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Intermolecular aminoarylation of alkynes is described, via addition
of diarylanilines to alkynes and Smiles—Truce rearrangement. The
transformation manipulates the C—N bond of anilines directly, with
no requirement for organometallic reagents or transition metal
catalysis. The enaminoate products are versatile building blocks
for different classes of heterocycles.

The Smiles-Truce rearrangement (STR) is a powerful approach
to C-C bond formation that enables arylation under simple,
sustainable conditions (Scheme 1A)." By exchanging an aryl
C-heteroatom bond for a C-C bond, functionalised arene and
hetero-arene structures can be built efficiently from simple
starting materials, with no requirement for precious metal
catalysis. The STR gains substantial utility if it is set up as a
domino or multi-component coupling process, whereby an
initial intermolecular bond formation creates the key reactive
intermediate for arene transfer, which can undergo rearrange-
ment to the desired arene in one operation. Some recent
examples are shown in Scheme 1, which illustrate different
domino STR design approaches in the anionic and radical
regimes.”

Early work in this area was defined by the sulfonamide
functional group, used as the key linkage in the vast majority
of domino STR reactions.? Sulfonamides are easy to prepare,
enable versatile aminoarylations in both anionic and radical
reaction regimes, and drive the actual rearrangement through
irreversible loss of SO,. The weak nucleophilicity of sulfona-
mides, however, can be problematic for domino reactions that
rely on C-N bond formation as the first step. Recent work from
the Stephenson and Nevado groups, for example, showed that
stereogenic sulfinamides were superior to their sulfonamide
analogs for radical alkene aminoarylation.® Domino STR
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processes have also been described for sulfones,>¥*?:%

amides,* ureas,? and sulfonates.>>* The exploration of alter-
native STR linkages is in general a productive direction to
develop new classes of arylating agents.

We have recently reported that dialkylanilines can undergo
domino STR with the reactive intermediate benzyne, to form
aminobiaryl compounds 13 (Scheme 1B).” The reaction enables
anilines to be used as arylating agents at the site of the C-N
bond, a difficult manipulation outside of high energy diazonium
chemistry, with few methods available.® We were interested in
developing this reaction for general alkyne aminoarylation,
through reaction with ground state alkynes. Alkyne aminoaryla-
tion is a potentially high value transformation, affording versa-
tile enamine products (17), but is restricted by a paucity of viable
synthetic methods. Very few examples have been reported in the
intermolecular mode: Lu described enamide synthesis using Rh
catalysis and N-phenoxyacetamides, and Li has reported the Cu-
catalysed addition of NFSI derivatives to make enesulfonamides.
The Dong laboratory used Pd catalysis for in situ aminoarylation
with amines and aryl halides, affording o-arylketones on work-
up.” Work from our laboratory described a STR approach using
metal-free addition of arylsulfonamides to make enaminoates.®
New methods for alkyne aminoarylation are thus required,
particularly ones that exploit readily available starting materials
(e.g- 14 and 15).

A challenge in the planned aminoarylation concerns the four-
membered transition state intrinsic to the aniline STR. In our
previous aryne system, the exceptional reactivity of benzyne
enables capture by tertiary anilines and a subsequent charge-
quenching STR from intermediate 12 (Scheme 1B). This sub-
strate design is unlikely to work for ground state alkynes, which
are typically unreactive with electron-poor tertiary anilines. We
were encouraged, however, by reports of domino sulfonamide
Sn2/STRs through four-membered transition states, providing
some precedent for the idea.” We set out to investigate secondary
anilines that would be nucleophilic enough to undergo conju-
gate alkyne addition, but containing an electrophilic arene ring
that could support the intramolecular SyAr character of the STR.
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Scheme 1

We initially screened a series of secondary N-alkyl anilines
with propargylate substrates, and did not observe any reactivity.
Moving to diarylanilines, however, did result in a successful
STR with N,N-(4-nitrophenyl)phenylaniline (14a) reacting with
ethyl pent-2-ynoate (15a) in low conversion. Under conditions of
mild base, Cs,COj3, in MeCN at 70 °C we isolated the aminoary-
lated product 17a as the Z-isomer in 14% (Table 1, entry 1). X-Ray
analysis confirmed the Z-geometry,' in line with the selectivity
we have previously observed with sulfonamide nucleophiles.®
The resonance-assisted H-bond"" (6 = 11.3 ppm) present in the

Table 1 Reaction optimisation

PhHN  CO,Et
NHPh + Et—==CO,Et base —
/©/ solvent, T Et
O,N
14a 15a 17a NO,
Entry Base Ratio (14a:15a:base) Solvent 7T (°C) Yield (%)
1 Cs,CO; 1.2:1.0:1.5 MeCN 70 14
2 Cs,CO;  1.2:1.0:1.5 DMSO 70 19
3 Cs,CO;  1.2:1.0:1.5 DMA 70 56
4 Cs,CO;  1.2:1.0:1.5 DMA 90 24
5 Cs,CO;  1.2:1.0:1.5 DMA 50 19
6 Cs,CO;  1.5:1.0:1.5 DMA 70 11
7 Cs,CO;  1.0:1.0:1.5 DMA 70 18
8 Cs,CO;  1.0:1.2:1.5 DMA 70 27
9 K,CO3 1.2:1.0:1.5 DMA 70 ND
10 KOH 1.2:1.0:1.5 DMA 70 34
11 ‘BuOK  1.2:1.0:1.5 DMA 70 19
12 NaH 1.2:1.0:1.5 DMA 70 13
13¢ Cs,CO;  1.2:1.0:1.5 DMA 70 73

“ The reaction was performed under N,.
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(A). The Smiles—Truce rearrangement (STR) and domino examples. (B) Proposed aminoarylation.
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Scheme 2 Scope of anilines. ? 14 (1.2 equiv.), 15a (1.0 equiv.) and Cs,COsz

(1.5 equiv.) in DMA at 70 °C; ©
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using KOH as base.
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Scheme 3 Scope of alkynes. ?14b (1.2 equiv.), 15 (1.0 equiv.) and Cs,COs3
(1.5 equiv.) in DMA at 70 °C.

Z, but not the E, geometrical isomer likely drives isomerisation
in situ."> A solvent screen established DMA as a better solvent
choice delivering 17a in 56% yield (Table 1, entry 3). Further
modifications to temperature, stoichiometry and base choice did
not advance reaction efficiency, with stronger bases in particular
being poor for the reaction. We were pleased to find that
conducting the reaction under inert atmosphere supplied the
corresponding product 17a in 73% overall yield (Table 1,
entry 13).

With optimal conditions in hand, we screened a variety of
differentially substituted diarylanilines reacting with 15a
(Scheme 2). A broad range of electron-deficient or electron-
rich substituents on the phenyl ring at different positions
(meta- or para-) were all tolerated under the mild reaction
conditions, furnishing the corresponding rearrangement pro-
ducts 17 with yields up to 87%. Substrates encompassing
strongly electron-withdrawing groups (17b-17g), including
nitro, nitrile, acetyl, ester, trifluoromethyl and pyridyl, could
be successfully incorporated in this process.
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Scheme 4 Enaminoate transformations. ?1,, K,COs, DMF, 100 °C, 1 h;
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The rearrangement products 17h, 17i and 17r with halogen
groups, providing the opportunity for further functionalization,
were obtained in moderate yields 43%, 45% and 45%, respec-
tively. More electron rich arenes were viable, but in reduced
yields. For example, tolyl and the piperonyl, indolyl, and iso-
quinoyl heteroaryl anilines all participated, but in attenuated
yields. The migratory aryl group required at least one strong
electron withdrawing group, but additional substituents could
be installed in the flanking position (17p-17s). We were able to
successfully migrate the trifluoromethanesulfonyl derivative
(17t), in place of the activating nitro group.

We next inspected the generality of alkyne substrates by
employing bis(4-nitrophenyl)amine 14b as model substrate
(Scheme 3). Different alkyl substituted alkynyl ester derivatives
reacted smoothly, gving the corresponding products 17u-17x in
34-81% yields. We could link the common biologically relevant
molecules t-menthol, (—)-borneol, a-tocopherol, ergocalciferol,
and stigmasterol through the ester moiety, incorporating these
moieties into the enaminoate products 17y-17C. Alkynes bear-
ing different electron-withdrawing groups, such as thioester
and ketone, were also feasible in this reaction, affording
products 17D and 17E in reduced yields of 39% and 22%.

To demonstrate the practicality of this method for harnessing
aniline arylation, we conducted a series of transformations on the
enaminoate 17a (Scheme 4). We could access indoline and
pyrazolone heterocycles 18 and 19 through treatment with iodine,
and p-methoxyphenylhydrazine hydrochloride, respectively.

Fluorination of the N-H bond of 17a with selectfluor
in DCM/H,0 successfully delivered 20 in 56% yield. The nitro
group could be removed entirely to give the phenyl derivative
21 using Nakao’s reductive palladium method. Likewise, a nitro-
Suzuki was successful to give the biaryl 22 in 61% yield.
The electron-poor nitroarene could be easily transformed into
the electron rich aniline using Fe/NH,CI in EtOH/H,0 at 60 °C,

This journal is © The Royal Society of Chemistry 2024
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with concomitant hydrolysis of the enamine to give the keto-
ester 23.

In conclusion, we have developed an intermolecular ami-
noarylation of alkynes using anilines. The reaction allows
cheap aniline building blocks to be used as arylating agents
for a range of enamine syntheses, with the products directed to
diverse heterocyclic products. Further applications of this
process are underway in our laboratory.
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