

for data processing.38, 39 The structure was solved by direct methods and refined by SHELXL-2018.40 Hydrogen 

atoms were added geometrically and refined with a riding model. The crystal data are presented in Tables S1-

S3 in the supporting information.

Figure 2. (a) The site occupancy of Sc3N@C70 orientation I vs temperature. (b) Temperature dependence of the 

average equivalent atom displacement parameter (Uequiv) of the carbon cage in two orientations of the 

Sc3N@C70 molecule (I and II), error bars denote standard deviations within the sets of 70 carbons; dashed 

purple line is the fit of the data for orientation I in crystal 3 between 100 and 170  K by a function 𝑎 + 𝑏cth

(ℎ𝜈/2𝑘𝑇)
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The driving force for the phase transition in Sc3N@C70∙NiOEP crystals around 160 K is the slightly higher 

thermodynamic stability of the state, in which molecules in a certain orientation are surrounded by molecules 

in the same orientation.31 Above the phase transition temperature, thermally-induced re-orientational motion 

equalizes two orientations, while below 160 K, one of the orientations gains higher occupancy leading to the 

lower crystallographic symmetry. Therefore, the phase transition can be followed by monitoring the ratio of 

the occupancies with temperature as shown in Figure 2a. In crystal 1, orientations I and II show the 0.5/0.5 

ratio at 220 and 160 K, but change to 0.76/0.24 at 100 K. The detailed investigation of site occupancies in crystal 

3 between 100 and 190 K showed that the ratio gradually changes from 0.5/0.5 at 170–190 K, to 0.52/0.48 at 

160 K, and all the way to 0.79/0.21 at 100 K (see Figures 1 and S2, Table S4 in the supporting information for 

more details). Reorientation of Sc3N@C70 is accompanied by a switching of coordinating NiOEP molecule 

between two positions, related by a translational movement and shifted from each other by less than 0.6 Å 

(see Figure S3 and Table S4 in the supporting information for details). To analyze if further redistribution 

between orientations I and II is possible below 100 K, crystal 2 was studied with He cooling. The trend towards 

larger difference between occupancies at lower temperature was observed here as well, but the changes 

between 80 K (0.74/0.26) and 50 K (0.79/0.21) appeared less pronounced than at 100–170 K. Thus, the low-

temperature ratio between two orientations seems to saturate at 0.8/0.2.

Notably, different crystals show certain variation in I/II occupancy ratio when compared at the same 

temperatures. For instance, equal occupancies of I and II are found at 160 K in crystal 1 but at 170 K in crystal 

2, and a similar occupancy of 0.76/0.24 and 0.75/0.25 was observed for crystals 1 at 100 K, and 2 at 110 K, 

respectively, showing that there is a systematic shift of ~10 K between the two crystals. Likewise, the ratio of 

0.74/0.26 determined for crystal 2 at 80 K is similar to the 0.75/0.25 ratio in crystal 3 at 110 K. One of the 

plausible reasons is the variation of the crystal quality between these three crystals. To verify this possibility, 

we refined the structures with flexible site occupancies for solvent molecules and obtained 
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0.898(C7H8)/0.479(C6H6) for crystal 1 at 100 K, 0.915(C7H8)/0.47(C6H6) for crystal 2 at 50 K, and 

0.930(C7H8)/0.482(C6H6) for crystal 3 at 100 K (see Tables S1-S3 in the supporting information for details). The 

ideally perfect solvent composition used in the refinement is C7H8/0.5(C6H6). As uncertainties in occupancy 

determination is less than 0.009, the deviations from 1.0/0.5 are statistically significant and can be attributed 

to the escape of solvent molecules from the lattice, leaving behind imperfections in the crystal. Crystal 3 has 

the highest solvent occupancy, indicating the highest perfection of the structure. Since the solvent-fullerene 

interaction effectively hinders the fullerene rotation,28 the higher perfection in terms of the solvate content 

leads to the higher phase transition temperature. This finding highlights the importance of using fresh crystal 

in SC-XRD studies of fullerene solvates. Another factor to be considered is that molecular re-orientation 

requires overcoming of an energy barrier and can therefore become more hindered at low temperatures.41 

This makes the ratio between orientation I and II dependent on the cooling rate and can eventually result in 

the freezing of the I/II ratio when thermal energy becomes insufficient to overcome the barrier.

Figure 3. Structures of crystal 3 measured at 100 K (a), 110 K (b), 120 K (c), 130 K (d), 140 K (e), 150 K (f), 160 K 

(g), and 170 K (h). The solvent molecules were omitted for clarity. The probability of thermal ellipsoids was set 
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to 30%. The two orientations of C70 were highlighted with red for I, and cyan for II. The marked fragment was 

zoomed in to highlight the changes of the thermal ellipsoids with temperature. Color code: grey for C in NiOEP, 

blue for N, white for H, magenta for Sc.

Observing the crystal structures with temperature intervals of 10 K results in the detailed description of the 

phase transition process. Figure 3 presents the structures of crystal 3 measured at temperatures ranging from 

100 to 170 K. Two overlapping orientations of Sc3N@C70 are equally populated at 170–190 K, with the C2/m 

crystal space group. When temperature decreases below 170 K, part of Sc3N@C70 molecules rotates from 

orientation II to orientation I, thus resulting in their unequal populations and the loss of the mirror symmetry 

and reducing the crystal space group to P21/c. Remarkably, thermal ellipsoids of the two molecular orientations 

exhibit very different temperature evolution. At 100 K, the size of thermal ellipsoids in I is several times smaller 

than in orientation II. But then, ellipsoids in orientation II barely change between 100 and 170 K, whereas the 

size of ellipsoids in orientation I increases four-fold in the same temperature range (Figure 3). Numerically, this 

phenomenon is visualized in Figure 4 using equivalent atom displacement parameters (ADPs, Uequiv). While 

ADPs for orientation I plotted in the upper panel show pronounced temperature dependence, a much weaker 

temperature variation and a larger scattering of ADPs are seen for orientation II in the lower panel. 

Temperature dependence of ADPs averaged over carbon cage in two orientations further substantiates this 

observation (Figure 2b).

Temperature dependence of ADPs is associated with the variation of vibrational amplitudes, which in harmonic 

approximation scale with the temperature as 〈𝑢𝑖〉2~cth(ℎ𝜈𝑖/2𝑘𝑇). Indeed, the growth of averaged cage ADPs 

in orientation I between 100 and 170 K is well described by cth(ℎ𝜈/2𝑘𝑇) with 𝜈 of 480±30 cm−1 (Figure 2b). 

This frequency should not be understood as that of one particular mode but rather as a cumulative contribution 

of many vibrations. Thus, ADPs in orientation I show temperature variation typical for vibrational motions. The 
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increased size of ellipsoids and the lack of their temperature dependence in orientation II indicate that the size 

of ellipsoids is likely to be determined by the static disorder. Presumably, the orientation II in fact contains 

several sub-orientations with small orientational differences, which cannot be resolved in a routine SC-XRD 

analysis. Thus, different temperature dependence of thermal ellipsoids allows VT SC-XRD analysis to distinguish 

two types of disorder co-existing in the crystal.

Figure 4. The equivalent atom displacement parameters (ADPs, Uequiv) of Sc3N@C70 and NiOEP and their 

variation with temperature or orientation I (top panel) and orientation II (bottom panel). To guide the eye, the 

range of atom numbers corresponding to the carbon cage is shaded.
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Figure 5. The structure of crystal 3 at 100 K viewed perpendicular to the NiOEP plane. Both Ball-stick model (a) 

and space-filling model (b) are shown to highlight the environment of Sc3N@C70. Color codes: red/cyan for 

fullerene orientations I/II, pink/rose for NiOEP orientations I/II, blue for benzene/toluene molecules interacting 

with the fullerene cage and NiOEP.

The concrete information observed with single crystal X-ray diffraction allows one to specifically check the 

chemical environment of the interested target. Figure 5 shows the environment of Sc3N@C70 in the crystal 

lattice, presenting four nearby solvent molecules, of which one toluene molecule interacts with fullerene cage 

through π-π interaction, while the other two toluene and one benzene molecules interact with fullerene cage 

through C–H∙∙∙π interaction. Figures S4 and S5 in the supporting information highlights the solvent molecules 

interacting with NiOEP. Disorder usually poses higher uncertainty on the observed structural parameters, Table 

S5 in the supporting information presents the Sc–N bond lengths at variable temperatures. As the axis of 

fullerene rotation locates near the N position, the Sc–N bond lengths are weakly affected by the rotation and 

present rather low uncertainty at variable temperatures.
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Conclusion

In conclusion, detailed information of fullerene Sc3N@C70 rotation in the crystal lattice unravels two 

unprecedentedly important phenomena: first, the subtle variation of the solvent content affects the phase 

transition temperature; second, co-existence of thermal vibrational motion and static disorder in one crystal 

was visualized and clearly distinguished through the highly contrasting behavior of thermal ellipsoids. The 

results lay concrete evidence on the detailed information of fullerene movement in the crystal lattice, paving 

the way to control the fullerene movement state in single molecule device.
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