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Chemical data intelligence for
sustainable chemistry

Jana M. Weber, ab Zhen Guo,bc Chonghuan Zhang,a Artur M. Schweidtmann d

and Alexei A. Lapkin *abc

This study highlights new opportunities for optimal reaction route selection from large chemical databases

brought about by the rapid digitalisation of chemical data. The chemical industry requires a transformation

towards more sustainable practices, eliminating its dependencies on fossil fuels and limiting its impact on the

environment. However, identifying more sustainable process alternatives is, at present, a cumbersome, manual,

iterative process, based on chemical intuition and modelling. We give a perspective on methods for automated

discovery and assessment of competitive sustainable reaction routes based on renewable or waste feedstocks.

Three key areas of transition are outlined and reviewed based on their state-of-the-art as well as bottlenecks: (i)

data, (ii) evaluation metrics, and (iii) decision-making. We elucidate their synergies and interfaces since only

together these areas can bring about the most benefit. The field of chemical data intelligence offers the

opportunity to identify the inherently more sustainable reaction pathways and to identify opportunities for a

circular chemical economy. Our review shows that at present the field of data brings about most bottlenecks,

such as data completion and data linkage, but also offers the principal opportunity for advancement.

1. Introduction

Chemical industries worldwide heavily rely on non-renewable
fossil feedstocks, which results in linear economy models, i.e.
extract-make-use-dispose schemes.1 This contributes to
chemical production becoming the central driver of global oil
consumption by the year 2030.2 To tackle the problem, research
efforts shifted towards studying the utilization of renewable
feedstocks within chemical industries, such as cellulose,3

lignin,4 chitin,5 or bio-wastes.6–8 In recent decades, the scientific
community developed new reactions and engineering techniques
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to produce various value-added chemical compounds from
renewable feedstocks.5,9–11 However, one of the main problems
when developing sustainable processes is the lack of access to
information on all multiple co-existing options, hindering a
systematic way to shape early, but key process decisions.12 Novel
process routes based on renewable or waste feedstock are in fierce
competition with the petrochemical-based market,13–16 where
companies operate at economies of scale and have optimised
both processes and supply chains for over a century.17,18 Thus, a
shift in industrial techniques, if not enforced through strict
regulation, can only happen if sustainable alternatives are equally
good or even economically superior solutions. Yet, even early-
stage schemes of novel reaction routes require process modelling,
pre-collected data, and last but not least chemical intuition,
making them a long and manual selection process. Thus, there
is a need for a systematic and fast tool to identify the most
promising reaction routes. The three key aspects to develop such a
chemical data intelligence tool are (i) data, (ii) assessment metrics,
and (iii) decision-making approaches (see Fig. 1) and will be
discussed throughout this study.

A systematic picture of the available knowledge on reaction
data can be illustrated through a network of chemical reactions,
where species are connected with one another through chemical
reactions – products and reactants of each reaction are
connected. Fig. 2 illustrates how the evolving reaction network
can connect feedstock molecules (e.g. from biomass) to target
molecules (e.g. drug compounds) over a sequence of reactions
involving intermediate molecules (e.g. chemical commodities).
The increase in electronic data recordings and thus, data
availability, has paved the way for rapid progress on reaction
networks mined from large chemical databases, sometimes
called the chemical universe or the network of organic chemistry
(NOC). Fialkowski et al. first introduced the study of organic
synthesis reactions with a network representation based on the
Beilstein Database.19 Then, studies on the topology and growth
of the network,20–22 synthesis planning through the network,23,24

and applications to One-Pot-Reactions have followed.25 In our
previous works, we have highlighted the potential of the NOC for
process route selection and for the identification of strategic
molecules for sustainable supply chains.26–28 With rapid increases
in digitalisation, it is worthwhile to revisit the NOC and identify
future avenues for chemical reaction data. Information extraction
and information representation play key roles, where tools such as
natural language processing (NLP) can lead to more complete
datasets and ontological representation, or knowledge graphs,
allow machines to better ‘‘understand’’ the data.

The combination of large sets of chemical reaction data and
decision-making algorithms is a prerequisite for fast and
systematic assessment of reaction pathways. Reaction Network
Flux Analysis (RNFA), which was inspired by the analysis of
metabolic networks,29 was first introduced by Voll and
Marquardt who identified optimal pathways for bio renewables
processing based on a literature review.30 In RNFA, a steady
state of the material flows in the system is assumed and the
system is optimised for the production of the desired products
from available feedstock molecules subject to mass balance
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constraints.30 The approach was further extended by advanced
metrics and supply chain considerations,31,32 to represent
process networks,33 and was adopted for the assessment of
routes to biopolymers.34 An alternative to the steady state model
for reaction network optimisation was presented in ref. 35.
Methodologies are evolving quickly, yet their full potential will
only be realised if connected to large chemical databases.

To evaluate routes in reaction networks, appropriate criteria
must be used. The twelve principles of green chemistry,36 the
‘‘productivity scheme’’,37,38 and their extension towards green
engineering,39 the ‘‘improvement scheme’’,40 have established a
common understanding of environmental considerations in
chemical engineering. Metrics, such as the environmental impact
factor (E-factor), atom economy (AE), or energy requirements
enable us to assess environmental considerations within chemical
processes.38 The field is going through a transition from green to
sustainable chemistry, which requires the consideration of
wider system boundaries. This has been actively discussed and
incorporated in life cycle assessment (LCA) literature.41–43

Sustainability criteria should be able to simulate the system
boundaries (e.g. demand/supply outside the network) and
should be retrievable in an automated manner on early process
development stage data sources. Wider chemical reaction systems

have previously been analysed based on exergetic efficiencies and
sets of chemical heuristics.26

Only together can the areas of data, metrics, and decision-
making make the most use of chemical data intelligence and
enable practitioners to plan the most sustainable reaction routes.
In this work, we explore the potential of semantic data for rich and
structured chemical knowledge. Advances in the fields such as NLP
and recommendation systems are further reviewed as they promise
to tackle the challenge of data scarcity. For sustainability aspects in
chemical reactions, we elucidate the importance, as well as chal-
lenges, of system thinking. We research a navigation system for
chemical space similar to Google Maps, showing us the most
sustainable pathways in the entanglement of chemical reactions.

We provide a roadmap with our recommendations for the
development of a systematic early-stage sustainability
assessment tool in Fig. 3. Within the three research fields, we
identify impact opportunities and provide action steps and
approximate time frames. The foundation for the recommen-
dations is explained throughout this work in the detailed
sections on data, metrics, and decision-making.

# 1 Data impact opportunities and action points. The first
opportunity is the development of a chemical big open linked
data (BOLD) structure. Emphasis lays on the coverage of freely

Fig. 2 Reaction networks connect feedstock molecules with target molecules. A sequence of reactions, a reaction route or pathway, is required to
connect feedstocks with desired target molecules through intermediate species. Note that an intermediate species is the product of one reaction and the
reactant of another in a chemical supply chain, rather than a transient species in a single reaction step. Thus, they are retrievable (as reactant or product)
from the database of choice. The best sequence can be identified from large sets of chemical reactions through optimisation of the resulting reaction
network. Note that the reaction network is illustrated as a bipartite network here, but multiple other representations are possible.

Fig. 1 The three main areas: data, metrics, and decision-making directly influence the search for sustainable reaction pathways in reaction network, but
also influence each other. To enable large-scale systematic searches and rankings, automation within and between all areas is key.
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available datasets where single entries are recorded with a
uniform resource identifier, enabling linkage to the chemical
context and to adjacent fields, such as substance emissions and
market values of the molecules. As second impact opportunity,
we strongly recommend the inclusion of biological data. This
includes molecular transformations from systems biology,
purified enzymatic reactions and whole cell transformation, as well
as biological feedstocks as primary raw material and as secondary
raw material from waste streams. Lastly, we emphasise the impor-
tance of complete data structures. While for novel publications,
journal standards can enable the recording of stoichiometry, yield,
and reaction conditions, the body of already published reactions
needs to be revisited in order to withdraw such information in an
electronic standard. NLP can gather previously stated information
and predictive models can be utilised for the fractions where original
sources do not contain the information.

# 2 Metrics impact opportunities and action points. The first
opportunity is the transition from green to sustainable metrics.
Herein, we recognise the importance to focus on the integration of
resource-based assessment, e.g. exergy, which complements
emission-based metrics, as well as social and economic assessment.
Furthermore, only cross-domain standards, e.g. on allocation
and the system boundary, can lead to a successful tool as the
chemical sectors spans multiple domains. Last, but not least,
we recommend to focus on early-stage metrics, as only early-
stage decision-making can lead to inherently sustainable
pathways. The second impact opportunity is the measurement
of circularity potentials. In order to evaluate the sustainability
of a pathway, knowledge on potential uses of waste streams
generated throughout the process are indispensable.
Considerations on possible upstream treatment and on the
stability of molecular properties during multiple cycles of reuse
are of interest. The last impact opportunity is the prediction of

molecular properties relevant for sustainability assessment, e.g.
prediction of chemical exergies from molecular structures.

# 3 Decision-making impact opportunities and action
points. Future decision-making systems for early-stage sustain-
ability assessment are required to evolve at two fronts:
increasing model accuracy and decreasing model complexity. On
the one hand, it is desirable to derive modelling frameworks which
take for instance solvents, separations, upstream treatment,
material circularity, and sequential manufacturing into account.
On the other hand, linear models or heuristic, solving strategies for
non-linear models, are essential to facilitate large-scale, and thus,
systematic assessment. Last, but not least, sustainability is
a dynamic systems problem, which requires a decision-making
support able to interact with the dynamic nature of the system.
While metrics might be able to map current market prices and data
can show the demand for or supply of certain materials at regarded
geographic locations, the envisioned decision-making framework
should work beyond these static snapshots of the system, e.g.
following agent-based modelling approaches.

Enabling the three areas to evolve together will be the key
aspect for well-reasoned reaction pathway development, tackling
the different aspects of sustainability. We would like to stress the
following interfaces between the areas in particular.

# Interface 1: data is the foundation for metrics and decision-
making. Accessible and well-documented databases are a prerequi-
site to further development of metrics. Molecular properties such as
chemical exergy, thermodynamic properties or toxicity values are key
aspects of sustainability assessment. Further development of compu-
tational tools to automatically generate metrics for given systems are
needed. Additionally, data on reaction structures, i.e. the stoichio-
metric relationships, are essential to formulate mass balances as
physical constraints of the decision-making formalism. We anticipate
that only clear communication of data needs from the metrics and

Fig. 3 Roadmap towards systematic early-stage sustainability assessment. Impact opportunities and action points in the three areas data, metrics, and
decision-making (d-m) are outlined. Action points are grouped into timeline categories (o3, 3–5, and 5–10 years) and are explained in the boxes below.

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
 2

02
1.

 D
ow

nl
oa

de
d 

on
 2

02
4/

9/
17

 5
:1

1:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1cs00477h


This journal is © The Royal Society of Chemistry 2021 Chem. Soc. Rev., 2021, 50, 12013–12036 |  12017

decision-making community will enable sufficiently quick extensions
to the current data sources to be developed. Alongside, conversa-
tions between the communities should include ontology develop-
ment to define the characterisation and relationships of data.

# Interface 2: co-development of metrics and decision-
making. Throughout this article, we argue that sustainability
is a systems science. For a future sustainable chemical supply
chain, it is essential to evaluate proposed reactions within their
environment, rather than detached from it. Thus, the metrics
required to assess the sustainability of novel reaction pathways
need to capture wider system interactions considered in the
decision-making approach. Here, the foundations of assessing
the greenness or the sustainability of reactions are provided
by the metrics community, but new requirements for metrics
will arise from within the systems modelling community.
We anticipate large benefits if both domains come together.

# Interface 3: defining decision-making environments
through regional and dynamic data. Data on the price of
molecules illustrates the economic interaction of a system with
its environment across the system’s boundary. This interaction
is further defined by data on the availability and the demand of
each molecule, thus mapping the chemical supply chain. How-
ever, market prices and supply chains as well as the energy price
are temporal and spatially fluctuating. In the long term, model-
ling novel reaction pathways within a circular chemical supply
chain requires dynamic interactive environment descriptions,
rather than static snapshots. Here, joint research is needed to
develop dynamic environments based on suitable data sources.
Future advanced tools may even include regional policy insights,
as well as costs associated to infrastructure and personal.

2. Data

Large volumes of open and big data have revolutionised many
fields of our modern society.44 While enormous improvements
have driven developments in areas such as computer vision, or
language recognition, chemical data has yet to overcome
urgent challenges, such as establishing openly accessible data
with standardised representations and improving quality incon-
sistencies of existing data.45 FAIR scientific data – findable,
accessible, interpretable, and reusable46 – evolving into BOLD
concepts47–49 will push chemical discovery and is essential for
cross-disciplinary tasks, such as sustainability assessments.

Databases and accessibility

To facilitate large-scale reaction route screening, access to large
reaction databases is the stepping stone. When aiming for
more sustainable process routes, it is worthwhile to discuss
the extraction of reactions from conventional chemical
transformation as well as biosynthetic conversion strategies
and alternative chemical conversion strategies.

Conventional chemical reaction databases. There exists a
variety of chemical reaction databases with different sizes and
accessibility rights as well as distinct coverage of the chemical
space. Table 1 outlines a selection of common databases for

organic reactions. CASREACT† and ReaxysTM‡ (in the following
called Reaxys) are by far the largest databases for chemical
reactions. They include scientific literature and a selection of
patents, but require users to buy licenses to work with large-
scale data. The database called Pistachio§ developed by the
company NextMove stores reaction from US patents and has
released a publicly available subset CC-Zero¶ of over one
million reactions. SPRESI8 is another database for organic
reactions, which provides a subset of 500 000 reactions as a
free app. The USPTO** database is the smallest, yet it is entirely
openly accessible. Open reaction databases are gaining increas-
ing momentum. One recent example is the open reaction
database,†† which is a multi-institution initiative to aid
machine learning (ML) tasks in chemistry/chemical engineering
by providing structured and freely available reaction data. The
project sits on GitHub and its launch is planned for early 2021.
Regarding data coverage, Thakkar et al. have outlined the
differences in data coverage from multiple sources including a
dataset based on electronic notebooks from AstraZeneca.50 They
studied reaction templates within different databases and found
that only 2% of templates were common in all considered data
sources.50 Notably, the development of chemical databases is a
rapidly developing field. Content breadth and depth are being
constantly reviewed and further developed. Reaxys, for instance,
now covers supplier information on price, supplier geolocation,
packages sizes and much more.

Biosynthetic reaction databases. A hybrid system of biosynthetic
and conventional chemical synthesis opens up opportunities
for efficient (bio)chemical pathways search. Enzymatic reactions
can lead to more efficient reaction pathways with reduced
operational costs as synthetic biology can enable shortcuts and
flexible design of supply chains (see Fig. 4), improving redox
efficiency. Moderate temperatures/pressure and the avoidance of
metal catalysts or hazardous solvents can ease synthesis and
lower operational costs.51 Additionally, enzymatic reactions
are well suited to utilise and further functionalise the
biological structures in renewable feedstock. Advantages of
metabolic alternatives have encouraged synthetic biologists to

Table 1 Selection of large databases recording chemical reactions

Database Size Accessibility

CASREACT 4128 million reactions Proprietary
Reaxys 446 million reactions Proprietary
Pistachio 49 million, patent literature based Proprietary
SPRESI 44.6 million reactions Proprietary
USPTO 43.3 million, patent literature based Open

† https://www.cas.org/support/documentation/reactions.
‡ https://supportcontent.elsevier.com/RightNow%20Next%20Gen/Reaxys/New_
RX_FactSheet_Jul_2018.pdf.
§ https://www.nextmovesoftware.com/pistachio.html.
¶ https://nextmovesoftware.com/blog/2014/02/27/unleashing-over-a-million-reactions-
into-the-wild/.
8 https://www.deepmatter.io/spresi/.
** https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-
Sep2016_/5104873.
†† https://github.com/open-reaction-database.
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find biosynthetic routes that produce bulk chemicals and industrial
chemicals such as ethanol,52 benzoic acid,53 toluene,54 etc., and
active pharmaceutical ingredients of pharmaceuticals such as
flavonoid55 and tryptophan.56 A metabolic map for the production
of bio-based chemicals was summarised by Lee et al.57

Databases such as Kyoto Encyclopaedia of Genes and
Genomes (KEGG),58 ‡‡ Rhea,59 §§ and the Enzyme Catalytic-
mechanism Database60 ¶¶ open up opportunities to obtain
bio-information for metabolic reaction networks. The most
comprehensive biological database is KEGG with currently
almost 13 000 recorded reactions.58 However, in comparison
to conventional chemical databases, enzymatic databases are
relatively small and sparse at present. Synthetic biologists are
actively working towards the prediction of metabolic reaction
behaviours to populate the databases.61,62

Alternative conversion strategies. Further opportunities for
discovering new reaction pathways include electrochemical or
photochemical transformations. Electrocatalytic hydrogenations
may hydrogenate molecules in water under ambient conditions
and thus replace conventional hydrogenation steps typically
requiring elevated pressures.63 Besides, electrochemistry may
also unlock entirely new synthetic pathways as novel molecular
transformations are observed.64 Harnisch and Urban illustrate
the concept of an electrobiorefinery, where they anticipate
that the synergies between microbial and electrochemical
conversations are likely to impact, amongst others, enlarging

product portfolios and exploiting new feedstocks.65 In particular,
they outline electrochemistry for decomposition of bio-based
feedstocks, e.g. lignin pretreatment, to provide chemical feed-
stocks, e.g. H2, CH4, or C1- or C2-compounds, but also to
electrochemically steer fermentation, e.g. CO2 can be used as
carbon source for fermentation cultures.65 Another promising
conversion strategy is photochemistry. Research efforts are
focusing, for instance, on the utilisation of sunlight to produce
CO, ethanol, or methane from CO2 in aqueous solutions, or on
solar-driven organic synthesis, where the target is to obtain high-
value products.66 He and Janáky state that utilising solar energy
and CO2 resources can be expected to yield both fuels and value-
added chemicals. They list a range of possible chemical products
in their work and compare the performance of different photo-
chemical conversion strategies.67 In large chemical databases,
such as Reaxys, one can specify reaction types, also including
electro- or photochemical transformations. This allows specific
inclusion of alternative conversion strategies and potentially
enlarges the toolbox for the development of more sustainable
chemical reaction pathways.

Data formats

Linking data sources is often essential for decision-making, but
requires rethinking of existing data practices.68 A stepwise
approach for data formats, the 5-star plan88 (cf. Fig. 5), was
suggested by Tim Berners-Lee, the inventor of the worldwide
web. The plan describes a trajectory for data formats starting by
open data in any format and resulting in the semantic web.69 In

Fig. 4 Illustration of enzymatic process pathways and conventional process pathways based on fossil feedstocks. In conventional processes, feedstocks
are first broken into smaller building blocks and then reassembled and functionalised step by step. Renewable feedstock, however, is often already highly
functionalised and different enzymatic transformations can make use of this for direct transformation into different stages of the conventional supply chain.

Fig. 5 5-Star plan for open data suggested by Tim Berners-Lee (based on https://5stardata.info/en/).

‡‡ https://www.kegg.jp/kegg/kegg1a.html.
§§ https://www.rhea-db.org/statistics.
¶¶ http://ezcatdb.cbrc.jp/EzCatDB/. 88 https://5stardata.info/en/.
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the semantic web, data is accessible both for humans and
machines as data is stored with structure and context, generating
meaningful content. The content is made comparable between
sources through ontologies.69 Ontologies exploit triple relationships,
e.g. Acetone his used asi solvent is broken into two concepts
‘‘molecule’’ and ‘‘solvent’’ and their relationship is given by his used
asi. These generate metadata structures, i.e. reusable knowledge
representation.70 Additional terminology for data structures is
explained in Table 2.

Scientific practices to record data openly and in machine-
readable formats lack behind. Large chemical databases such
as CAS*** are fundamental sources of chemical information,
however, they do not fulfil the requirements of the semantic
web when it comes to information access and representation.70

This is due to current ways of publishing, e.g. providing PDF
files, which support human readability, but are ill-suited
for data mining and analysis.68,70 The project open research
knowledge graph has made it their mission to change the
document-centric information flow in the scientific community
into knowledge-based information flows.71–73 The final product
is envisioned to be a ‘‘structured, interlinked and semantically
rich knowledge graph’’.73

Chemical data often lacks relational information and is
stored in diverse formats. For example, molecule representations
range from structural chemical formulas over numeric descriptors
to string representations, e.g. SMILES or SMARTS. The chemical
mark-up language was introduced to offer semantics for chemical
data.74 It allows the integration of various entities, e.g. molecules,
spectra, and reactions in mark-up text for electronic use.
Adding relationships to the entities, an ontological structure of
information emerges. A few early ontologies for chemical
engineering have been developed.75,76 OntoCAPE, for example,
defines an ontology for chemical processes.77,78 OntoCAPE
introduces chemical primitives such as system property, physical
dimensions or units to define a system. System properties can
have numerous values. The authors illustrate this through the
system property ‘‘temperature’’ where different values can be
distinguished from each other by the system property ‘‘time’’
both given in their respective units, here degrees Kelvin and
time in hours, to record a temperature profile over time.77

The extension of such formalisms to broader domains of
chemical applications brings about the potential to gather
chemical data in a structured and standardised way even across
different subject areas.

Linked data is much needed for sustainability assessment as
it allows for holistic and cross-disciplinary assessment.79 The
development of knowledge graph technologies potentially
enables efficient data handling, including conditional data
queries within or between subject areas, and more accurate
data inference, due to high contextualising. The group of Prof.
Kraft optimises an eco-industrial park, integrating water
networks, waste streams, and energy links, to minimise
environmental impacts through semantic web technologies.75,80–82

Similar structures of semantic web will be essential to enable
sustainability assessment within reaction networks, where
temperatures, yields, solvents, and reaction stoichiometry
should be recorded and linked with each reaction.83 An
entity-based data format would allow us to link further
information (e.g. data on waste streams and their compositions,
or on regional availabilities of renewable energy) in a modular
way, paving the way for more holistic considerations in future
reaction planning.

Data completion

While text-mining has enabled gathering large-scale chemical
information, such as properties and structures of molecules,
connections between reactants and products, to populate
electronic chemical databases (cf. Section Databases and acces-
sibility), the methods used in creating the datasets sometimes
lack accuracy and miss-classify important pieces of information.
Missing stoichiometric data and incorrect recording of multi-
step reactions as single-step reactions prevents mass balances
within a reaction to be calculated and are major hurdles for
decision-making based on automatically generated process
options. Furthermore, records of reagents, solvents and catalysts
are often inconsistent, e.g. they are sometimes absent or
incorrectly recorded as a reactant and no information about
required quantities is provided. This is challenging for sustain-
ability assessments because the use of reagents, solvents, and
catalysts has a significant influence on environmental impacts.84

Additionally, in some cases, clear identification of specific
chemical species within the databases is problematic as mixtures

Table 2 Explanation of specific terminology in data representations

Term Description

Knowledge
graph

A knowledge graph uses data in graph structure. Data entities and their semantic types and properties are linked with each other.
Knowledge graphs can allow machines and humans to reason from the data.

Metadata Metadata is data about data. One example is structural metadata, which provides schemes and order to data.
Ontology An ontology provides a uniform approach to describe data semantically. It is a specific conceptualization in a format that allows

for reasoning and inference.79

Semantics Semantics provide methods to include meaning to information constructs. Adding meaningful tags to pieces of data brings about
better readability as it is an abstraction of what the stored piece of data resembles in the real world.

Semantic
Web

Tim Berners-Lee, who is the inventor of the World Wide Web, defines the Semantic Web not as a separate one, but as an
extension of it. His vision is a web of information which can be processed by computers and which brings structure to the
meaningful content of web pages.69

Unified resource
identifier

Unified resource identifiers are used to identify any object, e.g. people, books, or places, in web technologies. In semantic web
technologies, they help linking objects from different sources.

*** https://www.cas.org/support/documentation/cas-databases.
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of enantiomers are recorded as pure compounds or entries simply
state ‘‘mixture out of C3 to C6 hydrocarbons’’, without reference
to their molecular structures or a database registry numbers. The
same problem exists in the identification of complex feedstocks
without exact structure and composition, such as lignin, chitin, or
cellulose. Inconsistency in temperature and pressure recordings
makes an energetic analysis of processes difficult. With
rapid developments in the field of NLP and high throughput
experiments (HTE), it is expected that data quality will quickly
improve and some of these current hurdles for algorithmic use of
chemical information will be overcome.

Information extraction from scientific literature. NLP
describes a range of computational techniques to analyse and
represent natural text in a human-like manner for a variety of
applications.85 One application especially relevant to this
review is information extraction, the task of gaining structured
knowledge from text. NLP aims (i) to aid human–human
communication, e.g. translation tasks, (ii) human–machine
communication, e.g. conversational agents such as Apple’s Siri,
or (iii) to bring about benefit for machines and humans, e.g.
through learning from large amounts of data.86 According to
Hirschberg and Manning, NLP has seen an immense boost
within the last few years due to: an increase in computational
power, large availability of linguistic data, successful ML
algorithms, e.g. the transformer model,87 and a better under-
standing of human languages.86 Information extraction from
scientific literature brings about great benefits, not only to fill
in gaps in data but also to keep track of the ever growing body
of literature.86

The last decade has shown immense progress of NLP
techniques within chemistry and related fields, making it a
promising avenue to overcome data completion tasks. Jessop
et al. have developed the Open-Source Chemistry Analysis
Routines (OSCAR) software to read entities and information
in chemistry publications.88 OSCAR4, a library onto which text-
mining tools for chemistry can be built, was released and the
authors illustrated that OSCAR may also be applied to other
areas of physical sciences as customisation through different
dictionaries is possible.88 Such transdisciplinary data systems
are of increasing importance as sustainability assessment
requires a variety of data. Krallinger et al. present a review on
the access of chemical information through text mining
techniques and especially value chemical entity recognition as
well as the interlinkage to biological data.89 NLP techniques have
also gained a foothold in related fields, such as nanotechnology,90

medical/clinical text documents,91 and biomedical texts.92

However, linking data from scientific publications of different
chemical subject areas is potentially problematic as definitions
and reporting standards may vary. Automated assessment frame-
works of data quality for linked open data93,94 may offer the
potential to identify pieces of misleading information between
communities.

Data acquisition through high-throughput experiments. In
HTE multiple reactions are performed in parallel to quickly
answer a specific chemical question.95 High-throughput virtual
experiments (HTVE) are often utilised to examine material or

drug leads at a large scale, when experimental searching
becomes impractical due to high cost or technical issues. They
are commonly used in combination; experimental data can be
used to calibrate HTVE, while results from HTVE guide further
experimental explorations.96–98 This iterative approach has
proven to be very powerful, especially when combined with
ML guided exploration algorithms.95,99 Eyke et al. employed
data produced by HTE to train a ML model, and the ML model
predicted reaction outcomes and selected the most informative
experimental region for HTE to explore further.96 Chen and
Visco built a support vector machine (SVM) model on the basis
of experimental data and molecular descriptors, which they
trained for the identification of drug candidates98 and Li et al.
demonstrated that artificial neural networks (ANNs) trained on
density functional theory (DFT) data were able to capture
complex absorbate–metal interaction, providing guidance on
the design of bimetallic catalysts.100

To further accelerate data collection speed, robotic
platforms for chemical experiments have become the focus of
many studies.101–104 For instance in 2004, King et al. reported
an automatic experimental system called ‘‘robot scientist’’ that
was able to independently conduct an entire research cycle,
including planning, testing, analysis and re-run if hypothesis
and results were inconsistent.101 In the platform assembled by
Coley et al., synthetic routes were proposed by a retrosynthesis
software and organic synthesis was conducted in flow reactors,
automatically configured by a robotic arm.104 In Cronin’s
group, a robotic platform was constructed along with a
standardized architecture for organic synthesis, called the
Chemputer.105 By taking advantage of various smart hardware
and programming languages, Chemputer system showed the
potential to standardize the whole automatic experimental
process, from conducting synthesis to generating reports.

Advanced data analysis techniques, such as the transformer-
based model developed by Schwaller et al., perform well over
data from HTE, but are still not feasible for processing
historical experimental data, which often suffers from high
inconsistencies.106 With the continuous improvements in HTE,
HTVE, automation, and data analysis, highly consistent and
reliable experimental data may quickly expand, bringing to light
more reliable data standards in larger regions of the chemical space.

Data inference

Some data is never reported in primary research publications or
patents, but data may be augmented through data inference – a
cheap and fast alternative to experimental studies. In this
section, we first outline recommender systems as a general
way to complete data matrixes and then highlight developments
for data inference of the specific contents as illustrated in Fig. 6.
Relevant for reaction route search are: firstly, missing reaction
conditions, e.g. temperature, pressure, and reagents, secondly,
reaction outcomes, e.g. yield is not always available and thirdly,
reaction structures; e.g. reactants and/or products and the
reaction stoichiometry are missing.

Recommender systems. Recommender systems have been
an effective approach to deal with information overload and are
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seen most promising in problems related to ‘‘over-choice’’ of
options. A standard recommender system solves a problem of a
set of n users and m items, which it generally recommends to
the users according to their preference. The relationships
between users and items are commonly represented in a
n � m matrix, being the core element of the recommender
system.107 The matrices are often very sparse as little information
is originally available and the aim is to predict what the missing
cells will be.107 The entries may range from single bits to
unstructured text.108 One prominent example of a recommender
system has been the Netflix challenge, where a price of one
million US$ was awarded to the team to first model the dataset
and predict new ratings to a specified accuracy.109 Matrix
completion methods or graph recommender systems have been
applied for such problems.107,110,111 For a deeper understanding
of recommender systems and their current trends and challenges
as well as the underlying deep-learning strategies we refer the
reader to these surveys.107,112,113

Within the domain of chemistry, there are early works that
recognise the impact of recommender systems for both experi-
mental and computational data. Savage et al. recommend
candidate molecules as reactants for the synthesis of desired
products. They formulate the problem as link prediction over a
graph base, where links represent reactant–product relationships
and provide chemical knowledge in the form of molecular
fingerprints.114 In 2020, Jirasek et al. have shown an application
of a recommender system for the prediction of binary activity
coefficients.115 Other examples within chemical engineering
include the use of recommender systems to predict drug side
effects,116 to estimate the relevance of chemical compounds to
form crystals,117 and for material choices in polymerisation
experiments.118

Inference of reaction outcomes. For reaction outcomes, we
focus on the inference for yield data. At present, yield records
are far from sufficient in most databases. For instance,
an exemplary dataset from Reaxys database with 17 million
reaction records contains around nine million reactions without
any yield information. Additionally, among reaction records with
yield information, the yields of only a few products are listed.

Data-driven approaches are promising avenues for yield
predictions. Through advances in HTE techniques, detailed
and structured experimental data became more easily available.

Simultaneously, ML methods evolved and machine-readable
representation of molecules and reactions is under constant
development. One of the earliest approaches of ML for yield
prediction was presented by Kito et al. and predicted the
selectivity of catalytic oxidative dehydrogenation reaction pro-
ducts by using an ANN.119

Two trends emerged for yield prediction afterwards. On the
one hand, models are based on more accurate, but expensive
inputs through descriptors based on DFT and focus on specific
reaction types, on the other hand, models aim to identify more
generic relationships for multiple reaction types based on
cheaper molecular representations. DFT-based descriptors
were employed by Yada et al. for tungsten-catalyzed epoxidation
of alkenes by using a linear function ensembled in a logistic
regression model,120 by Estrada et al. for palladium-catalyzed
Buchwald–Hartwig cross-coupling reactions,121 and by Fu et al.
to predict yields of Pd-catalyzed Suzuki–Miyaura reactions in
the microfluidic system.122 While Yada et al. only trained their
model on 14 data points, Estrada et al. worked with a set of
4140 reaction results with the aid of high-throughput screening.

Eyke et al. utilised reaction fingerprints by concatenation of
Morgan fingerprints to guide their experimental design for two
specific types of reactions through an ANN.96 Sandfort et al.
present a broader approach through their structural-based
platform for reactivity prediction in organic chemistry.123 The
idea was to use molecular fingerprints as the only type of inputs
for ML models to solve all kinds of reaction predictions. While
no universally applicable fingerprints for all applications were
found, only focusing on C–N cross-coupling reactions, a
comparable accuracy to the work of Estrada et al. was achieved.
Skoraczyński et al. showed reaction examples where subtle
changes in molecular structure or reaction conditions led
to distinct reaction results, and thus, argued that general
descriptors for diverse sets of organic reactions are difficult to
set.124 A very recent development in the area is an algorithm
based on NLP.106 Their model consists of an encoder and a
regression layer to predict yields and is based on reaction
SMILES as inputs. On a dataset based on HTE reactions for
Buchwald–Hartwig reactions and Suzuki–Miyaura reactions a
high prediction accuracy was achieved, while for a generic
dataset, the open-source USPTO, poorer accuracy was obtained.
While the prediction of accurate yields for diverse reaction

Fig. 6 Illustration of data completion issues for basic chemical reaction information. A set of necessary reaction information for early-stage assessment
is shown in the top line. Relevant pieces of information are grouped into reaction structure, reaction conditions, and reaction outcomes in the second
line. A, B, C, and D represent molecules and the table below represents structural information of the molecules. Temperatures and pressures can be
named either as explicit numbers, as ranges or referred to as ambient. Solvents, catalysts, and reagents are often named; however, their quantity remains
unknown. Note that a combination of these issues is most often the case.
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types remains a challenge at present, the new methods bring
about promising outlooks.

Inference of reaction conditions. Methods for prediction of
reaction conditions, also known as reaction context,125 have
evolved from specific methods only valid for certain reaction
types and reaction context towards more holistic approaches.
The reaction context is made out of discrete decisions, e.g.
catalyst and solvents, and continuous decisions, e.g. temperature,
pressure, and pH-value, which influence one another. Marcou
et al. predicted catalysts and solvents for the Michael reaction
through formulating binary classification problems on a set of 198
reactions.126 The prediction of both catalysts and solvents was
correct for only eight out of 52 reactions from an external
validation set.126 Lin et al. focused on catalyst recommendations
for deprotecting reactions and demonstrate their work on catalytic
hydrogenation reactions.127 They used the methodology of
condensed graph of reactions to reduce a reaction to a single
graph, allowing for descriptors and fingerprints, and employed
similarity searches to suggest catalysts.127 Gao et al. also
recognises such approaches based on chemical similarity, however
highlight computational costs in sufficiently large databases.128

Segler and Waller aim for conditions recommendations for
different types of reactions utilising a knowledge graph.129 The
graph consists of two node types (i.e. reactions and molecules) and
a variety of edge types, describing the reaction conditions, e.g. his
reactant ini, his catalyst ini, his solvent ini. New conditions are
predicted through node and link completion tasks.129 The group by
Jensen also aimed for a generic model to predict reaction context,
here catalysts, solvents, reagents, and temperature.128 They trained
an ANN on a dataset of about 10 million single-step and single-
product reactions and allowed for hierarchical ANN structures
which take interdependencies between the reaction contexts into
account. In 69.6% of the time, a close match to the recorded
conditions is found within the top 10 prediction outcomes.128 Also,
the optimal selection of reaction conditions can be solved as an
inverse design problem by using an optimisation algorithm to
change the inputs of an reaction outcome model.

Inference of reaction structures. To evaluate reaction
synthetic routes, masses of products, reactants, and side-products
need to be quantified. These can only be computed when all

substances and their stoichiometric coefficients are known.
However, three main aspects of current data recording hinder
this analysis: (i) stoichiometric coefficients are lacking, (ii)
reaction co-participants are missing, and (iii) multiple reaction
steps are integrated into a single reaction entry.

In the current literature, there exists a limited number of
methods for reaction structure completion. Firstly, reaction
templates can be utilised. Grzybowski et al. manually curated
around 100 000 reaction rules with complete understanding of
reaction participants and stoichiometry.24,25 Their templates
are now linked with the commercial software SYNTHIA††† and
can guide retrosynthesis and analyse carbon efficiency based
on mass conservation.130 However, manual curation of reaction
rules is far away from exploring the entire chemical space.
Secondly, atom mapping, which relies on the rearrangement of
atoms in chemical transformations, is promising to tackle this
problem. The completion of an exemplary reaction is shown in
Fig. 7, where in (a) stoichiometric coefficients are absent and
mass balances are not obeyed and in (b) atom mapping
describes the exact transformation and reveals the missing
species on the product side. The existing atom mapping methods,
described in recent reviews,131,132 often convert molecules into
graphs and compare the most common subgraphs. However, this
results in an NP-hard problem where computational time
increases exponentially with the number of atoms in molecules.
Jaworski et al. utilise graph-theoretical considerations and chose
20 chemical rules/heuristics to correct mapping of reactions.133

This method attempts to complete the stoichiometry, firstly, by
adding small molecules such as acetaldehyde, ammonia, and
others to balance the reactions and, secondly, by fitting reactions
into popular reaction templates and adding the missing parts.
Only if such attempts fail, atom mapping is employed. The work
by Schwaller et al. utilised NLP to infer reaction structures.134

A neural network (transformer) was trained on a set of mapped
reactions and showed to be able to complete the mapping
task quicker and with confidence scores.134 Despite the
aforementioned improvements in atom mapping, inferring

Fig. 7 The principle of atom mapping and how it can aid in the completion of reaction structures is outlined. The sample reaction is retrieved from
Reaxys with Reaxys reaction ID: 615722. In (a) participants and stoichiometric coefficients are missing and in (b) the reaction is balanced with help species
HCl and stoichiometry coefficients. The recording structure from C:1 to Cl:19 denotes the type of atom and its identifier.

††† https://www.sigmaaldrich.com/chemistry/chemical-synthesis/synthesis-
software.html.
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complete reaction structure remains a challenge at present as a
precise prediction of functional transformations is required.

Notably, computational capacities have increased immensely
over the last few decades, and new computational approaches,
such as graphics processing units (GPU) or quantum computing,
are promising avenues for complex computational tasks. GPU
computing has enormously advanced the field of deep learning
in the areas such as computer vision and speech recognition.135

Quantum computing has shown to speed different search
algorithms136 and its potential for complex optimisation tasks,
such as energy system optimisation, has recently been
highlighted.137 However, it has been argued that the power of
quantum computing is limited, especially when it comes to
NP-hard problems.138 Nevertheless, new computing approaches
provide promising avenues for computationally expensive
algorithms such as large scale atom mapping challenges.

Besides said data-driven techniques to infer missing species
and stoichiometry, it is worthwhile to discuss the automated
generation of entire reaction networks based on chemical rules,
which also leads to stoichiometric relationships of reaction
networks.139,140 For instance, the rule network input generator
(RING) can construct complex networks based on a set of input
reactants in their SMILES representation and a set of defined
reaction rules and constraints.139,140 RING showed to
reproduce mechanisms reported in the literature for systems
such as dehydration of fructose to produce HMF or acid-
catalysed hydrolysis of HMF to levulinic acid.139 Most notably,
Marvin et al. combine the network generation method RING
with a mixed-integer linear programming (MILP) model for the
optimisation of pathways towards biofuel-gasoline blends.141

To generate reaction structures for large-scale networks,
encoding all permitted reaction rules and constraints may be
tiresome, as theoretically literature and databases can easily
provide this information. However, rule-based network
generation can be of particular interest in sparse regions of
chemical knowledge. Here, methods such as RING can
significantly contribute.

With all types of prediction algorithms, it is worthwhile to
keep the stochastic nature of the results in mind. While
information from the literature often contains measurement
uncertainties, introducing predictive algorithms adds model
uncertainties. In Section 4 on decision-making, we shortly
sketch the influence of uncertainties on finding optimal
solutions.

3. Metrics

The assessment of sustainability through metric values is not
trivial. As a system challenge, it calls for use of large data sets.
At the same time, it is strongly biased by our subjective view of
the dynamic concept of sustainability. Metrics to assess
sustainability are diverse and difficult to set. Within the United
Nations framework of the Sustainable Development Goals (SDGs),
there exist 231 unique indicators to measure sustainability in the
17 dimensions of the SDGs. This illustrates the necessary diversity

in dimensions and indicators utilised to assess sustainability.
Additionally, strong interconnectivity between dimensions has
been acknowledged by many,142–146 possibly leading to synergetic
effects, but also to trade-offs.143,144

There are limited possibilities to measure the sustainability
of reaction routes to such extent as for instance the SDGs would
indicate. Yet, the transition from green to sustainable chemistry
has identified key aspects which should be considered. While the
well-established principles of green chemistry36,38,147,148 and green
engineering37–39 lead the way towards more environmental-
friendly practices, sustainable chemistry requires the
expansion of system boundaries.149–152 On the reaction network
level, this means considering entire supply chains as well as
moving away from purely environmental concerns towards
implicit inclusion of societal and economic ones, their
trade-offs, and synergies. The European Technology Platform
for Sustainable Chemistry, SusChem,‡‡‡ focuses on projects
which combine all three sectors, and the International
Sustainable Chemistry Collaborative Centre, ISC3,§§§
highlights inter alia systems thinking, ethical and social
responsibility, and circularity as key characteristics for
chemists to focus on.153

Systems thinking

In the search for a more sustainable future, systems thinking
and systems modelling are powerful tools. A system can be
defined as a whole made out of interlinked, possibly nested,
subsystems.154 Sustainability is often referred as a system
which sustains itself, making the notion of systems thinking even
more relevant for the discussion of sustainability assessment.
In the following, we will visit the importance of system boundaries
with regard to LCA and to circularity.

System boundaries and life cycle assessment. System
boundaries describe the interfaces between the system and its
exterior, the environment. The work by Nabavi et al. describes how
system boundaries influence the assessment of sustainability
aspects in dynamic systems.155 While system dynamic models
should have a broad boundary including all variables considered
important,156 it is essential to set boundaries somewhere for
practical reasons.155 However, the implications of having set these
exact boundaries will play an important role throughout the entire
modelling process, in particular when dealing with complex
sustainability considerations.

Modelling chemical reactions from a systems perspective
also strongly relies on the chosen boundaries. LCA is a common
systems-based method to quantify environmental impacts on
life cycle inventories.41–43 In LCA, a functional unit, e.g. one kg
of the desired product, is taken as reference, and boundaries
are drawn, e.g. cradle–gate–grave, often as wide as possible to
follow the materials and energy flows. Associated with these are
the environmental burdens which can be summed up for
impact categories, such as the cumulative energy demand
(CED), the global warming potential (GWP), human toxicity,

‡‡‡ http://www.suschem.org/about.
§§§ https://www.isc3.org/en/about-isc3.html.
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or land use. Social or socio-economic life cycle assessment
(S-LCA) incorporates social indicators and describes impacts
such as working hours and local employment.157,158 LCA
requires the specification of a system boundary on various
levels, the ultimate one being the one between nature and the
technical system.159 The scope of investigation requires further
boundaries as the temporal and the geographic dimensions.
Additionally, boundaries are chosen when deciding for metrics
of interest (will impacts on aquatic life be within or outside
the system boundary?). The tool named ‘‘strategic life cycle
management’’ utilises sustainability principles as system
boundaries and aims to provide an even wider overview.160

A reaction network is a subsystem, which is in exchange with
its environment over a system boundary, see Fig. 8. Decision-
making requires the assignment of assessment aspects to flows
that are in exchange with the environment, e.g. what are the
monetary values of mass flows, or what is the availability or the
demand of mass flows in the geographic context. The choice of
system boundary therewith strongly frames the problem and
assessment aspects at the system boundary, e.g. how useful,
toxic, expensive streams crossing the boundary are, strongly
impact the results of any study. As of now, it is difficult to
associate these aspects to large quantities of molecules as
necessary for large-scale network data. However, semantic
web and knowledge graph technologies are envisioned for
scientific and chemical data. They can lead the community
towards a future where assessment may be easily associated
with a large diversity of chemical species.

At present, a chemical reaction network is commonly built
based on: (i) one or more feedstock molecules of interest, and
(ii) one or more product molecules of interest. Reactions
connecting feedstock(s) and product(s) are then introduced
manually from literature review or automatically from electronic
databases or reaction generators, sometimes constrained by a
maximum size of reaction steps. Some queries are open-ended
on the product or the feedstock side, allowing queries such as,
which is the best feedstock to produce product X, or which
valuable products can be produced from feedstock Y. The system
boundary can now be further specified, e.g. which species can be

exchanged with the environment. Assessment metrics describe
the exchange at the system boundary.

System boundaries and circular economy. Nowadays, many
industries strive for different levels of circularity of their supply
chains.161,162 By industrial symbiosis companies can exchange
material flows, allowing by-products from one industrial
process to become the feedstock of another and thereby
closing material loops.163 In contrast to closing the loop through
technology, biodegradable products close the biological loop.163

Including circularity in system modelling requires careful
evaluation of system boundaries. Fig. 9 outlines that the
aspects of circularity may lay within the system boundary, e.g.
recycle streams within multi-step reactions, or may lay outside
of current system boundary, e.g. similarly to BASF’s Verbund
system¶¶¶ companies or geographical regions can exchange
material flows. While internal system circularity, see Fig. 9
(left), influences the necessary exchange of flow quantities,
external circularity, see Fig. 9 (right), influences the assessment
metrics. Utilising a material as system input, which is an output
from another system can contribute to the overall reduction of
waste and minimisation of raw material use, e.g. substituting
for either fossil or renewable feedstocks. This should be taken
into account when evaluation reaction pathways.

Molecular circularity indicators are required to inform on
alternative utilisation possibilities. The Ellen McArthur
Foundation has shaped the discussion on circularity indicators,
introducing the material circularity indicator to aid assessing
material flows both at product and at company level164 and its
tool Circulytics,888 which measures circularity for businesses.
Additionally, the World Business Council for Sustainable
Development has introduced the circular transition indicators
as quantitative framework to measure sustainability for
businesses. With respect to material circularity in chemical
engineering, Razza et al. provide metrics for biobased and
biodegradable products, emphasising the biological cycle

Fig. 8 Exchange of mass and energy at the system boundary from reaction networks (systems) and the economy, society and planetary boundaries.
Mass and energy exchange with the environment can be assessed in multiple dimensions, e.g. the value of a mass flow leaving the system can be
determined based on its monetary value, the demand for it or its environmental impact. Assessment criteria are influenced by the wider environment, e.g.
energy markets and availability of renewable sources vary at different geographic locations and in time.

¶¶¶ https://www.basf.com/global/en/who-we-are/strategy/verbund.html.
888 https://www.ellenmacarthurfoundation.org/resources/apply/circulytics-measuring-
circularity.
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(extraction of renewable feedstock – use – composting or
biodegradation in soil) in contrast to technological recycle
steps.165 Most notable, Lokesh et al. have extended common
green chemistry metrics towards capturing circularity aspects.166

We note the need of a waste stream database, which records
large waste streams over various industries and maps functional
molecules and pretreatment to the streams, allowing circularity
assessment of chemical loops.

The knowledge on the demand and supply (the usefulness)
of material streams across the boundary will allow for the
design of circular chemical solutions. For example, in view of a
circular chemical supply chain, it is impossible to measure and
compare the circularity of two competing reaction pathway
options without considering their respective environments. One
reaction pathway may seem less competitive due to a high amount
of waste material generated throughout the processes. If, however,
such material is in demand across the system boundary, the
reaction pathway becomes increasingly competitive and the entire
system more circular. Note that quantifying the circularity is not a
molecular property and hardly a reaction property, but rather a
system property, solvable only by data-based descriptions of the
environment of a system.

Sustainability metrics for reaction networks from large
databases

Ideally, a detailed analysis of social and environmental impacts
in an (S-)LCA should be performed to evaluate reaction routes,
yet, early-stage reaction data is at present not sufficient
for such scopes of analysis. Sustainability assessment is ideally
performed early on, as it allows for cheaper and faster
implementations of process improvements167–169 and for
designing inherently sustainable pathways.12 However, detailed
process knowledge is often only available at the end of the
process development pipeline.170,171 Streamlining methods to
estimate LCA impacts of molecules in early stages try to
circumvent this problem.169,170,172–175 Yet, only a few take
differences in process conditions into account167,168,176 and
the possibility of completely different reaction routes within
the reaction network are not discussed at present.

The literature on reaction network optimisation has
employed various metrics – much simpler than a full LCA –
to assess the sustainability of reaction routes. The metrics
utilised by Voll and Marquardt cover mass balances, energy,
and cost criteria.30 Zhang et al. utilised the enthalpy of reaction
as energy criteria, however conclude that it is not sensitive
enough; they recommend the inclusion of separation processes
for better performance.34 In later works, some considerations
of environmental impacts were included through energy
consumption, resource consumption, emission impact, and
toxicity potential or the CED and the GWP in the objective
function.31,32 While the previous metrics of assessment were
built on manually curated data, large-scale reaction network
optimisation can only work with metrics obtainable for
millions of molecules and reactions in an automated manner.

Mass-based evaluation. Most early metrics within the field of
green chemistry are mass-based evaluations of the reactions.
The most influential ones are the AE,177 the E factor,178 and the
reaction mass efficiency (RME).38

AE ¼ mass of useful product

mass of all reactants
� 100% (1)

E factor ¼ mass of total waste

mass of useful product
(2)

RME ¼ actual mass of useful product ðyieldÞ
mass of all reactants

� 100% (3)

Eqn (1)–(3) require knowledge on the following factors: all
participating species and their molecular weight must be
known, the reaction stoichiometry is required, and differentiation
between products and waste needs to be enabled. If circularity is a
premise for sustainable processes, we will need to reassess the
binary classification into waste and product for such metrics.
Eqn (3) also requires information about product yield.
More detailed mass-based metrics, e.g. the mass intensity (MI)
or process mass intensity (PMI), include the use of solvents,
catalysts, and other substances, leading to a more holistic

Fig. 9 Circularity within one system (left) and between multiple systems (right). Circularity within one system affects the flow quantity exchanged at the
system boundary, e.g. less solvent is needed as input and generated as output if solvent recovery takes place. Circularity between multiple systems should
affect the assessment of exchanged flow quantity, e.g. output flows that can be used at input flows for other processes should be preferred over waste
output flows.
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assessment of the reactions.150

MI ¼ mass of all materials excluding water

mass of product
(4)

PMI ¼ mass of all materials including water

mass of product
(5)

As discussed in the section on Inference of reaction structures,
stoichiometry and participating species are often not known and
require computationally expensive atom mapping for completion.
The section on Inference of reaction outcomes explains that
predictions of yield are at present impossible for generic sets of
reaction. Furthermore, the differentiation between waste and
product is complicated in the context of larger system boundaries
and circular economy, where waste streams are seen as potential
feedstocks. Improvements in information extraction and data
inference can make much more data available in the future.
Evolving towards a linked data structure will make evaluations
of molecules at system boundaries much easier in reaction
networks. Eqn (4) and (5) require additional information on the
masses of all involved materials, which also necessitates advanced
information extraction techniques for chemical entity recognition.

Assuming reaction data is available, some automated tools
can be used to determine mass-based metrics in reaction synth-
esis plans, e.g. the environmental assessment tool for organic
synthesis (EATOS),**** the American Chemical Society PMI
(prediction) calculator,†††† or the Andraos’ algorithm.179,180

The EATOS and Andraos’ method were found most rigorous
for material efficiency metrics180 and the Green star181,182 and
University of Toronto green chemistry initiative method183

were recommended for environmental and hazard impacts in
introductory analysis.184 Key challenges for any of the given
algorithms at present are: firstly, approximations if data is
missing, e.g. general scaling factors for the required masses of
organic solvents and aqueous washes,180 secondly, the compar-
ability to biotransformation synthesis,180 thirdly, the evaluation
of only linear synthesis trees or synthesis networks,185,186 and
last but not least, the integration of recycles for solvents and
catalysts.179 Simplified algorithms for linear and tree cases were
introduced179,186 and applied in a reaction network.26

Exergy-based evaluation. Exergy is the maximum amount of
work, which can be extracted from a system when the system is
brought to thermodynamic equilibrium with components of
the natural environment through reversible processes.187 It is a
measure of energy quality as it quantifies the ability of a form of
energy to do physical work. Exergy destruction is proportional
to the entropy generated due to irreversible processes.188 Thus,
exergy destruction is a measure of degradation of both energy
and material in a system.189

Exergetic analysis has been linked to both, the environmental
and the economic aspects of sustainability. From the environmental
perspective, the concept of exergy has been positively highlighted as

it takes the natural environment into account as a reference
state.190 Ao et al. however stress that before widely accepting
exergy as an environmental impact indicator, more work needs
to be done.191 From the economical perspective, it has been
noted that exergy can be strongly linked to costs through
exergoeconomics.192 Labour and capital costs for processes
can be included in exergy evaluation193 and it may be the most
useful function for solving cost-optimisation problems.194 For
more information on exergy as a process and/or sustainability
indicator, we refer the reader to the reviews by Dewulf et al. and
Romero and Linares.190,193

In the context of reaction network optimisation, in our
previous work, we utilised an exergy assessment for ranking
reaction routes.26 To describe a reaction we included both the
physical and chemical exergy of participating species and
evaluated further the exergy requirements for process heating
and separation.26 Exergetic analysis was applied to rank 15
reaction route options after a priori removal of reactions with
insufficient data.

Exergy-based analysis at large scales requires automated
retrieval of thermodynamic data. Physical exergies can be
computed based on specific heat capacities retrieved from the
software COSMOtherm RS, while the computation of chemical
exergies pose a larger challenge. Approaches utilising linear
regression models for specific types of molecules, e.g. solid or
liquid fuels,195–198 more advanced ML models,199–202 and group
contribution techniques203 have been proposed. Promising for
large-scale data, an atomic contribution model was shown to
provide a generic framework to provide simple, yet relatively
accurate estimations of the standard molar chemical
exergies.204 An alternative is a prediction of Gibb’s free energy
of formation for compounds, e.g. through the Joback method as
in ref. 26, from which the chemical exergy can be calculated
based on the tabulated exergies of elements.187,205 In the
future, we expect graph convolutional neural networks to
predict necessary properties to a high accuracy.206,207

Early-stage assessment. To a certain extent, simple chemical
rules can substitute the computation of data-intensive metrics
at present. Especially for large scale datasets, manual data
curation from simulations and/or experiments is not an option.
In our previous work, we have hence introduced a few simple
chemical heuristics, which can be utilised to provide a rough
filtration of reaction routes.26 For instance, datasets may be
screened for reactions that have a minimum number of
records, making them more reliable, or which report a yield
value above a certain threshold, making them more efficient.
Further heuristics utilise the chemical structure of the materials
and may be applied for example to prevent aromatics or
certain heteroatoms. We outline an extended list of example
heuristics in Table 3. While efficiency potentials may contribute
to the environmental and economic dimensions, toxicity
potentials shed light on social and environmental issues, and
the reliability of the data can bring advantages in social and
economic perspectives through faster and safer process
development. Note that one heuristic can also cover multiple
potentials.

**** http://www.metzger.chemie.uni-oldenburg.de/eatos/english.html (accessed
25.02.2021).
†††† https://www.acs.org/content/acs/en/greenchemistry/research-innovation/tools-
for-green-chemistry.html (accessed 25.02.2021).
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4. Decision making

Optimisation algorithms have proven to be a reliable tool for
optimal decision-making in complex problems, in particular,
in complex network structures. Within reaction network
optimisation, decisions on the sequence of reactions from
feedstock molecules to target species are required. There
commonly exists a variety of reaction sequence possibilities to
connect different molecules, see Fig. 10, and appropriate
algorithms can make decisions based on metrics discussed in
the previous section. Strategies to solve the optimisation formalism
depend on the underlying network structure of the problem. The
characteristic for the problem of reaction network optimisation
however is the number of products and reactants which connect to
one reaction, cf. Fig. 10, and which can lead to complex and cyclic
network structures.

Decision-making in network structures has been broadly
explored in many different fields. Examples are vehicle
routing or navigation systems,208,209 in tree searches (chemical
application of retrosynthesis),210–212 and in supply chain
optimisation and task scheduling (chemical application of batch
plants in process industries).213–215 In the following, we will
shortly review a selection of related fields and highlight their
similarities and differences to reaction network optimisation. We
will then visit recent literature on reaction network optimisation,
which takes the fully connected structure of chemical reaction

networks into account. In Table 4 we explain domain-specific
terminology.

Decision-making in network structures

Many decision-making problems can be represented by different
network structures where fluxes or connections are optimised.
The bipartite reaction network may be approximated by graph
projections to reactions or molecules, see Fig. 10, which in turn
allow for certain search strategies.

Navigation systems, such as Google Maps, explore the shortest
path between two endpoints in a weighted network, where the
weighting is the distance or the time required to travel between
the points. The algorithm behind navigation systems is often
based on the Dijkstra algorithm invented by Edsger Dijkstra in
1959. The algorithm works on a weighted graph, visits each node
of the graph, and updates a table on the shortest distances to all
others from a selected starting node. Its time complexity is O(|E| +
|V|log|V|) where E is the number of edges and V is the number of
vertices.208 An extension of the Dijkstra algorithm is the A* (A-star)
algorithm, which changes the way the algorithm selects the next
node to visit. While in the Dijkstra algorithm, this has been done
based on the cost between the start node and the next node, the
A* algorithm adds a heuristic function to this process, which
estimates the cost from the node to be chosen to the target
node.209

Table 3 Outline of possible heuristics for large-scale screening. Note that all heuristics are independent from stoichiometry and need to be adjusted
based on the problem formulation. The list is by no means complete and the functions and potentials listed are exemplary

Heuristic Function Potential

Carbon counts Remove reactions with large variation of carbon counts Efficiency
Catalysts Remove reactions using undesired catalysts Efficiency, toxicity
Fragments Preserve/prevent selected fragments throughout the route Efficiency, toxicity
Number of records Remove reactions with few records Reliability
Publication year Remove old reactions Reliability
Reaction type Remove all reactions which are not of desired reaction type Reliability
Reagents Remove reactions using undesired reagents Toxicity
Similarity Guarantee smooth structural transition along a reaction route Efficiency, reliability
Solvents Remove reactions using undesired solvents Efficiency, toxicity
Yield Remove reactions with yields lower than threshold Efficiency

Fig. 10 Illustration of reaction routes in chemical reaction networks. The bipartite reaction network represents reactions as bar nodes (r1 to r4) and
molecules as circular nodes. Decision-making is required to decide between two alternatives reaction sequences (r1 and r3 vs. r2 and r4), which connect
the same feedstock molecule to the same target molecule. However, different co-reactants are required and different co-products/waste are generated.
The directed and weighted molecule network and reaction network are projections of the bipartite network and can function as simplification for
shortest path search algorithms. The quantities on the edges illustrate possible weighting schemes.
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While these routing algorithms bring about benefit in
implementation and scale-up, they are not directly applicable
to reaction networks. Fig. 10 illustrates simplifications of an
illustrative reaction network to a directed and weighted network
either focusing on molecules or on reactions. The shortest
pathway search may be able to regard parts of sustainability
considerations in the weights, however, lacks the systems
perspective, where co-products/waste and the source of all
co-reactants are regarded as inherently connected to the chosen
route. Furthermore, the meaning of weights in reaction networks
depends on the case study, as they could be the emissions
produced, the costs generated, chemical similarity, or any valid
combination of our understanding of sustainability.

Tree-based network searches are utilised in the field of
automated retrosynthesis planning. The retrosynthetic analysis
describes the task of transforming the structure of a synthetic
target molecule into known and simpler starting molecules
by constructing a sequence of molecule deconstructions.216

Traditionally, iterative cycles of logical analysis and perception
were applied by chemists to the target compound and the
available data space.217 In automated, or computer-aided,
retrosynthesis, an algorithm proposes the most suitable synthesis
route. The search space resembles a tree with molecules as nodes
and reactions as edges, is intractable large, and the decision-
making task is the identification of the most suitable branches
within the tree. Solving retrosynthetic trees has been largely
inspired by tree problems in games such as Chess or Go, however,
retrosynthetic trees are considerably different as they are usually
shallower (B10–20 steps) but the branching factor is higher
(around 200 options at each node).210

ML-based techniques have significantly impacted tree-based
retrosynthetic analysis.218–220 Segler et al. demonstrated a
Monte Carlo Tree Search (MCTS) with three deep neural
networks; two ANNs for reaction rule extraction and one as a
reinforcement framework.210 Kishimoto et al. investigate two
common search techniques within the domain; MCTS and
depth-first proof-number (DFPN) search. They find that the
enhanced MCTS by Segler et al. outperforms common DFPN,
however propose a new DFPN with heuristic rules for edge
initialisation, which outperforms Segler’s algorithm regarding

time complexity and delivers equivalent success rates.211

Coley et al. utilise molecular similarity to inform on edge
choices221 and demonstrate how a learned synthetic complexity
metric can assist to scan the exponentially increasing search
space.212 After further development, Segler et al. present their
algorithm based on ANNs and symbolic artificial intelligence,
which showed to produce routes that chemists found on
average equivalent to the literature reported routes.222 Their
algorithm has recently been commercialised by Elsevier and
Pending.AI as Reaxys Predictive Retrosynthesis.

Despite differences in network structure, quick searching
strategies from the field of computer-assisted retrosynthesis
will become immensely valuable when data and metric hurdles
are overcome. For sustainability consideration, the task in
reaction networks is truly the optimisation of the entire system,
including co-products and co-reactants, rather than one
synthetic pathway. While retrosynthetic analysis aims towards
any known, simple, and cheap starting molecules, starting
molecules fulfilling sustainability considerations largely constrain
the search space for sustainable pathway identification. Thus, the
network topology resembles two branching trees, which meet
in the middle, see the description of the ‘‘forward-backward’’
network built by ref. 223 and the overall aim is to optimise
the entire system. Nevertheless, techniques from the field of
ML-based retrosynthesis will inspire the development of new
methods to handle large reaction networks. To take advantage
of the full potential of ML-based techniques for decision-making
in the chemical domain, the need for explainable artificial
intelligence has been emphasised in a recent review article on
drug discovery.224 They identify the current lack of an open-
community platform but highlight the potential of explainable
artificial intelligence for the discovery of novel bioactive
compounds.224 Similarly, for computational tools to identify novel
reaction pathways, we would expect a faster uptake within the
community if solution strategies are comprehensible by chemists
and chemical engineers.

Other network systems, from which algorithms can be
explored, are batch/job scheduling problems. Here multiple
inputs and multiple outputs are taken into account per batch
and the sequential manner of performed reactions is regarded.

Table 4 Explanation of specific terminology in decision-making

Term Description

Big O notation The big O notation refers to the time or memory needed to run an algorithm. It is a theoretical measure of the asymptotic
behaviour of an algorithm.

Constraints Constraints determine the feasible space in which variables can lay. They impose limitations, e.g. that material flows cannot
be less than zero.

Deterministic
optimisation

Deterministic optimisation means all algorithms based on a rigorous mathematical approach, which will lead to the same
solution space when run multiple times with the same system parameters.

Heuristic function A heuristic function approximates certain parts of a problem in order to solve a problem more quickly. Precision is traded for
speed.

Linear programming Linear programming (LP) problems consist out of a linear objective function and linear constraints.
Mixed-integer
programming

In mixed-integer programming discrete variables are added to the continuous variables used within the objective function
and the constraints.

Objective function The objective function describes the value to be optimised. It is a real-value function, by general convention to be minimised
over alternative system variables.

Relaxation A relaxation is an underestimation of a more complicated system to a simpler system. In optimisation, relaxations can
transform hard problems into approximated, yet solvable ones.
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In process industries, consumer products are produced by
sequential processing of chemical and physical tasks (in our
case a chemical reaction, but generally any kind of task). Tasks
require different process units and different storage facilities
for in and outputs, which constrain the solution space.213 In
single machine batching and scheduling problems, a set of jobs
need to be processed by one machine, where jobs of similar
type can be processed together and jobs from different families
separately.215 The capacity of the machine as well as processing
time and heating or cooling requirements strongly constrain
the feasible region.215 If working with multiple pieces of
equipment, problems are further constrained by sequential
requirements, e.g. some pieces of equipment are always used
before others, and by equipment interference problems, e.g.
certain tasks cannot be performed simultaneously.214

While reaction networks and batch scheduling jobs exhibit
similarities in their network structure, it is worthwhile to note
their divergence in problem specifics, such as interference
constraints, a large variety of different types of tasks, and
task-specific constraints such as cooling/heating. However,
algorithms from the mature field of batch/task scheduling will
come in beneficial when automated large-scale reaction network
optimisation develops from the conceptional early-stage design
towards different implementation levels, considering supply
chains and production planning. Very promising concepts for
this are integrated decision-making strategies.225

Pathway optimisation in integrated biorefineries

Identifying the most promising pathway alternatives for the
production of chemicals from renewable feedstock has been the
focus of superstructure optimisation for integrated biorefineries.
A superstructure describes a network of technologies, in particular,
a process diagram with all hypothetically useful units and
connections.226,227 The advantage of optimising the superstructure
e.g. of processes and streams in a biorefinery is that complex
interactions between different design choices are considered.
However, a rich structure is necessary requiring much data and
often leading to large-scale, non-convex, mixed-integer, nonlinear
programming models.226

Superstructure problems can be formulated by distinct
programming models (i.e. disjunctive programming).228 One
approach is a formulation as mixed-integer-nonlinear programming
(MINLP) problem.226,227 Giuliano et al. optimise a superstructure for
levulinic acid, succinic acid, and ethanol product from ligno-
cellulosic biomass.227 In their approach, rigorous process
models account for significant nonlinearities leading to the
MINLP formulation. Their problem is linearised to a MILP
problem through variable discretisation methods. Kong et al.
optimise a superstructure including heat integration and utility
plant design by an MINLP problem to which they propose a
set of solution methods to speed up the computation.226

Nonlinearities are introduced by processing unit models, where
outlet material flows and outlet temperature are nonlinear
functions as well as heat and electricity requirements.
Alternatively, Garcia and You describe their product and
process network by an NLP.229 Nonconvex terms are caused

through economic considerations such as capital expenditures.
They utilise a piecewise linear approximation, leading to an
easier solvable MILP problem.229 Some works formulate the
interdependencies through linear models.223,230

Additionally, most works handle contradicting objective
functions through a multi-objective framework. Andiappan
et al. formulate a multi-objective optimisation of the super-
structure for an integrated biorefinery, addressing possible
trade-offs between economic and environmental objectives
through two approaches. A bi-level formulation maximises
the gross profit on the upper level, subject to the minimisation
of the environmental burden and the reaction heat on the
lower level. Alternatively, fuzzy optimisation is extended by
introducing upper and lower bounds for the factor lambda
accounting for the satisfaction of all three objectives.230 Garcia
and You utilise the epsilon constraint method to allow for
multiple objectives.229

Early-stage pathways optimisation in reaction networks

In contrast to rich superstructures with rigorous unit operation
models, technologies, and utility integration, stand early-stage
evaluation methods. Most promising reaction pathways are
estimated at an early-stage without rigorous process models
of different technologies. One example of such an early stage
approach is Bao et al.’s short-cut method for the preliminary
synthesis of process technology pathways.231 They propose a
chemical species/conversion operator diagram which they
optimise through an NLP model. Nonlinearities are introduced
through entering and leaving species flowrates in conversion
operators and through annualised costs of conversion. Instead
of rigorous models, they assess various conversion technologies
through characteristics such as yield and cost.231 Further early-
stage methods will be discussed in the following three sections.

Reaction network flux analysis. Optimal reaction pathways
for the conversion of renewable feedstocks are often examined
by the approximate method RNFA.30,232 The RNFA is inspired
by earlier works on metabolic networks29,233 and models mass
flows and reactions through linear balance equations for all
components. Hereby, sink and source terms represent supply
and demand. To model the reactions, all participating species
and the stoichiometry of all reactions need to be known. The
RNFA does not account for mixing and separation.

While the core of the problem formulation lays in an LP
formulation for mass balances that can be efficiently solved in
polynomial time (e.g., using state-of-the-art solvers like
CPLEX),234,235 integers have been introduced to account for
the activity of fluxes, resulting in a MILP problem.232 Also,
alternative optima were identified through the integer
constraints,30,232,236 while at present CPLEX can already
account for alternative solutions in LPs without manual
extension to MILP formulations. In the work of Besler et al.
knowledge on active fluxes has also been used to describe non-
flux-related costs for reaction pathways, e.g. toxicity. In the work
by Dahmen and Marquardt the RNFA is combined with a model
for computer-aided molecular design for mixtures, which
resulted in an NLP model. Nonlinearities were introduced
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through the consideration of mixtures, which requires the
solver to recompute properties of compositions at each
step.237

Notably, the RNFA can lead to degenerated solutions
when components are consumed and generated in cycles
(e.g., equilibrium reactions or protecting groups). Similarly,
huge recycle streams can occur as separation is simplified.
The RNFA has been successfully applied to identify optimal
reaction pathways for biofuel and biopolymer synthesis.31,34

Process network flux analysis. An extension of the RNFA is
the process network flux analysis (PNFA)33 where pseudo-
components and -reactions are introduced to resemble
mixing and separation fluxes. For this, all possible mixtures
and potential separation tasks are identified a priori,
modelled through short-cut methods, and included as
pseudo-components and -reactions. The PNFA resembles the
superstructure optimisation problems as it aims to include
more detailed process knowledge. Operating cost or energy
demand of separations are considered through pre-computed
energy demands. Besides, binary variables are introduced for
all equipment using big-M formulations that are active when
the respective flux is greater than zero, allowing the estimation
of the number of process units. The investment costs are
considered through binary variables and nonlinear cost corre-
lations. Multiple objectives are taken into consideration by the
epsilon constraint method. The overall problem results in an
MINLP problem that can be solved using deterministic
global solvers like BARON238,239 or MAiNGO.240 However,
solving nonlinear programs is often NP-hard and thus limited
to small problem instances. The PNFA, formulated using
GAMS241 and solved by BARON, has been successfully used
for biofuels production33 also including the biomass supply
chain32 and for pathway considerations for biofuel product
design.242

Petri net optimisation. An alternative modelling approach
for the optimisation of pathways in reaction networks is a Petri
net. A Petri net explicitly takes the reaction sequence into
account which can be an important factor during optimisation.
Petri nets were first introduced by Carl Adam Petri243 and are a
type of directed bipartite network. In bipartite networks, two
node types exist and links can only connect nodes of different
types. In Petri nets, the node types are places (resembling
molecules) and transitions (resembling reactions). Their input
and output relations are shown by links, called arcs and an
incidence matrix, which records the stoichiometry. A flow
between places via transitions is given by a marking of places
with tokens. Such a marking describes a state of a Petri net.
Tokens change from one place to another through the firing of
transitions, leading to a change in state.244,245

The Petri net optimisation (PNO) problem determines an
optimal sequence of firing certain transitions and a formulation
for reaction route optimisation was presented by ref. 35 after
an extension of the formulation from ref. 246. Petri nets
have been used to model chemical and biological reaction
networks,243,245,247,248 while the use of PNO in chemical engineering
has to date mostly focused on batch scheduling.246,249 The MILP

problem has higher model complexity than the LP core of the
RNFA. Working with a PNO formulation allows to have a more
detailed analysis of the solution space, e.g. the reaction
sequence is considered, degenerated solutions are prevented,
the maximum size of reaction steps is controlled, and non-flux
dependent costs can be introduced.35 The number of
continuous variables is higher by a factor of the number of
reaction steps and the MILP formulation introduces binary
variables per reaction and reaction step. Additionally, the
number of constraints is higher, due to constraints on the
firing of the transitions in sequence.

Uncertainty in decision-making

Data underlying decision-making algorithms often bring about
uncertainties, e.g. through experiments and measurements,
through data inference to build complete datasets, through
real-life scenarios of market prices, and through dynamic
changes in supply and demand. To account for uncertainties
in key parameters, deterministic models, which describe para-
meter uncertainties by bounds of anticipated derivations, or
stochastic programming, which takes probability distribution
functions for parameters into account, are applied.250

The field of optimisation under uncertainty already contains
well-established methods, e.g. stochastic programming, robust
optimisation, or fuzzy programming, which can be applied on
reaction networks with uncertain data.250,251 While stochastic
programming approaches generate comprehensive solutions
based on probabilities, they are often computationally expensive.
Robust programming defines uncertainties as inequality
constraints and is often a good alternative if probability
distributions are not known.251 For pathways selection in inte-
grated biorefineries, some works have integrated uncertainties.
Morales-Rodriguez et al. have applied stochastic process
optimisation for lignocellulosic ethanol production and Kasaš
et al. outline a strategy based on stochastic programming
merging four distinct solution techniques for a bioethanol
product case study.252,253 Tay et al. and Tang et al. solve MINLP
problems for integrated biorefineries using robust
optimisation.251,254 Uncertainties in the aforementioned studies
cover amongst others the market price, supply of biomass, and
demand for products as well as technological constraints.

Including uncertainties during decision-making brings
about benefits as it avoids non-optimal or infeasible solutions,
but requires models that inform on uncertainties within the
prediction task.250 For reaction networks, this means that
uncertainties for key parameters, e.g. stoichiometry and helper
species, or reaction conditions need to be collected during data
inference stages.

5. Conclusions and perspective

The identification of sustainable reactions is a highly complex
and interdisciplinary challenge. In this review we present the
first multidisciplinary perspective, integrating the fields of
data, metrics, and decision-making to guide and accelerate
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further developments. We highlight synergies between the
fields and potential for future developments.

Currently, the field of data brings about most bottlenecks,
and therewith greatest potential for advancement. Data is, at
present, incomplete, lacking information necessary to perform
mass balances over large numbers of reactions. Furthermore,
enabling linkages of various data sources, e.g. regional waste
stream compositions, pretreatment options, or end-of-life use,
is essential when dealing with questions of sustainability. For
the field of sustainability metrics, we envision, that molecular
property prediction, e.g. by graph convolutional networks, will
allow more accurate evaluations of different environmental
metrics and that linked and accessible data sources will allow
assessments across the system boundary. In the area of
decision-making, we highlight the importance of the structure
of reaction networks (multiple in- and outputs, circular inter-
actions) and the scalability of the previously suggested
algorithms as main factors of importance. Methods in the field
are well-established and most likely to evolve further through
smarter heuristics or ML-guided approximations, enabling
solution of system-level problems.

Our findings elucidate the interface between the three
areas. This allows scientists to take into account possible
improvements within other fields so that we will jointly work
towards more sustainable use of present resources. This also
highlights the need for targeted interdisciplinary funding across
the three domains. Through such targeted interventions
society will achieve a faster transition towards developing
truly sustainable solutions. The contribution of this work,
while conceptual, provides a roadmap towards systematic
reaction pathway planning based on rapid digitalisation of
chemical data.
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