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trans-Sialylation: a strategy used to incorporate
sialic acid into oligosaccharides

Rosa M. de Lederkremer, *ab Marı́a Eugenia Giorgiab and Rosalı́a Agustiab

Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events.

Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for

biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and

deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases

with CMP-Neu5Ac as an activated donor were used for the construction of a2-3 or a2-6 linkages to

terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl

glycoside to a suitable acceptor and specifically construct a Siaa2-3Galp linkage. The trans-sialidase of

Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the

most studied one. The recombinant enzyme was used for the sialylation of b-galactosyl

oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the

high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin

and bovine k-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we

review the trans-sialidase from various microorganisms and describe their application for the synthesis

of sialooligosaccharides.
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1 Introduction

Sialic acid is a crucial family of monosaccharide components of
glycoproteins and glycolipids usually located at the surface of
cells. They were named neuraminic acids for their presence in
brain neurons.1 The most abundant member of this family of
about 50 molecules with a common non-2-ulo-pyranosonic
structure in mammals is N-acetylneuraminic acid (Neu5Ac or
NANA) (Fig. 1). Derivatives formed by O-acetylation are part of
this family, with the 9-O-acetyl-N-acetylneuraminic acid being
the most frequent one. Acetylation of O-4 or of the exocyclic O-9
hydroxyl group takes place either to provoke or to prevent the
interaction with cell receptors.2,3 Another frequent modifica-
tion is the hydroxylation of the N-acetyl group, giving rise to
N-glycolylneuraminic acid (Neu5Gc); although it is common in
the animal kingdom, the corresponding hydroxylase activity
is absent in humans.4 Neu5Gc behaves as an exoantigen
when incorporated with a meat diet.5 Sialic acids are usually
linked a2-3 or a2-6 to galactopyranose units in b configuration
(b-D-Galp).

The electronegative charge provided by the carboxyl group of
sialic acids in an external location may be responsible for cell–
cell repulsions, cation binding and masking the antigenicity of
the glycoconjugate. A classic example of the last process is the
desialylation of serum glycoproteins which uncovers the next
galactose in the glycan and allows its uptake by hepatocytes.6

Opposite to masking, sialic acid may be recognized by micro-
bial lectins including viruses in pathological processes. The
role of sialic acid in the infection was recently reviewed.7.

It is known that influenza viruses link to host sialic acid (SA)
during the infection process. Most corona viruses (CoVs) recog-
nize 9-O-acetyl-SAs (Fig. 1), but switched to recognize the
4-O-acetyl-SA form during evolution of CoVs.8 Although the
glycobiology related to the recently emerged SARS-CoV-2, the
agent of the current Covid 19 pandemic, was not yet fully
elucidated, recent publications show that the viral spike S
protein recognizing sialic acid contributes to host tropism.8

This first adhesion facilitates later steps in virus spreading.
A diagnostic test based on the interaction of the spike glyco-
protein with Neu5NAc was proposed.9 Understanding the pro-
tein–carbohydrate interactions in Covid-19 infection may help
the design of inhibitors for therapeutic treatment. The spike
protein is heavily glycosylated, mainly in N-glycosylation sites,
and recently, O-linked glycans were also described. Sialic acid
decorates both types of glycans.10 Virus glycoproteins undergo
N- and O-glycosylation using the glycosylation machinery of the
host cells and, therefore, the structures vary with the cell type
where viral replication takes place.11 The sialoglycans at the
surface of the partners interacting during infection are a matter
of study for the development of inhibitors. The synthetic
glycans are a necessary tool for these studies, as the natural
glycans would not be available in enough quantities.

Chemical synthesis is usually a cumbersome process, since
the polyhydroxylated nature of monosaccharides requires the
use of protection of the non-participating groups in the glyco-
sylation steps and the consequent deprotection to afford the
glycan. This problem may be overcome by enzymatic syntheses
which are usually very specific for the construction of glycosidic
linkages.

Enzymes involved in the biology of glycosides may be
categorized as hydrolases or transferases (Fig. 2).12 Hydrolases
that catalyze the removal of a glycosidically linked sialic acid
are sialidases, also called neuraminidases, and can be found in
viruses, bacteria, fungi, protozoa13 and vertebrates, including
mammals.14 Sialyltransferases, also present in microorganisms
and mammals, synthesize sialosides mainly a2-3 and a2-6
linked to galactose or N-acetylgalactosamine.15–18 Some of these
enzymes are multifunctional and are able to construct both types
of linkages and also to hydrolyze them.19 Less frequently, other
linkages may be found; for instance, sialic acid a2-8 linked to
another sialic acid was described in glycoproteins.20–24

Also sialic acid a2-9 linked to sialic acid was identified in
glycoconjugates.25–27 In bacteria, the well-known colominic acid is
a polysialic acid with repeating Neu5Aca2-8Neu5Ac units.28,29

Fig. 1 Family of naturally occurring sialic acids. Adapted from ref. 3.
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Other rear linkages of sialic acid have been detected and
extensively reviewed.30 Bacterial sialyltransferases have been
used for the synthesis of sialooligosacharides using the acti-
vated nucleotide CMP-Neu5Ac as the donor.31 Also, multistep
enzymatic cascades using in situ formation of the CMP-sialic
acid donor have been reported.32 Reverse sialylation was
described using a mammalian sialyl transferase (ST3Gal-II)
and 50-CMP, which is sialylated in situ by a sialoglycoconjugate
donor. The CMP-Neu5Ac obtained is then used to sialylate
another acceptor using the same enzyme or other sialyltrans-
ferases such as ST6Gal-I and ST6GalNAc-I.33

In the present article we will mainly refer to trans-sialylation,
a process used by microorganisms for the incorporation of
sialic acid from a sialylated donor, without the need of the
activated nucleotide. The use of the trans-sialidase from Trypa-
nosoma cruzi (TcTS), the most studied trans-sialidase to date, for
the synthesis of biologically important sialooligosaccharides
will be described.

2 trans-Sialylation
2.1 trans-Sialidases in trypanosomatids

trans-Sialidases were intensively studied in Trypanosoma cruzi
because they are related to the infectivity of the protozoan,
which is the cause of Chagas disease, the American trypano-
somiasis.34–36 T. cruzi shows a very complex genetic diversity
and its strains have been grouped into six lineages or DTUs
(Discrete Typing Units).37–39 Accordingly, TcTS is a family
expressed by around 1400–1700 genes, depending on the T.
cruzi strain, even though many of them express proteins lacking

enzymatic activity.40–43 The sole replacement of Tyr 342 with
Hys produces inactive mutants (iTcTS) which, however, act as
lectins binding to the glycotope Siaa2-3bGalp.44 The structural
similarity to the reactive TS is evidenced by its recognition by a
neutralizing antibody against the enzymatic pocket.45 iTcTS
genes were only identified in strains belonging to the lineage
classified as DTU II and to the hybrid DTUs TcV and TcVI.46

TcTS expression depends on the parasite’s phylogenetic group
and increases in the trypomastigote stage.47 This is in agree-
ment with its role in infection and the observation that the
invasion of mammal cells depends on their content of sialic
acid.36,48 During infection TcTS transfers sialic acid from the
host sialoglycoconjugates to the terminal b-linked galactose
residues in mucins of the parasite (Fig. 3) and this process is
crucial for the infectivity of bloodstream trypomastigotes.49

The reaction is specific and results in the functional unit sialic
acida2-3bGalp.34,35,41,50 The specificity of TcTS was studied
using convenient oligosaccharides and gangliosides as
substrates.51 The authors concluded that the donors must
carry Neu5Aca2-3Gal and not the Neu5Aca2-6Gal terminal
unit, whereas the acceptor galactose in the glycan must be
b-linked.

Unlike common sialidases, TcTS has two subsites for inter-
action with the substrates, a subsite for the terminal b-galacto-
pyranosyl unit of the acceptor and another one for the sialic
acid donor. trans-Sialylation occurs via a ping-pong mechanism,
which starts with formation of a stable intermediate through a
covalent bond of sialic acid with Tyr342 of the enzyme, followed
by attack of the sialic acid to the hydroxyl group at C3 of a bGalp in
the acceptor (Fig. 4).53

Fig. 2 Hydrolase vs. transferase activity in glycosidic enzymes. Adapted from ref. 12.

Fig. 3 TcTS transfers sialic acid from host glycoconjugates to the T. cruzi mucins. Adapted from ref. 52.
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The reaction with different substrates was studied by NMR
which showed that the binding of the acceptor to the catalytic
site does not take place unless the sialic acid donor is present.55

In the case of TcTS, sialyl transfer is more efficient than
hydrolysis; however, when a suitable bGalp-linked acceptor is
absent this enzyme behaves as a hydrolase and sialic acid is
released.56 Computational simulations suggest that protein
flexibility has a role in the transferase/sialidase activity of
TcTS.57 Excellent reviews on the structure and function of TcTS
have been published36,42,57–60 as well as reviews on T. cruzi
trans-sialidase (TcTS) as a synthetic tool.61,62

TcTS is anchored to the surface of the parasite by a glyco-
sylinositolphospholipid (GPI).63 An N-terminal signal peptide
and a C-terminal peptide indicative of the GPI surface localiza-
tion may be recognized in all the members of the TS family.
Although the lipid of the GPI anchor is cleaved in vitro by
treatment of TcTS with PI-PLC, microscopical and biochemical
studies showed that TcTS is mostly released to the milieu in
microvesicles, still linked to the GPI anchor, and not by the
action of an endogenous PI-PLC.64,65 Extracellular vesicles (EVs)
of trypomastigotes carry more trans-sialidase and show higher
adhesion than epimastigote EVs.66 Aside the GPI revealing
peptide sequences, a repetitive antigenic sequence was early
identified in the soluble TS and called SAPA (shed acute phase
antigen) because it is recognized by sera of patients in the acute
phase of the disease.67 SAPA is not present in the TS of
epimastigotes (eTcTS), the insect forms of the parasite, and it
is not involved in the enzymatic activity. Mice infected with
Trypanosoma cruzi produce antibodies against the enzymatic
domain of TS that inhibit its activity.68 Immunological events
caused in Chagas disease by trans-sialylation have been
described64,69–72 and reviewed.73 Campetella and coworkers
included an interesting discussion about the humoral response

to SAPA in the acute phase of the disease and the detection of
neutralizing antibodies in chronic patients.36

trans-Sialidase and sialidase activities have been investi-
gated in other trypanosomatids. Another health threat is
T. brucei, the agent of the African trypanosomiasis, known as
sleeping sickness in humans and transmitted by the tsetse fly.
The TS activity was found in the procyclic stage of the parasite,
present in the insect vector, but, unlike TcTS, was not detected
in the lysates of blood trypomastigotes. The sialic acid acceptor
is the glycoprotein procyclin which is characterized by a
sialylated GPI anchor.74 Studies of mutants showed that the
catalytic sites of TcTS and TbTS are similar but not identical.75

trans-Sialidases have been described in another African
trypanosome, T. congolense, the agent of the disease known as
nagana which affects animals.76–78 trans-Sialidase activity was
also detected in T. vivax which infects cattle in African and
South American countries.79

T. dionisii, although genetically related to T. cruzi, is non-
pathogenic to humans;80 however, in vitro, metacyclic trypo-
mastigote (MT) forms are able to invade mammalian cells. Its
trans-sialidase activity is significantly lower when compared
with the same forms of T. cruzi. Since it is known that TcTS
mediates the escape of trypomastigotes from the parasitophor-
ous vacuole to multiply as amastigotes in the cytoplasm, the
intracellular retention of T. dionisii and subsequent differentia-
tion into amastigotes within the vacuoles were attributed to the
reduced trans-sialidase activity.81

The sialidase from T. rangeli (TrS), although with high
identity with TcTS, lacks trans-sialidase activity.82 Mutation of
five amino acids (TrS5) established some activity that increased
after six mutations (TrS6). Conformational studies on these
mutants allowed the definition of the amino acids relevant for
trans-sialidase activity83 and a mutant with 13 mutations was

Fig. 4 Proposed ping-pong mechanism for TcTS activity. Based on ref. 54.
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constructed (TrS13).84 Nevertheless, the mutant showed pro-
miscuity with respect to the acceptor, since sialic acid could
be transferred also to terminal glucose and to melibiose,
Gala1-6Glc. Seven new variants were obtained by 6–16 amino
acid mutations and their trans-sialidase activity to sialylate
lactose was studied. The variants with 15 or 16 mutations
showed significant trans-sialidase activity.85

Sialic acid was described as the terminal unit of glycoconju-
gates from the insect stage promastigotes and the mammal
amastigotes of several species of Leishmania, another genus
belonging to the same family as Trypanosoma.86 At difference
with T. cruzi, both, a2-3 and a2-6 linkages of sialic acid to
galactose and the corresponding transferases have been
characterized. Although Leishmania species may incorporate
sialic acid from glycocojugates, the process is different from the
trans-sialylation in T. cruzi and was not fully elucidated.7,87

In an early paper, the trans-sialidase activities of several
trypanosomatids were investigated.88 It was reported that
whereas T cruzi and T. conorhini express mainly trans-sialidase
activity, only sialidase activity was detected in Trypanosoma
rangeli and Trypanosoma leeuwenhoeki. Both activities were
shown by Trypanosoma lewisi and Endotrypanum species and
none by Trypanoplasma borreli and Leishmania species.

2.2 trans-Sialylation with bacterial sialidases

Bacterial sialidases are less specific in their trans-sialidase
activities and afford the sialylated product with lower yields.
However, they have the advantage of being easy to express and
accept cheap substrates. The Bacteroides fragilis sialidase cata-
lyzed trans-sialylation from colominic acid, a homopolymer
with Neu5Aca2-8Neu5Ac repeating units, to lactose, affording
both 3a and 6a-sialyllactosides with a total yield of only
0.14%.89 The sialidases from Vibrio cholerae, Clostridium per-
fringens, Salmonella typhimurium, and Newcastle disease virus
were used for sialylation of glycans with average yields of
10–30%90 (Scheme 1). The new linkages were consistent with
the hydrolase activities of the corresponding enzyme, thus,
Vibrio cholera and Clostridium perfringens linked sialic acid
a2-6 to galactose,91 whereas the other two bacteria showed
preference for a2-3 formation.92,93

A truncated mutant of a sialyl transferase from Campylobacter
jejuni, CstII d32I53S, showed multifunctionality, including GD3/
GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase,
and trans-sialidase activities.94 In addition to the a2,3 and
a2,8-sialyltransferase activities reported before for the synthesis
of GM3 and GD3-type oligosaccharides, respectively, the CstII
D32I53S has a2,8-sialyltransferase activity as evidenced in the
synthesis of the GT3 oligosaccharide or in the transfer of a
sialic acid from a GD3 oligosaccharide to a different GM3
oligosaccharide. The enzyme showed sialidase or a2-8-trans-
sialidase activity, depending on the pH of the reaction. The
latter activity was observed also in the absence of CMP. It has
been used for the synthesis of ganglioside oligosaccharides
with flexible donor specificity that included non-natural sialic
acids. A strict control of the pH and the reaction time was
necessary to obtain good yields.94 In a previous work using a
wild strain CstII, CMP was used as an activator for the synthesis
of a2,3-linked sialyllactoside with Neu5Ac pNPh as a donor.95

Another recombinant truncated sialyl transferase was
obtained from Photobacterium damsela with specific a2-6 trans-
sialidase activity and was used for the synthesis of Neu5Aca2-
6LacbMU in good yield using the p-nitrophenyl a-glycoside of
sialic acid (Neu5AcapNP) as a donor and the methylumbelliferyl
b-lactoside (LacbMU) as an acceptor96 The authors claim that this
trans-sialidase activity is different from the reported reverse
glycosyltransferase activity of some glycosyltransferases which
requires the presence of CMP33 and that kinetic studies showed
that the reaction followed a ping-pong mechanism.96 However,
the addition of the nucleotide resulted in a modest enhancement
of activity. In fact, further work by Mehr and Withers19 proved
that CMP is required for trans-sialidase activity of bacterial
sialyltransferases from the glycosyltransferase family 80 and that
previous results by other laboratories could be due to impurifica-
tion of the enzyme with traces of CMP. Only catalytic amounts
of the nucleotide are needed to form CMPNeu5Ac for the trans-
sialylation reaction.

The best tool to improve transglycosylation activity and/or
diminish hydrolytic activity of sialidases is protein engineering.
A screening of bacterial sialidases was performed, looking for
the amino acids that shape the aromatic sandwich proximal to

Scheme 1 trans-Sialylation catalyzed by bacterial sialidases. Adapted from ref. 91.
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the active site that is considered necessary for the trans-
sialidase activity in T. cruzi. The candidate was the sialidase
from Haemophilus parasuis, which after expression proved to be
a trans-sialidase.97 A casein glycomacropeptide (GMP) was used
as a donor of sialic acid and lactose as an acceptor. Surprisingly
three sialylated products were detected by high performance
anion exchange chromatography with pulse amperometric
detection (HPAEC-PAD): the expected 30SL, 60SL and a third
sialylated compound, 3SL, which would be the result of sialyla-
tion of the internal glucose. This is the only report on sialyla-
tion of an internal glucose by a TS. An endo-sialidase which
specifically cleaves the Neu5Aca2-8Neu5Ac bond in polysialic
acid is expressed by bacteriophages for E. coli.98 A set of
oligomeric trifluoromethylumbelliferyl sialosides were pre-
pared using the transferase CstII from C. jejuni. The substrate
should be at least trimeric, and the cleavage occurred between
the aglycone and the sialic acids. In the case of the tetramer,
however, two dimers could be obtained. Contrary to all
other sialidases, this endo sialidase directly hydrolyzed the
Neu5Aca2-8Neu5Ac bond by an inverting mechanism to pro-
duce the b-hemiketal product.

3 Synthesis of sialooligosaccharides

trans-Sialylation reactions are usually analyzed by HPAEC-PAD
and the purification of the products is achieved by anion
exchange column chromatography. The donors for sialic acid
are 30-sialyllactose (30SL), or sialyl glycosides like methyl umbel-
liferyl-N-acetyl-neuraminic acid (MUNANA) and p-nitrophenyl-
N-acetylneuraminic acid (Neu5AcapNP) with lower activities for
the transfer reaction than 30SL but with the advantage that
the reactions are not reversible.61,99 Glycoproteins with an
appropriate content of Neu5Aca2-3Galb units, like fetuin con-
taining 8.7% of sialic acids at the non-reducing ends of its
oligosaccharides,100 or the casein glycomacropeptide (GMP)
with 4–7% sialic acid,101 may be used as donors. Fetuin is a
commercially available glycoprotein with a transfer rate to
Galb1-4GlcNAc similar to that of a2-3-sialyllactose.102 Fetuin
and other glycoproteins have the advantage of simplifying the
purification of the sialooligosaccharides by chromatographic
techniques. A dialysis step was sometimes included.

The first reports on trans-sialidase activity used a native
enzyme obtained from culture derived trypomastigotes (TcTS).48

Singh et al. reported unexpected results in a trans-sialylation study
using Neu5AcapNP as a donor and a recombinant TcTS. The
authors reported that methyl aGalp could be sialylated with a
moderate yield and that Galpa1-6bGalp-OMe was sialylated in the
internal galactose to give the branched trisaccharide in 89% yield.
They also found that Galpb1-6bGalp-OMe as an acceptor yielded
a mixture of three products: the two possible monosialylated
products in 88% isolated yield and a bisialylated minor product,
but no details on the purification and characterization of these
compounds were provided.103

Giorgi et al., on the other hand, reported the sialylation of
the branched trisaccharide, Galpa1-3(Galpb1-6)Galp, obtained
as the 6-aminohexyl b-glycoside (Scheme 2). In this case only
one monosialylated compound was detected by HPAEC, in
agreement with the TcTS specificity. Purification by chromato-
graphy on a graphitized carbon column using a step gradient
elution of acetonitrile/water afforded the sialylated derivative
with a 36% yield.104

Experiments with donors carrying deoxy or methoxy sub-
stituted sialic acids led to the conclusion that these modifica-
tions did not impair the reaction as long as the changes were at
C-9 and not at C-4, C-7 or C-8.51 Derivatives of MUNANA
modified at C-9 were also studied as donors in the TcTS
reaction.105

A polyacrylamide polymer conjugated to 30SL was prepared
using a GlcNAc-bearing polyacrylamide polymer. A bGalp resi-
due was introduced in the first place by means of a bovine
b-galactosyl transferase followed by sialylation with TcTS using
Neu5AcapNP as a donor of sialic acid.106

A clone encoding the active N-terminal catalytic domain but
lacking the highly immunogenic C-terminal SAPA was expressed
in E. coli.107,108 Vetere and co-workers used a recombinant
sialidase obtained in E. coli carrying the plasmid pTS154cat
for the synthesis of Neu5Aca2-3Galpb1-4GlcNAc (30-sialyl-N-
acetyllactosamine) by a sequential enzymatic introduction of
galactose from lactose and sialic acid from 30-SL or MUNANA
into GlcNAc. In this case, a higher yield (60%) was obtained
with the MUNANA donor.109 The same strategy was used for the
synthesis of NeuAca2-3Galb1-4Xylb1-O-p-nitrophenyl, a trisac-
charide derivative related to the biosynthesis of glycosamino-
glycans. Starting from p-nitrophenyl-b-D-xylopyranoside, the
trisaccharide was prepared by the sequential action of a
b-galactosidase for the incorporation of galactose from lactose
and the recombinant trans-sialidase using MUNANA as a donor

Scheme 2 Sialylation of the 6-aminohexyl b-glycoside of Galpa1-3(Galpb1-6)Galp by TcTS. Adapted from ref. 104.
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of sialic acid.110 Using the same donor but a specific
b-galactosidase for the formation of the Galb1-3GlcNAc unit,
30-sialyl-lacto-N-biose (Neu5Aca2-3Galpb1-3GlcNAc) was
obtained in 35% yield.111 30-Sialyl-N-acetyllactosamine was
synthesized on the surface of liposomes by a ‘‘one-pot’’ sequen-
tial enzymatic modification of a N-acetylglucolipid embedded
in the bilayers using a galactosyl transferase with the UDP-Gal
nucleotide and TcTS with 30-sialyllactose as a sialic acid
donor.112 The coated liposomes could be used for cell recogni-
tion studies. Also, vesicles displaying a perfluoroalkyl-tagged
lactosyl epitope were sialylated and then recognized by the
lectin Maackia amurensis leucoagglutinin.113

A communication reported the preparation of 13C-enriched
GM3, and sialyl Lewis X oligosaccharides using a recombinant
TcTS expressed in E. coli with the plasmid pTS-cat7 for the
sialylation step.114 The same enzyme and pNP-Neu5Ac as a
donor were used for the sialylation of lactosides, lactosamide
derivatives and Galb1–3GalNAcaSer/Thr with yields in the
range 20–60%.115 Glycoconjugates containing Neu5Gc may
be used for studies related to its antigenic properties in
humans.116 The p-NP glycosides of N-acyl modified neuraminic
acid donors, among them the N-glycolyl derivative, have been
tested in the TcTS reaction, showing that N-glycolylneuraminic
acid (Neu5Gc) is efficiently transferred by TcTs.117,118 The
exocyclic chain of Neu5Ac is not fundamental in the recogni-
tion by the enzyme since the C-7 and C-8 analogues of Neu5A-
capNP obtained by periodate oxidation were donors for the
acceptor methyl b-lactoside.119

The synthesis of Neu5Aca2-3Galb1-3GalNAc, a component of
the Thomsen–Friedenreich antigen, was reported by Thiem
et al.120 Derivatives of Galb1-3GalNAc modified at the galactose,
the N-acetylgalactosamine or both residues were prepared to
test their ability to act as acceptors with a recombinant TcTS.
Mimetics of the sialyl Lewis X tetrasaccharide were prepared
by sialylation of a b-galactopyranosyl azide followed by a
click reaction with a fucosyl acetylene to afford the 1,4 digly-
cosylated 1,2,3 triazole (Scheme 3). Also 1,3-diglycosylated
indole derivatives were sialylated in the Galp unit. These
sialylated mimetics were tested as competitive inhibitors for
selectin binding.121

Recombinant active TcTS was also expressed in eukaryotic
cells like the yeast Pichia pastoris.122 Also, cells of S. cerevisiae
were engineered to express enzymatically active TcTS on their
walls and the whole cells were used for in vitro sialylation of
biantennary complex type oligosaccharides previously labeled
with a fluorophore to facilitate monitoring of the reaction.123

A T. rangeli sialidase with six amino acid mutations, STr6, was

expressed in P. pastoris at a higher yield (1 g L�1)124 than TcTS
(5 mg L�1 in the same expression host).122

3.1 Synthesis of sialyl galactooligosaccharides (SiaGOS),
components of human milk

Sialooligosaccharides in human milk (HMOs) contribute to
brain development and prevent bacterial and protozoan attach-
ment to infant mucosal surfaces.125,126 About 150 species of
HMOs have been identified in human milk.127 Colostrum,
secreted by the mammary gland a few days before and after
parturition, is a good source of oligosaccharides.128 Sialyl-
lactose may be obtained from bovine colostrum in about
500 mg L�1 129 and has been used as a donor for the synthesis
of complex sialylated oligosaccharides.130–136 Since sialyl galac-
tooligosaccharides (SiaGOS) are much less abundant in bovine
milk there are several reports describing their enzymatic synth-
esis with the aim to enrich baby food. The TcTS expressed
in E. coli was used for the sialylation of galactosyl lactoses with
b1-30, b1-40 and b1-60 linkages. Casein glycomacropeptide
(GMP), a by-product of the cheese industry, used in this study
as a donor for the preparation of the sialylated oligosaccharides
had a sialic acid content of 3.6% from which 59% was in a2-3
linkage. As expected, only the monosialylated derivative was
obtained for the b1-30-galactosyl lactose. In the case of Galb1-
6Galb1-4Glc, two monosialylated compounds corresponding
to the sialylation of the external or the internal unit and
the disialylated product were obtained. Galb1-4Galb1-4Glc,
however, was only sialylated in the external galactose residue
(Scheme 4).137 The sialylated galactosyl lactose derivatives,
although non-natural HMOs, may be used as functional
options.

A bovine blood plasma glycoprotein (BPG) containing 0.7%
of Neu5Ac and Neu5Gc in similar proportions was used for
sialylation of lactose and higher GOS. The products of lactose
sialylation, Neu5Aca2–3lactose and Neu5Gca2–3lactose, were
separated by HPAEC and the yield of the sialylated trisacchar-
ides corresponded to a sialic acid transfer of 55 and 50%,
respectively, taking into consideration only the a2–3 linked
Neu5Ac and Neu5Gc in BPG.138

30SL and higher oligosaccharides were prepared using GMP
as a donor and a TcTS expressed in Pichia pastoris. The optimal
donor : acceptor ratio that minimizes the hydrolase activity was
determined to be 1 : 4 and the conversion yield, considering
only the content of a2–3 linked Neu5Ac in GMP, was about
64%.101

Engineered trans-sialidases from T. rangeli, with multiple
mutations, have also been used for the sialylation of GOS.124

Scheme 3 Synthesis of a sialyl Lewis X tetrasaccharide mimetic. Adapted from ref. 121.
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A TrS13 mutant could sialylate GOS, in gram scale quantities,
independently of their size, showing four times lower hydrolytic
activity than the Tr6 mutant124,139 (Fig. 5). Tr15 and Tr16 were
used to obtain 30-SL directly from cow’s milk using GMP as a
donor and the milk lactose as an acceptor. With the more
efficient Tr15, concentrations of SL similar to those found in
breast milk were obtained in a fast reaction (10 min).140 The use
of T. congolense TS for sialylation of GOS was patented.141

The sialyltransferase from Pasteurella multocida can con-
struct both Siaa2-3Gal and Siaa2-6Gal motifs in a ratio which
depends on the reaction conditions. The recombinant enzyme,
expressed in E. coli, was able to catalyze the synthesis of both 3a
and 6a-linked sialic acid in higher GOS using GMP as a sialic
acid donor.142

3.2 Synthesis of sialyl oligosaccharide components of natural
glycoproteins

Takahashi and coworkers described the sialylation of N-linked
oligosaccharides from human fibrinogen and asialooligosaccharides

from fetuin, derivatized as pyridyl 2-amino glycosides, using
native TcTS and 30SL as donors. The sialooligosaccharides were
separated by successive HPLC columns and characterized based
on their elution times compared with reference compounds and
using a three-dimensional mapping technique. Structure assign-
ments were confirmed by digestion with specific exoglycosidases.143

trans-Sialylation with fetuin as a donor and a recombinant
TcTS was the last step in the enzymatic preparation of
Neu5Aca2-3Galb1-4GlcNAcb1-2Man a-linked to a peptide
(Fig. 6). The tetrasaccharide is the most abundant O-mannosyl
glycan in a-dystroglycan (a-DG), a glycoprotein found in muscle
and brain tissue. A one pot enzymatic cascade synthesis was also
described.144

The mucin oligosaccharides of Trypanosoma cruzi are
the acceptors of sialic acid from the host sialoglycoconjugates,
in a reaction catalyzed by TcTS, a crucial process for
pathogenesis.35,41,145 In mucins, galactose could appear in the
pyranose form or in both pyranose and furanose forms,
depending on the strain.52 Galf is not present in any mammal

Scheme 4 Synthesis of SiaGOS by TcTS. Adapted from ref. 137.
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glycan and only appears in some strains of the epimastigotes,
one of the insect forms of T. cruzi.146 Since both constituents,
bGalf and bGalp, may coexist in the same molecule, it
was interesting to study their behavior in the TS reaction. The
Galf-containing oligosaccharides have been chemically
synthesized.132,133,147–151 The trisaccharide unit 2,3-di-O-(b-D-
Galp)-b-D-Galp, with two bGalp for possible sialylation, is the
external unit of the three largest oligosaccharides of T. cruzi

mucins. Reaction of the benzyl glycoside of 2,3-di-O-(b-D-Galp)-
b-D-Galp (1, Scheme 5)152 with TcTS showed selective trans-
sialylation from the donor 30-sialyllactose to the less hindered
(1-3)-linked bGalp. Sialylation of the more flexible alditol 2 was
not selective and a mixture of compounds 3 and 4 was obtained
(Scheme 6), suggesting that the open zig-zag conformation
adopted by the alditol turned both galactoses almost equally
accessible for TcTS recognition.130 Accordingly, the benzyl
glycosides of the pentasaccharide and one of the hexasacchar-
ides of the mucins, compounds 5 and 7 respectively, were also
selectively sialylated in the same residue to give 6 and 8,
respectively (Scheme 7).132,133 All the structures were confirmed
by NMR spectroscopy. In the case of sialylation of the benzyl
glycoside of the other hexasaccharide, with three terminal
bGalp units, two monosialylated compounds and a minor
amount of a disialylated product were formed (Fig. 7).132

A study on the comparative rates of sialylation of the synthetic
oligosaccharides showed that the presence of Galf did not
impair the reaction. Thus, the diminished virulence of the
strains that contain Galf is not related to the interference of
sialylation by Galf.153

Based on the amino acid sequences in the T. cruzi mucins,
the glycopeptide Thr-Thr-[LacNAcThr]-Thr-Thr-Gly was synthe-
sized using a chemoenzymatic strategy and further sialylated by
T. cruzi trans-sialidase using fetuin as a donor (Scheme 8).154

Fig. 5 Sialylation of GOS by the T. rangeli trans-sialidase mutant Tr13. Adapted from ref. 139.

Fig. 6 Structure of the most abundant O-mannosyl glycan in a-
dystroglycan (a-DG).

Scheme 5 Selective trans-sialylation of the b-benzyl glycoside of 2,3-di-O-(b-D-Galp)-b-D-Galp. Adapted from ref. 130.
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Scheme 6 Sialylation of 2,3-di-O-(b-D-Galp)-b-D-Galp alditol by TcTS. Adapted from ref. 130.

Scheme 7 trans-Sialylation of the b-benzyl glycosides of the pentasaccharide and one of the hexasaccharides from T. cruzi mucins. Adapted from ref.
132 and 133.

Fig. 7 Proposed structures for the sialyl derivatives obtained by trans-sialylation of the b-benzyl glycoside of a hexasaccharide from T. cruzi mucins.
Adapted from ref. 132.
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Bacterial sialidases have also been used for the synthesis of
natural oligosaccharides. The sialidase of S. typhimurium was
used for the synthesis of the Lewis tetrasaccharides (Fig. 8).92

Thiem and coworkers used the sialidases of Vibrio cholerae,
Clostridium perfringens, Salmonella typhimurium, and Newcastle

disease virus for the synthesis of several oligosaccharides,
among them the epitopes of the T-tumor antigens (Thomsen–
Friedenreich). The reactions were regioselective according to
the selectivity of the corresponding enzyme and the yields
obtained were between 10 and 30%.90

Scheme 8 Sialylation of Thr-Thr-[LacNAcThr]-Thr-Thr-Gly with TcTS. Based on ref. 154.

Fig. 8 Structures of the Lewis tetrasaccharides synthesized with S. typhimurium trans-sialidase. Adapted from ref. 92.

Fig. 9 Sialylation of galactomacrocycles by TcTS. Adapted from ref. 155.
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3.3 Sialylation of non-natural oligosaccharides

Cyclic pseudo-galactooligosaccharide dimers and trimers were
synthesized by ‘‘click chemistry’’ and analyzed as TcTS sub-
strates using MUNANA as a donor of sialic acid to give disialylated
and trisialylated products with moderate yields (Fig. 9).155

Multivalent ligands of b-thio- and b-N-lactosides are also
acceptors of sialic acid in the TcTS reaction using 30-SL as a
donor.131,156 A divalent b-N-lactoside yielded the monosialylated
derivative as the major product with minor amounts of the
disialylated product (Scheme 9) as observed by HPAEC analysis
and later confirmed by mass spectrometry. TcTS efficiently trans-
ferred sialyl residues to di, tri, tetra and octa b-thiolactosides.131

A preparative reaction with a tetravalent b-thio-glycocluster gave a
mixture of monosialo, disialo and trisialo species that could be
separated with an anion exchange resin and their degree of
sialylation was confirmed by MALDI-MS. The possibility of multi-
sialylation of ligands suggests their use as competitive inhibitors
of sialylation and anti-adhesion agents for microbial infections.157

4 Conclusions

The role of sialic acid in the infection by microorganisms is well
known. The spike glycoprotein of SARS-CoV-2, the agent of the
current Covid 19 pandemic, carries N- and O-glycans decorated
with sialic acids. Future studies on interaction of the glycans
with host cells could lead to the design of inhibitors to the
penetration of the virus. With this purpose chemoenzymatic
synthesis of the glycans would be desirable.

Selected trans-sialidases are a convenient tool for the synth-
esis of sialooligosaccharides. The reaction is regiospecific for
the construction of the non-reducing unit Neu5Aca2-3bGalp.
One of the main advantages is that the donor Neu5Ac-CMP may
be replaced by a glycoprotein with a convenient content of sialic
acid such as fetuin or GMP, an easily available by-product of the
cheese industry. In addition to being less expensive their higher
molecular weights facilitate separation of the excess donor
from the newly obtained sialooligosaccharide. The commercial
sialosides Neu5AcapNP and Neu5AcaMU (MUNANA) have
much lower activities than 30SL for the transfer reaction,61,99

but have the advantage that the reactions are not reversible and
the nonpolar aglycone can be easily isolated from the reaction
products. Sialidases have been engineered to act as trans-
sialidases, with an activity that depended on the reaction condi-
tions, like temperature, pH, water activity, and time of reaction.
Transglycosylation was favored when higher acceptor concentra-
tions were used. Recombinant TcTS was used for preparative
synthesis of sialooligosacchacarides with potential application in
the elaboration of supplement for baby formula, based on the
beneficial effect of these sugars present in human colostrum. The
enzyme is not commercially available yet; however, extension of
its use may encourage its commercial production.
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Scheme 9 Mono and disialylation of divalent b-N-lactosides synthesized by click chemistry. Adapted from ref. 156.
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