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In this study, 58 distinct TiO2-coated glass samples were synthesized via Atmospheric Pressure Chemical

Vapour Deposition (APCVD) under controlled synthesis conditions. The crystal properties, optical

properties, surface properties and photogenerated charge carrier behaviour of all synthesized samples were

characterized by X-ray diffraction (XRD), UV-visible spectroscopy, atomic force microscopy (AFM), and

transient absorption spectroscopy (TAS), respectively. The photocatalytic activity of all coatings was

systematically assessed against NO gas under near-ISO (22 197-1:2016) test conditions. The most active

TiO2 coating showed ∼22.3% and ∼6.6% photocatalytic NO and NOx conversion efficiency, respectively,

with this being ∼60 times higher than that of a commercial self-cleaning glass. In addition, we compared

the accuracy of different machine learning strategies in predicting photocatalytic oxidation performance

based on experimental data. The errors of the best strategy for predicting NO and NOx removal efficiency

on the entire data set were ±2.20% and ±0.92%, respectively. The optimal ML strategy revealed that the

most influential factors affecting NO photocatalytic efficiency are the sample surface area and

photogenerated charge carrier lifetime. We then successfully validated our ML predictions by synthesising

a new, high-performance TiO2-coated glass sample in accordance with our ML simulated data. This

sample performed better than commercially available self-cleaning glass under a new metric, which

comprehensively considered the visible light transmittance (VLT), NO degradation rate and NO2 selectivity

of the material. Not only did this research provide a panoramic view of the links between synthesis

parameters, physical properties, and NOx removal performance for TiO2-coated glass, but also showed

how ML strategies can guide the future design and production of more effective photocatalytic coatings.
1 Introduction

Nitrogen and oxygen are two of the most abundant gases in the
atmosphere. Combustion processes oen result in the forma-
tion of nitrogen oxides (represented by NO and NO2 and known
together as NOx), where anthropogenic activities have signi-
cantly increased global emissions over the past two centuries
from 0 to∼25 TgN (tera-grams of nitrogen) per year.1,2 Vehicular
emissions and chemical combustion (in particular from
thermal power plants) are the main contributors to escalating
NOx levels.3 In order to limit and reduce NOx emissions from its
source, a variety of strategies have been explored over the past
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few decades, including the development of NOx adsorbent
materials4,5 and automotive three-way catalytic converters.6,7

Alongside these efforts, lawmakers around the world have
strengthened legislative measures.8,9 For instance, guided by
the Convention on Long-range Transboundary Air Pollution
(CLRTAP) and the National Emissions Cap Regulation (NECR),
the UK government promised to reduce NO2 emissions to 73%
of 2005 levels by 2030.10 Despite these efforts, the annual growth
rate of global NOx emissions has not decreased and remains
from 2 to 8 TgN per year.11 These NOx emissions pose a great
threat to humans, animals, and plant ecosystems.9,12

To lower NOx emissions in the air, one emerging strategy is
to use photocatalysts that can oxidise NOx emissions to more
benign nitrates. This technology oen involves the application
of the semiconductor photocatalyst titanium dioxide (TiO2)
onto a variety of building materials, such as concrete,13

ceramics,14 and glass,15,16 resulting in so-called “self-cleaning
surfaces”.17 The selection of TiO2 is not only due to its high
hydrophilicity, which contributes to the self-cleaning effect, but
also because TiO2 has been one of the most successful photo-
responsive materials to date, which has been widely employed
J. Mater. Chem. A, 2024, 12, 13281–13298 | 13281
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in photocatalytic indoor environmental remediation18 and in
other photo-electron applications such as energy storage.19,20

A typical process of employing self-cleaning surfaces in NOx

photocatalytic degradation is shown and described in Fig. S1†
and eqn (1)–(7). In detail, when TiO2 is exposed to ultra-
bandgap light, electrons are excited from its valence band
(VB) to its conduction band (CB). The electrons in the CB (ecb

−)
can reduce oxygen in the air and form superoxide radicals (O2

−),
which react with NO and a proton to produce nitric acid (HNO3).
Meanwhile, the holes in the VB (hvb

+) can oxidise water to
produce hydroxyl radicals (OH*), which undergo a series of
chemical reactions to produce HNO3. The resulting HNO3 can
be easily rinsed off by rainwater, ensuring safe removal into the
urban drainage system when applied in cities.21,22

TiO2 + hn / ecb
− + hvb

+ (1)

H2O + hvb
+ / H+ + OH* (2)

ecb
− + O2 / O2

− (3)

O2
− + NO + H+ / HNO3 (4)

NO + OH* / HONO (5)

HONO + OH* / NO2 + H2O (6)

NO2 + OH* / HNO3 (7)

Many studies have validated the effectiveness of employing
TiO2 for NOx remediation in a range of building materials. For
example, in 2009, Hüsken et al.23 reported that TiO2 modied
concrete was able to achieve up to∼39% NOx removal efficiency
using ISO test conditions. In 2014, Ângelo et al.24 noted a ∼70%
NO conversion under ISO test conditions with a TiO2-enhanced
paint using Cristal ACTiV™ PC500. And in 2016, Wang et al.25

showed that TiO2-modied asphalt was able to convert∼67% of
NO under ISO test conditions also.

With regard to glass, the photocatalytic NOx removal effi-
ciency of TiO2-coated windows has rarely been reported, and
where it has been, has tended to show lower NO conversion
levels compared with other building materials.16,26,27 Although
this indicates that further optimisation is required to produce
TiO2-coatings on windows with enhanced photocatalytic NOx

removal efficiency, it has been proposed that this lower
observed performance may be compounded by the intrinsically
smooth and low surface roughness of window glass.26 Although
windows were one of the rst building materials to be coated
with TiO2 for photocatalytic purposes,28 to date, it has been
marketed for general purpose self-cleaning, and not specically
for remediating NOx.29 As a result, the potential to use TiO2-
coated windows for NOx remediation is a largely under-explored
topic and necessitates further research. Nevertheless, when
developing photocatalytic coatings for windows, one should
bear in mind the strict optical requirements for general purpose
applications of windows, in that they should retain a high
visible light transparency and maintain low haze.
13282 | J. Mater. Chem. A, 2024, 12, 13281–13298
TiO2 coatings on window glass are commercially produced
using atmospheric pressure chemical vapour deposition
(APCVD).29 Typically, APCVD utilizes low boiling point precur-
sors and complex conditions to control the properties of the
coating on the substrate. Many synthetic variables of the APCVD
process, such as deposition temperature and synthesis time,
can affect the physicochemical properties and photocatalytic
efficiency of the coating formed. For example, Nolan et al.30

found that increasing the deposition temperature reduced the
average particle size in the TiO2 coating from ∼84 nm at 500 °C
to ∼37 nm at 900 °C. In addition, Cabrera Quesada-Cabrera
et al.31 highlighted that altering the carrier gas ow rate can
result in changes in coating thickness, with thicker lms
tending to exhibit greater photocatalytic activity.

Herein, we applied APCVD to synthesize TiO2-coated glass,
varying the synthetic parameters in a systematic manner to
produce 58 distinct samples. These parameters included our
precursor choice, deposition temperature, synthesis time, and
precursor bubbler temperature. A comprehensive analysis of
their impact on the physicochemical properties of the TiO2

coatings was carried out, which included the measurement of
the average crystal size, optical bandgap, surface roughness,
and photogenerated charge carrier behaviour (population and
decay kinetics) and photocatalytic NOx activity. It is also worth
noting that this research is the rst to explore the links between
APCVD synthesis parameters, TiO2 coating properties, and
photocatalytic NOx conversion efficiency.

Machine Learning (ML) is an efficient and popular tool that
is able to reveal complex non-linear correlations between poly-
dimensional data (>5 dimensions) and make precise predic-
tions beyond the scope of existing experimental data.32,33

Compared to traditional optimisation and analysis methods,
such as orthogonal methods, ML algorithms can handle larger
datasets with more intricate interactions, and offers a more
comprehensive understanding of the statistical relationships
among all tested and measured features. Recent academic
reviews have highlighted the successful application of ML in
high-performance photocatalyst discovery,34,35 demonstrating
its advantage in identifying novel materials and optimizing
synthesis conditions with a higher degree of accuracy and effi-
ciency compared to traditional experimental design
approaches. Herein, based on the data set obtained from the
experiments in this article, we compared the accuracy and
robustness of various ML strategies for predicting the photo-
catalytic NOx performance of TiO2-coatings on window glass
from the APCVD synthetic parameters chosen and physico-
chemical properties measured. Using the optimal ML strate-
gies, we were able to work backwards and gain insight into the
physicochemical properties that inuence photocatalytic
activity the most. Considering the general purpose require-
ments when developing photocatalytic coatings for windows,
(i.e., in that they should maintain high visible light trans-
parency and low haze), this paper establishes a new metric that
considers both the visible light transmission and photocatalytic
activity of the sample. Importantly, this metric was used to
validate our ML predictions, where a new TiO2-coated glass
This journal is © The Royal Society of Chemistry 2024
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sample was grown in accordance with these predictions and
showed a high performance in this metric.

It is worth noting that this article marks the rst study to
systematically explore the relationships between APCVD
synthesis parameters, TiO2 coating properties, and photo-
catalytic NOx conversion efficiency using ML strategies. We
believe that this novel approach will not only provide pivotal
guidance on the future industrial production of TiO2 coatings
on window glass for photocatalytic NOx remediation, but also
provide a more general approach to the optimisation of pho-
tocatalytic active thin lms for a range of processes.
2 Experimental
2.1 Glass substrate pre-treatment

In a typical process, barrier glass (5 cm × 10 cm × 0.22 cm)
with an additional one-side SiO2 coating to avoid ion diffusion
was selected as the coating substrate.36 The glass was then
successively cleaned using a diluted detergent solution (50 vol%
detergent: 50 vol% water, Teepol®), followed by rinses with
deionised water, acetone (Reagent Grade, BDH Chemicals UK),
and isopropanol (Reagent Grade, BDH Chemicals, UK). Each
cleaning step was carried out under an ultrasonic environment
for 10 min to remove surface dust and organic solvents. The
cleaned glass substrates were dried using a nitrogen ow and
subsequently positioned at the distal end of the CVD apparatus,
as illustrated in Fig. S2(a).†
2.2 APCVD synthesis of TiO2 coatings on glass

TiO2 coating on glass was achieved by thermal decomposition of
low boiling-point Ti- precursors using APCVD (Fig. S2(a)†). Tita-
nium tert-isopropoxide (TTIP, 97%, Sigma-Aldrich), titanium n-
butoxide (TiBu, 97%, Sigma-Aldrich), or titanium tert-ethoxide
(TiEt, 33–35% Ti, Acros Organics) was injected into a double-
necked ask (herein referred to as the bubbler) with a typical
volume of 6 ml. The bubbler was then heated to the designated
temperature using an isomantle, which resulted in the genera-
tion of precursor vapours. Meanwhile, the CVD reactor was
heated with a cartridge heater (Watlow Firerod) until the depo-
sition temperature was reached, which was maintained for at
least 5 min before starting the reaction. High-purity nitrogen gas
(99.99%, BOC®) was used as an inert gas to provide an oxygen-
isolated environment in the CVD reactor and carrier gas for the
precursor vapours. In this experiment, the CVD reactor temper-
atures ranged between 350 and 600 °C, bubbler temperatures
ranged between 100 and 220 °C, and synthesis times varied from
1 to 27 min. It is important to emphasize that the studied ranges
of various parameters for each precursor differ quite substan-
tially. For instance, because of differences in precursor vapor-
isation points, the bubbler temperature for the TiO2 coatings
produced from TTIP ranged from 100–200 °C, whereas for TiBu,
it ranged from 140–220 °C. Also, the synthesis time for the TTIP
group ranged from 1–5 min with 1 min intervals, while for the
TiBu group, it ranged from 3–27 min with 6 min intervals (in the
case of TiEt can be found in Table S1†). Post APCVD synthesis, all
TiO2 coatings were annealed at 500 °C for 2 hours in air.
This journal is © The Royal Society of Chemistry 2024
2.3 Sample characterisation

The crystal properties of the coatings were measured using X-
ray diffraction (XRD). Patterns were obtained using a Bruker®

D2 Phaser diffractometer equipped with a CuKa source (l =

1.5406 Å). The angular range of the collected patterns was set
between 10° < 2q < 80° with a step size of 0.02° counted at 1 s per
step. The crystal size of the sample was calculated using the
Scherrer equation,37 and the preferential orientation of the
anatase phase (101), (200), (211), and (220) crystal planes was
quantied using the Harris method,38 where I(hkl)i denotes the
observed peak intensity for the specic hkl plane, I0(hkl)i
represents its standard intensity, and n is the count of diffrac-
tion peaks taken into account (eqn (8)):

PðhklÞi ¼
IðhklÞi

�
I0ðhklÞi�

1

n

�P
i

�
IðhklÞi

�
IiðhklÞi

� (8)

Optical characterisation was conducted using a Shimadzu
UV-2600 spectrometer, over a spectral range from 200 to
1000 nm. Comprehensive analyses, which included both
absorbance and transmittance spectra, facilitated the estima-
tion of the coating thickness and bandgap through the Swane-
poel method39 and the Tauc method,40 respectively. The average
visible light transmittance (VLT) of each sample was deter-
mined by averaging transmission data from 380 to 750 nm.41

High Resolution-Scanning Electron Microscopy (HR-SEM)
was performed using a Zeiss Auriga FIB-SEM to determine the
surface morphology and particle size of selected samples. A
10 nm chromium layer was sputtered before imaging using
a Safematic® CCU-010 Sputter coater. Atomic Force Microscopy
(AFM) was performed under ambient conditions with an
Agilent™ 5500 and aluminium-coated silicon tips (Tap300AL-
G). Samples were then analysed using Gwyddion 2.60® to
determine the surface area and mean square roughness.42

Transient Absorbance Spectroscopy (TAS) was employed to
measure the population and lifetime of photogenerated charge
carriers in the TiO2 coatings.43,44 A Nd:YAG laser (355 nm, 6 ns
pulse width, OPOTEK Opolette 355 II) served as the pump light,
generating 355 nm UV light from the third harmonic (∼2.54 mJ
cm−2 per pulse) and a 100 W Bentham IL1 quartz halogen lamp
was used as the probe light, positioned in front of the sample
with a long pass lter (l > 400 nm) and a monochromator (600
nm). A Si PIN photodiode (Hamamatsu S3071) recorded the
change in transmitted light aer each UV laser excitation cycle
(0.667 Hz), and each TAS trace was the result of averaging 100
scans. Data at times faster than 3.6 ms were recorded with an
oscilloscope (Tektronix DPO3012) aer passing through an
amplier box (Costronics), whereas data slower than 3.6 ms
were recorded on a National Instrument DAQ card (NI USB-
6251).
2.4 Photocatalytic NOx activity test

The photocatalytic NOx activity of each TiO2 coating was tested
according to ISO 22197-1:2016, with a slight modication.45 In
detail, a 2 × 15 W UVA lamp was utilized as the illumination
J. Mater. Chem. A, 2024, 12, 13281–13298 | 13283
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light source, and the distance from the light source to the
sample was maintained to ensure that a light intensity of 1.0
mW cm−2 illuminated the sample surface. The sample was
placed in a gas-tight chamber topped with an acrylic lid, with an
illustration of the gas ow over the sample shown in Fig. S2(b).†

The gas ow rate inside the chamber was set to 1.0 L min−1 by
adjusting the ratio of nitric oxide (NO, 99.99%, BOC®) and air
using mass ow controllers (Bronkhorst, EL-FLOW Select). The
NO concentration was maintained at ∼3.0 ppm at a relative
humidity of∼50%. At the start of each reaction, samples wererst
exposed to the NO gas stream in the dark for 10 min. Subse-
quently, the UVA light source was turned on, and the light test was
run for 30 min. Following this, the UVA light was turned off and
the sample was exposed to another 10 min of the NO gas stream
in the dark before being removed from the chamber. The NO and
NO2 levels were measured continuously during the reaction using
a chemiluminescence NOx analyzer (Serinus 40, Ecotech®). The
degree of photocatalytic NO/NOx conversion and propensity to
form NO2 (i.e. NO2 selectivity) were calculated (eqn (9)–(11)):

NOconversion ¼ ½NO�in � ½NO�out
½NO�in

� 100% (9)

NOx conversion ¼ ½NOx�in � ½NOx�out
½NOx�in

� 100% (10)

NO2 selectivity ¼ ½NO2�out
½NO�in � ½NO�out

� 100% (11)

in which [X] represents the concentration of the gas ‘X’ in ppm,
in and out in subscripts mean gas concentration measured
during the dark period and light period.
2.5 ML strategies and modelling

The running environment for the machine learning code was
facilitated through the Anaconda® platform integrated with
Python 3.11. Machine learning algorithms were executed
through the Scikit Learn package 1.3.2.46

In this study, to achieve better prediction results, we
compared six different ML strategies on the experimental
dataset. The initial three strategies are:

2.5.1 Parameter oriented prediction. Only the synthetic
parameters were used to predict the corresponding photo-
catalytic NO and NOx activity.

2.5.2 Property oriented prediction. Only the measured
physicochemical properties of the coatings were used to predict
the corresponding photocatalytic NO and NOx activity.

2.5.3 All-feature oriented prediction. Both the synthetic
parameters and measured physicochemical properties of the
coatings were used to predict the photocatalytic activity.

Two novel approaches (strategies 4 and 5) were introduced
herein. The advantage of these two strategies is that they can
predict the photocatalytic performance only through synthesis
parameters without retesting the physicochemical properties
for simulated data, while also being able to output the impor-
tance of the physicochemical properties simultaneously. The
detailed description of them is as follows:
13284 | J. Mater. Chem. A, 2024, 12, 13281–13298
2.5.4 Property-prior prediction. This strategy includes a 3-
step workow. In the rst step, a series of models are trained to
individually predict each physicochemical property based on
the synthetic parameters. In the second step, a model is trained
to predict the photocatalytic activity based on the measured
physicochemical properties. Finally, the model is applied by
rst predicting the physicochemical properties and then using
these values to predict the photocatalytic activity. This approach
is benecial since we do not have full coverage of all physico-
chemical properties for all materials.

2.5.5 Modied property-prior prediction. Based on prop-
erty-prior prediction, this strategy also includes the synthetic
parameters when predicting the photocatalytic activity in the
third step.

We also compared the above strategy with another strategy:
2.5.6 High property-prior prediction. Based on property-

prior prediction, this strategy uses the synthesis parameters,
predicted physicochemical properties, and real physicochem-
ical properties to predict the photocatalytic activity in the third
step.

A range of MLmodels, including Linear Regression, Random
Forest Regression, Support Vector Regression, AdaBoost
Regression, and XGBoost® Regression (Version 1.7.6), were
employed as the fundamental components in constructing the
ML strategies. To ensure optimal performance, hyper-
parameters were optimized using GridSearchCV coupled with
param_grids before each prediction.

In order to rigorously evaluate the prediction performance of
various strategies, especially adaptable to our two-tiered
prediction in strategies 4–6, we adopted Nested Cross-
Validation (NCV) based on the Leave-One-Out Method.47 The
core of NCV is its dual-layer validation mechanism;48 an outer
loop segregates the preliminary data set into an external test set
(for model assessment) and a training set (designated for model
construction and encompasses internal cross-validation). For
a detailed description of NCV construction refer to Section
3.5.1.

For every ML model trained in this project, we automatically
evaluate all ML regressors listed above, each with their own
hyper parameter search to obtain the optimal results. This
approach was additionally followed in strategies 4–6, in which
ML models for each physicochemical property are trained
individually. Furthermore, due to the nature of the cross vali-
dation process, the optimal model could differ between splits of
the outer cross validation loop. This leads to a wide range of
model architectures employed in this project.

3 Results and discussion

APCVD was used to produce 58 unique TiO2 coatings on glass as
described in Section 2.2. The nomenclature for each sample is
based on their synthesis conditions which can be found in
Table S1.† For instance, 001_TTIP_350_160_3 refers to the
sample designated as no. 001, where TTIP was utilized as the
precursor, the CVD deposition temperature and the bubbler
temperature were set at 350 °C and 160 °C, respectively, and the
synthesis was conducted for 3 min.
This journal is © The Royal Society of Chemistry 2024
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In this section, physical characterisation was rst carried out
to gain a qualitative understanding of the impact each synthetic
parameter had on the physicochemical properties of the
samples produced. The analysis is substantiated from XRD, UV-
vis, SEM, AFM, and TAS results sequentially. Additionally, an
overview of the trends in photocatalytic NOx activity in relation
to the synthesis parameters is presented.

More quantitative correlations between the synthesis
parameters, physicochemical properties, and photocatalytic
NO/NOx activity are later revealed through ML-assisted statis-
tical approaches, with the predictive capability of different ML
strategies compared and a validation of ML simulated data
under the new metric.
3.1 Effect of CVD deposition temperature

Photographs of all 58 TiO2 coatings are shown in Fig. S3,† with
two dominant types of appearance seen. One type of sample
exhibited a smooth surface, with oscillations between red and
blue shades seen due to variations in coating thickness,
a phenomenon oen seen in coatings produced using a cold-
wall reactor design.49,50 The other type of sample, at deposi-
tion temperatures above 500 °C, was more opaque and hazy,
which originated from the formation of more nanostructured
and thicker lms, giving the TiO2 layer its well-known white
colour. All lms were generally well adhered to the glass and
were not prone to detachment with handling. In some cases,
these thicker coatings were removed when rinsed with water.
Also, in some samples, some black/brownish colour was
observed, such as in sample 023_TiEt_600_160_3. This was
likely due to carbon contamination arising from the carbon-
isation of the Ti precursor.51,52 Althoughmost of this dark colour
was removed during the subsequent annealing process in air at
500 °C, some residual carbonation was seen in some samples.49

The XRD patterns of select samples are shown in Fig. 1. XRD
of all 58 samples showed that the TiO2 coatings predominantly
consisted of a pure anatase phase TiO2 (I41/amd, a = b = 3.784
Å, and c = 9.515 Å),53,54 except samples 005_TTIP_550_160_3
Fig. 1 XRD patterns illustrating the changes in the crystal phase, crysta
deposition temperature and Ti precursor.

This journal is © The Royal Society of Chemistry 2024
and 006_TTIP_600_160_3 that contained some rutile phase
TiO2 (P42/mnm, a = b = 4.594 Å, and c = 2.959 Å), with distinct
peaks seen at 2q = 37° and 68°, corresponding to the (101) and
(301) crystal planes of rutile, respectively.53 Interestingly, the
observation of the rutile phase in samples produced using TTIP
may be attributed to the inherent properties of the precursor, as
it may undergo a different thermal decomposition pathway that
leads to the nucleation and growth of the rutile phase above
500 °C.55 However, only the anatase phase is seen in the XRD
patterns of samples fabricated using TiEt and TiBu as precur-
sors for all deposition temperatures explored herein. The
preferred orientation in the anatase phase Miller planes (101),
(200), (211), and (220) (corresponding to peaks at 2q = 27°, 48°,
55°, and 70°) was quantied for samples produced using TTIP
(Fig. S4†), TiEt (Fig. S5†) and TiBu (Fig. S6†), with no qualitative
trend seen by the eye for the deposition temperatures explored
herein (350–600 °C).56 The average crystal size of the anatase
phase was also quantied, and again, for the deposition
temperatures explored, did not signicantly differ, ranging
from ∼20 to 30 nm in size.

UV-visible spectroscopy was employed to assess the optical
properties of the coatings (Table 1). Low light absorption within
the ultraviolet region to near-infrared region (380 nm to 1000
nm) was observed in most samples, with a sharp increase in the
ultraviolet region due to ultra-wide bandgap excitation of the
TiO2 coating. The indirect bandgap of most samples was in the
region of 3.2 eV; consistent with the literature for anatase
TiO2.57 There was a trend for the bandgap to marginally
decrease with an increase in deposition temperature. Between
deposition temperatures of 350 and 500 °C, the VLT of samples
was high (∼70 to 80%), whereas a signicant drop in VLT was
observed when the deposition temperature increased to above
500 °C (∼60 to 15%). This decrease in VLT is primarily linked to
the coexistence of rutile and anatase phases at high deposition
temperatures when TTIP is used as the precursor, forming
a more powdery, nanostructured coating.58 The decrease in VLT
with TiEt and TiBu might be attributed to the larger amount of
carbon contamination compared with TTIP. The presence of
llinity and preferred orientation of select samples with changes in the
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Table 1 Changes in the sample bandgap, VLT, and film thickness for TiO2 coatings produced at a fixed bubbler temperature of 160 °C and
synthesis time of 3 min, but different deposition temperatures

Experimental synthesis conditions,
bubbler temperature: 160 °C, synthesis
time: 3 min Measured optical properties

Precursor selection
Deposition
temperature (°C)

Indirect b
andgap (eV)

Visible light
transmittance

Average thickness
(nm)

Thickness error
(nm)

TTIP 350 3.34 79.03 166 6.7
TTIP 400 3.42 68.6 417 5.7
TTIP 450 3.05 56.01 — —
TTIP 500 3.11 61.43 — —
TTIP 550 2.97 30.17 — —
TTIP 600 2.88 18.51 — —
TiEt 350 3.32 82.32 293 19
TiEt 400 3.29 80.24 340 7.4
TiEt 450 3.36 81.48 162 14.1
TiEt 500 3.27 71.09 712 7.9
TiEt 550 2.97 72.16 757 14
TiEt 600 3.1 47.46 1740 10
TiBu 350 — 92.57 — —
TiBu 400 3.29 81.59 157 19
TiBu 450 3.28 84.75 212 5.4
TiBu 500 3.19 73.31 944 4.8
TiBu 550 3.08 62.45 1040 10
TiBu 600 2.95 15.08 — —
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carbon particles, which can not only increase light absorption
in the visible but, depending on their size and distribution, can
also introduce scattering effects within the TiO2 lm, has been
discussed previously.59,60 For less nanostructured coatings, lm
thickness could be determined using the Swanepoel method.39

For deposition temperatures below 500 °C, the majority of TiO2

coatings were between 100 and 300 nm in thickness; however,
above 500 °C, lm thickness was signicantly higher, reaching
over 1000 nm at higher deposition temperatures. A graphic plot
summarising these trends can be found in Fig. S7.†
Fig. 2 SEM images illustrating the morphologies of select samples with

13286 | J. Mater. Chem. A, 2024, 12, 13281–13298
The surface topography of samples was investigated with
SEM and AFM. The SEM images of select samples are shown in
Fig. 2. We can see that as the temperature was increased for
both the TTIP and TiEt samples, the surface structures changed
from more rounded and compact particles ∼100 nm in diam-
eter seen at 450 to 500 °C, to more oblong and less compact
particles ∼200 nm in diameter seen at 600 °C. A noteworthy
increase in Root Mean Square Roughness (Rq roughness) was
observed at deposition temperatures of 550 °C and above, while
the Sample Surface Area (SSA) was found to exhibit minimal
changes in the deposition temperature and Ti precursor.

This journal is © The Royal Society of Chemistry 2024
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uctuation across the range of deposition temperatures
explored (see Fig. S8†). Interestingly, variations in Rq roughness
were inuenced signicantly by the choice of the precursor.
Specically, when TTIP was employed, a marked increase in Rq

roughness was consistently seen in comparison to TiEt and
TiBu.58

TAS measurements were conducted at a probe wavelength of
650 nm, utilizing 355 nm laser excitation, spanning the
microsecond to second timescale (Table S3†). Previous work has
established that the transient absorption at 650 nm in anatase
and rutile TiO2 is a composite signature of both electron and
hole carriers.43,44 The recombination kinetics in most samples
herein followed a power law decay, typical of anatase TiO2 and
the thermally governed mechanism of electron trap-hopping
and eventual recombination with holes. Typical mDO.D. at 10
ms aer laser excitation of ∼0.10 to ∼0.20 ms was observed
alongside relaxation to half the signal seen from 10 ms aer laser
excitation (t50%) of ∼0.2 to ∼0.3 ms; these values are quite
typical of anatase TiO2 coatings grown by CVD.43 Regardless of
precursor selection, signicant increases in charge carrier
populations were seen at higher deposition temperatures,
which we attribute to the increased harvesting of the 355 nm
laser pump as lm thickness increases with deposition
temperature. On the other hand, the t50% values did not exhibit
a consistent trend with temperature. Nevertheless, some coat-
ings grown at elevated temperatures, such as 600 °C for TTIP
and 550 °C for TiBu, showed pronounced increases in t50%.

The inuence of deposition temperature on photocatalytic
NOx activity is shown in Fig. 3. Fig. 3(a) shows that for deposi-
tion temperatures below 500 °C, all samples showed NO
conversions in the range 0.3 to 2.0%, surpassing the 0.2%
benchmark value seen in a commercial self-cleaning glass.
However, at deposition temperatures above 500 °C, there was
a pronounced increase in NO and NOx activity, with coatings
Fig. 3 (a) Photocatalytic NO/NOx conversion (bar chart) and NO2 se
temperature (green-TTIP, red-TiEt, and blue-TiBu, from sample 001
012_TiEt_600_160_3 measured under near-ISO test conditions (red-NO

This journal is © The Royal Society of Chemistry 2024
showing maximal conversions at a deposition temperature of
600 °C. Evidently, at higher growth temperatures, the coatings
demonstrate higher catalytic activity. The overarching trend was
for NO and NOx conversions to be proportional, with NO2

selectivities generally in the 50 to 80% range. However, given
the low conversions seen in several samples, the NO2 selectiv-
ities possessed high associated errors. It should be claried that
in our chart, the error bars represent an 80% condence
interval, and the error bars are relatively wider in the results for
NO2 selectivity compared to NO/NOx conversion. This is
because when calculating the error of NO2 selectivity, one must
propagate errors from both NO and NOx conversion data, as
shown in eqn (11).61 This leads to an expansion of the NO2

selectivity error range, but we believe this is necessary, as it
provides a comprehensive and rigorous error assessment.
Overall, there were some notable samples, with
012_TiEt_600_160_3 achieving an impressive NO conversion of
22.7% (and 18.0% under ISO test conditions, shown in
Fig. 3(b)), whereas 014_TiEt_400_160_3 exhibited the lowest
NO2 selectivity of ∼9.2%. It should be noted that the steady-
state formation of NO2 should be avoided where possible, as
this can worsen air quality given its higher toxicity compared to
NO.62 This, and other aspects, will be assessed by ML and dis-
cussed in more detail in Section 3.5.1.
3.2 Effect of synthesis time

Under deposition temperatures of 450 °C and 500 °C, the
impact of synthesis time on the physicochemical properties of
materials and NOx conversion efficiency was examined for
a xed bubbler temperature of 160 °C. It was found that the
physicochemical properties of thematerials were affected by the
synthesis time and precursor. When TTIP was utilized as the
precursor, more evident changes were observed in both the
lectivity (scatter chart) of samples grown with differing deposition
to sample 012). (b) Photocatalytic NOx measurement of sample

x, blue-NO2, and green-NO).
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Fig. 4 Photocatalytic NO/NOx conversion (bar chart) and NO2

selectivity (scatter chart) of samples grown with varying synthesis time
for a fixed bubbler temperature of 160 °C (green-TTIP, red-TiEt, and
blue-TiBu); the range of times specified represents the range of
synthesis times studied from left to right in the bar chart, with times in
brackets beneath representing the time intervals between each bar.

Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
5/

10
/1

6 
7:

17
:0

3.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
physicochemical properties and photocatalytic NOx conversion
efficiency. However, when materials were synthesized using
TiEt and TiBu as precursors, less pronounced variations in their
physicochemical properties and photocatalytic efficacies were
seen. Therefore, the primary focus of the subsequent discussion
is on the effect of synthesis time on the material properties and
photocatalytic performance when TTIP was used.

For TTIP, for a synthesis time of 1 min, a lm displaying
colour contours was produced, indicating the formation of a at
and dense lm. However, with the extension of the synthesis
time to 5 min, a more powdery coating was produced. These
observations were more pronounced at higher deposition
temperatures. In terms of their crystal properties, at a deposi-
tion temperature of 450 °C, a systematic decline in the 200-
plane was observed as the synthesis time was increased
(Fig. S9†). This was coupled with an enhancement in the 220-
plane as the synthesis time was increased. At a deposition
temperature of 500 °C, a strong preferred orientation in the
(211) plane was lost as the synthesis time was increased, with
resulting increases in the (220) plane (Fig. S10†). This shi
might have been a result of the increased conversion of the
material from the anatase to the rutile phase at 500 °C. The
production of the composite phase resulted in the formation of
a more powdery coating. Besides, as the synthesis time was
increased at 500 °C, the average crystal size increased from
∼20 nm at a 1 min synthesis time to ∼30 nm at a 5 min
synthesis time. Interestingly, this effect was not seen for TiEt
(Fig. S11†) and TiBu (Fig. S12 and S13†) with regard to changes
in average crystal size due to increases in synthesis time.

The optical properties of the samples were also examined,
with no signicant bandgap changes seen with increases in
synthesis time for TTIP (Fig. S14†), TiEt (Fig. S15†) and TiBu
(Fig. S16†). Nevertheless, variations in the thickness trends of
the samples were dictated by the choice of precursor and
deposition temperature. Specically, with the use of TiEt as the
precursor at a deposition temperature of 500 °C, a gradual
increase in product thickness was observed with extended
synthesis time. Similarly, with TiBu as the precursor at a depo-
sition temperature of 450 °C, a moderate increase in coating
thickness from ∼200 to 650 nm was seen as the synthesis time
was increased from 3 to 27 min. At 500 °C, the thickness
increased between∼400 and 900 nm. The growth rate of sample
thickness, when either TiEt or TiBu was utilized as the
precursor, remained similar, with an approximate increase in
lm thickness of 300 nm per 12 min of synthesis. In contrast,
a substantially faster reaction rate was seen when TTIP was
utilized, with nearly a 1000 nm increase in lm thickness seen
when the synthesis time was increase from 1 to 2 min, followed
by more moderate increases in the growth rate.

Example SEM images are shown for samples produced using
TTIP and TiEt, where increases in synthesis time increased the
uniformity and density of the crystals formed (Fig. S17†). Using
AFM, the effect of synthesis time on the Rq roughness and SSA
of coatings was assessed for TTIP (Fig. S18†), TiEt (Fig. S19†)
and TiBu (Fig. S20†). For TiEt and TiBu, the SSA remained
approximately constant for all synthesis times and deposition
temperatures examined; however for TTIP, the SSA increased
13288 | J. Mater. Chem. A, 2024, 12, 13281–13298
sharply at a synthesis time of 5 min at a deposition temperature
of 500 °C from ∼27 to ∼35 mm2 per 25 mm2 geometric area. This
was coupled with a substantial increase in Rq roughness from
∼20 to ∼140 nm. For TiEt, the Rq roughness did not change
signicantly with synthesis time, remaining at around 10 to
20 nm; however for TiBu, there was a tendency for Rq roughness
to increase at a deposition temperature of 500 °C from ∼10 to
40 nm when the synthesis time was increased from 3 to 27 min.

The impact of synthesis time on the charge carrier pop-
ulation and lifetime was found to be signicant but was also
controlled by the precursor used. When TTIP was chosen,
a pronounced increase to both charge carrier population and
lifetime was observed at the longest synthesis time of 5 min,
regardless of the deposition temperature. In contrast, for
samples synthesized using TiEt and TiBu as precursors, a more
steady increase in both the charge population and lifetime was
exhibited with increases in synthesis time, instead of the abrupt
jump observed in the TTIP group. The charge population and
lifetimes appeared to plateau at a synthesis time of ∼9 min for
TiEt and ∼15 min for TiBu. The numerical details of these
results can be viewed in Table S3†.

The effects of synthesis time on photocatalytic NOx activity is
shown in Fig. 4 for a xed bubbler temperature of 160 °C.
Broadly speaking, most samples showed NO conversion levels
between 0.5 and 2%. For TTIP, consistently low NOx conversion
rates were seen for all synthesis times at a deposition temper-
ature of 450 °C. However, at a deposition temperature of 500 °C,
an increased synthesis time was seen to be highly benecial to
photocatalytic activity, reaching NO conversion rates of ∼5.5%
at a synthesis time of 5 min. For samples made using TiEt at
a bubbler temperature of 160 °C and deposition temperature of
500 °C, there was seemingly no benet to photocatalytic activity
This journal is © The Royal Society of Chemistry 2024
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in increasing the synthesis time. However, at a deposition
temperature of 500 °C, an increased synthesis time was found to
be clearly detrimental to photocatalytic activity for samples
made using TiBu. The reasons for this trend are unclear, with
a possible explanation being an increased tendency to form
carbon deposits within the TiO2 lm, which are detrimental to
photocatalytic activity at longer synthesis times using this
precursor. Specically, samples 037_TiEt_500_160_9 and
049_TiBu_500_160_9 exhibited notably low NO2 selectivity,
where more generally, an increase in NO2 selectivity was
observed when TiEt and TiBu were used as precursors, whereas
a decrease was noted when TTIP was used.
3.3 Effect of bubbler temperature

The precursor bubbler temperature in the CVD process controls
the amount of precursor that is transferred into the reactor
during the deposition, which can be calculated from the vapour
pressure curve of each precursor.63–65 In this work, bubbler
temperatures were chosen that would result in a range of lm
thicknesses. Generally speaking, at lower bubbler temperatures,
the coatings grown tended to be thinner and more compact; at
moderate bubbler temperatures more nanostructured and hazy
depositions were observed; at high bubbler temperatures
(approaching the boiling point of the precursor) a much more
cracked and powdery coating was obtained with a greater
amount of carbon contamination (e.g. sample
051_TiBu_500_220_3 in Fig. S3†).

With regard to the physicochemical properties of the coat-
ings, the crystal and optical properties were not substantially
impacted by the changes in bubbler temperatures examined
herein. For TTIP, at a deposition temperature of 450 °C, there
was no signicant change in the average crystal size with an
increase in bubbler temperature from 100 to 180 °C (Fig. S21†).
However, there is a small notable tendency for growth in the
(200) plane to decrease with bubbler temperature and for
growth in the (220) plane to increase with bubbler temperature.
For TTIP, at a deposition temperature of 500 °C, the average
crystal size decreased marginally from ∼27 to ∼20 nm with an
increase in bubbler temperature from 100 to 180 °C (Fig. S22†).
Similar to TTIP at a deposition temperature of 450 °C, TiEt
showed the same trend for the (200) plane to decrease with
bubbler temperature and for the (220) plane to increase with
bubbler temperature (Fig. S23†). For TiBu at a deposition
temperature of 450 °C, there was a broad trend for average
crystal size to decrease from ∼27 to ∼13 nm with an increase in
bubbler temperature from 140 to 220 °C (Fig. S24†). However,
for TiBu at a deposition temperature of 500 °C, there was no
signicant effect of changing the bubbler temperature on the
crystal properties observed (Fig. S25†). With regard to the
optical properties of the coatings, there was no signicant
change seen in either the indirect allowed optical bandgap or
the VLT of the coating with changes in bubbler temperature for
TTIP (Fig. S26†), TiET (Fig. S27†) or TiBu (Fig. S28†).

However, as we discussed above, the correlation between the
coating thickness and bubbler temperature is more visible by
characterisation, which can be viewed in Table S2†. As a result,
This journal is © The Royal Society of Chemistry 2024
in terms of TiEt, a steady rise in coating thickness from ∼200 to
∼700 nm at 3 min synthesis time is caused by an increase in the
bubbler temperature from 120 to 200 °C. This indicates that
a larger amount of the precursor is successfully transferred into
the CVD reactor and deposited on the glass. However, for TiBu,
a decrease in material thickness was seen with an increase in
the bubbler temperature from 140 to 220 °C. This emphasizes
that the growth of the TiO2 coating can be hindered by the
production of carbon contamination in the sample, which was
an issue for TiBu at higher bubbler temperatures.

SEM imaging was used to investigate the surfacemorphology
of the samples synthesized at temperatures of 450 °C and 500 °C
using TiBu, as shown in Fig. S29.† The sample
052_TiBu_450_220_3 exhibited almost no recognizable
morphology under high resolution, which may be attributed to
the formation of a highly smooth and thin coating on the glass
substrate. In contrast, a rice-like morphology, was shown by
samples synthesized at 500 °C, particularly when the bubbler
temperature was 220 °C, with clearer boundaries between
particles observed, alongside an increase in particle size.

In terms of the charge carrier kinetics, an increase in charge
carrier populations and lifetimes was typically seen with
increases in bubbler temperature. When TTIP and TiEt were
used, these values seemingly reached a plateau at particular
bubbler temperatures. In contrast, higher values at higher
bubbler temperatures were obtained when TiBu was used as the
precursor. An impressive 0.105 m DO.D. and t50% of 71.1 ms
were seen when the bubbler temperature was set at 220 °C with
TiBu for a deposition temperature of 450 °C and synthesis time
of 3 minutes. A high charge carrier lifetime of 23.3 ms was
observed in sample 042_TiEt_500_120_3. The numerical details
are summarised in Table S3†. AFM analysis showed that there
was no clear correlation between the Rq roughness or SSA with
changes in bubbler temperature for depositions at 450 and 500
°C using TTIP (Fig. S30†), TiEt (Fig. S31†) or TiBu (Fig. S32†).
However, it should be noted that there was greater variation in
Rq roughness seen in the samples made using TiBu.

The effect of bubbler temperature (100 to 220 °C) for depo-
sition temperatures between 450 and 500 °C on the photo-
catalytic NOx activity is shown in Fig. 5. For TTIP and TiEt, there
was no clear correlation between bubbler temperature and
photocatalytic activity. However, for TiBu at a deposition
temperature of 450 °C, a higher bubbler temperature was
benecial to activity, and at 500 °C, a higher bubbler tempera-
ture was detrimental to activity.
3.4 Effect of precursor selection

The effect of precursor selection is assessed in this section by
averaging the data generated from all coatings made by each
precursor. Their physicochemical and photocatalytic properties
are summarised in Table 2, with a comparison with commercial
self-cleaning glass and a TiO2-based commercial product,
Cristal ACTiV™ PC-S7.

With regard to lm thickness, coatings produced using TTIP
were thicker (∼890 nm) than coatings produced using TiEt
(∼606 nm) or TiBu (∼684 nm). However, samples made from
J. Mater. Chem. A, 2024, 12, 13281–13298 | 13289
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Fig. 5 Photocatalytic NO/NOx conversion (bar chart) and NO2

selectivity (scatter chart) of samples grown at differing bubbler
temperatures for a fixed synthesis time of 3 min (green-TTIP, red-TiEt,
and blue-TiBu); the range of temperatures specified represent the
range of bubbler temperatures studied from left to right in the bar
chart, with temperatures in brackets representing the temperature
intervals between each bar.
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TiEt had the highest VLT at ∼74.1%, whereas those produced
from TTIP had the lowest VLT of ∼59.7%. The thickness of
typical commercial self-cleaning glass is signicantly lower at
∼12 nm.66 It should be noted that commercial self-cleaning
glass is optimized to maintain high VLT, necessitating a lower
thickness. While this design choice clearly benets optical
transparency, it may not benet photocatalytic performance.29
Table 2 Averaged physicochemical properties and photocatalytic NOx p
herein (TTIP = 22 samples; TiEt= 14 samples; TiBu = 22 samples), and co
and TiO2-based commercial products

Properties and performance TTIP

Crystal properties Crystal size (nm) 26.9
(101) Phase orientation 0.40

(200) Phase orientation 1.39
(211) Phase orientation 0.65
(220) Phase orientation 1.12

Optical properties Bandgap (eV) 3.12
VLT (%) 59.7
Average thickness (nm) 890

Surface properties Rq roughness (nm) 32.7
Mean roughness (nm) 25.4
Sample surface area
(mm2 per geometric 25 mm2)

27.5

Charge kinetics Population @ 10 s (mDO.D.) 0.43
t50% from 10 ms (ms) 1.02

Photocatalytic performance NO conversion (%) 2.17
NOx conversion (%) 0.59
NO2 selectivity (%) 60.2

Cost for per 1 L f
eedstock in GBP (£)

98.30

13290 | J. Mater. Chem. A, 2024, 12, 13281–13298
Even so, the thickness of our product is still far lower than that
of other TiO2-based photocatalytic coatings for non-glazing
applications, which possess a usual thickness of larger than 1
mm.

The average crystal size and preferred orientation of samples
for each precursor are shown in Fig. 6(a). For TTIP, on average,
coatings possess a larger average crystal size of ∼27 nm
compared to those produced using TiEt (∼22.3 nm) and TiBu
(∼23.5 nm). On average, the precursors used herein produced
coatings that possessed mild average crystals with a size
between those of a commercial self-cleaning standard (∼18
nm)66,68 and painted P25 TiO2(∼25 nm).24 On average, in our
work, TTIP coatings had a higher preference to orient in the
(200) plane, contrasting with TiBu and TiEt, which showed
a higher preference to orient in the (220) plane. The Rq rough-
ness and SSA showed that samples derived from TTIP had an
average roughness of ∼32.7 nm, which was notably higher than
those from TiBu (∼17.8 nm) and TiEt (∼15.2 nm) Fig. 6(b)).
Changes in the SSA were similar, with an average of ∼27.5 mm2

seen in TTIP, ∼26.5 mm2 seen in TiBu, and ∼26.0 mm2 seen in
TiEt per geometric area of 25 mm2.

TAS analysis showed that samples produced using TTIP and
TiEt, on average, exhibited the highest average charge carrier
populations at 10 us (0.43 and 0.44 mDO.D., respectively),
which was signicantly higher than those produced using TiBu
(0.20 mDO.D.). However, the average t50% of samples produced
from TiBu (4 ms) was higher than those from TTIP and TiEt
(1.02 and 2.05 ms, respectively), suggesting that a higher charge
population does not result in a higher charge carrier lifetime,
and indicates that the photogenerated charges live longer in
lms produced using TiBu. We postulate that when different
precursors are used, it results in varying levels of defect sites in
erformance for each precursor seen across the 58 samples produced
mpared properties values with those of commercial self-cleaning glass

TiBu TiEt
Commercial s
elf-cleaning glass66 Cristal ACTiV™ PC-S7 24,67

23.5 22.3 18.0 25
0.34 0.42 — 80% anatase and

20% rutile
0.85 0.99 —
0.79 0.97 —
1.78 1.41 —
3.2 3.21 — 3.16
69.5 74.1 77.0 —
606 684 12.0 100 (mm)
17.8 15.2 0.27 —
13.7 11.6 0.18 —
26.5 26.0 — 50

0.20 0.44 0.0085 —
4.00 2.05 0.21 —
2.54 2.45 0.27 46.0
0.70 0.78 0.18 34.8
63.1 58.8 34.8 23.0
115 314 227.1 639 (1 kg)

This journal is © The Royal Society of Chemistry 2024
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Fig. 6 The effect of the precursor type on (a) average crystal properties and (b) average surface properties (Rq roughness and SSA) seen across
the 58 samples produced herein (TTIP = 22 samples; TiEt = 14 samples; TiBu = 22 samples). Error bars represent 80% confidence intervals.
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the products due to their varying decomposition pathways. It is
well known that defects have a strong effect on the lifetime of
photogenerated charge carriers.69

In terms of the average photocatalytic NOx conversion,
samples employing TiEt as the precursor exhibited the highest
average NOx conversion rate of 0.78%, whereas samples made
using TTIP had the lowest average NOx conversion of 0.59%
(shown in Fig. 7). In comparison, regardless of the precursor
selection, the performance of our products in both NO conver-
sion and NOx conversion surpassed that of commercial self-
cleaning glass measured under the same conditions, with
Fig. 7 The effect of the precursor type on average photocatalytic NOx

activity seen across the 58 samples produced herein (green-TTIP = 22
samples; red-TiEt = 14 samples; blue-TiBu = 22 samples). Error bars
represent 80% confidence intervals.

This journal is © The Royal Society of Chemistry 2024
a NOx conversion rate of only 0.18%. On the other hand, the
average performance of our materials is notably lower than that
of other TiO2-based materials used for NOx removal, such as
Cristal ACTiV™ PC-S7.67 TiO2 coatings produced using APCVD
differ from photocatalytic materials that incorporate TiO2

nanopowder powder; they have oen a lower surface area and
therefore less active, but can maintain high transparency and
can be signicantly more durable to abrasion lending them-
selves to applications for self-cleaning windows.

Nevertheless, while TiEt has a higher average NO/NOx

conversion efficiency, it might not be a favourable choice when
simultaneously considering production costs. The cost of TiEt
feedstock is nearly 1.5 times than that of those used in the
current production of commercial self-cleaning glass, which
employs ethyl acetate and TiCl4 as rawmaterials.55,66Conversely,
using TTIP and TiBu could effectively reduce production costs
while maintaining higher photocatalytic activity.

Lastly, it is important to acknowledge that, under a pure NO
stream, our samples exhibit a higher NO2 selectivity (∼60%)
compared to some commercial products (20–30%). We have
calculated the DeNOx index in Table S4 in the ESI† to highlight
this issue, where a negative DeNOx index value expresses
increase in total toxicity in photocatalytic oxidation of NO.
However, it should be noted that under real-world test condi-
tions, both NO and NO2 would be present, and therefore, an
increased DeNOx index value would likely be seen for our
coatings.

3.5 ML-assisted insights into photocatalytic NOx activity
prediction

We now investigate the potential for ML methods to learn how
the synthetic and measured properties are correlated. The full
experimental data set is presented in Table S5†. To avoid
confusion, the abbreviations used in Table S5† and the
J. Mater. Chem. A, 2024, 12, 13281–13298 | 13291
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following context are emphasized here. Signicantly, “Rq”

represents “Root Mean Square Roughness”, “SSA” represents
“Sample Surface Area”, “Charpop” represents “Photogenerated
Charge Population”, and “Charlife” represents “Photogenerated
Charge Lifetime”. In addition, including crystal size (crystal
size), different crystal phase coefficients (101 phase, 200 phase,
211 phase, and 220 phase), band gaps (Bandgap) and visible
light transmittance (VLT) are also evaluated in ML modelling
(The Pearson correlation coefficients between each pair of
variables were calculated and can be referred in Fig. S33†).

The data from sample 013 and sample 014 were not placed in
the data set. This is because their charge carrier behaviour did
not provide measurable values under the conditions applied. A
total of 56 samples were therefore applied in our ML process.

3.5.1 Optimal strategies for photocatalytic NO/NOx

conversion prediction. In machine learning, the division of the
dataset signicantly constrains the prediction of model
performance.48,70 Here, we propose a more rigorous method. A
owchart in Fig. 8 illustrates our process for determining the
best strategy for predicting photocatalytic NOx performance
from the material synthetic parameters and properties from our
data set. This method was inspired from Nested Cross Valida-
tion (NCV), which can avoid the risk of data leakage using a two-
tiered prediction method, applied in strategies 4–6.70

In detail, a sample splitting method based on Leave-One-Out
Cross Validation (LOOCV) is adopted. This involved dening
a sampling function that traverses the data set, taking one
sample from the entire data and all other samples as training
data. In this way, each sample will serve as the only test data in
the test set in all 56 test cycles, and these data only appear in the
test and do not participate in the decision of any best model in
the ML training. The accuracy of the strategy over a period is
obtained by comparing the mean square error (MSE) between
the actual values of the test data and the predicted values of it.
Finally, the average MSE obtained during these 56 cycles is used
to calculate the nal score of the evaluation strategy. In each
cycle, various primary regression methods, including linear
regression, support vector regression, random forest regression,
Adaboost regression, and XGboost regression were, successively
trained and evaluated using the divided training set. The
method demonstrating the highest predictive accuracy was
selected to assess the following photocatalytic NOx activity
prediction capability among various strategies using the test
set. Again, it is noteworthy that we do not designate which
primary ML method to use in each data split; however, the
selections for eventual prediction are automatic and will differ
in each group.

A comparison of all strategies (discussed in Section 2.5) for
photocatalytic NO/NOx conversion predictions and NO2 is
shown in Fig. 8. The average MSEs from 56 cycles between
predicted and actual values for different strategies are shown on
the corresponding y-axes, representing the performance of
strategies in different data-splits. If a strategy exhibits a more
concentrated distribution around a lower MSE value, it
demonstrates a more stable and superior predictive accuracy.
The colourmap denotes the count of MSEs gained from these
strategy turns, which fall into a specic interval (with all MSE
13292 | J. Mater. Chem. A, 2024, 12, 13281–13298
distributions split into 25 intervals). As more MSE values lie
within an interval, the colour shis more towards yellow,
emphasizing the relative stability of the strategy across various
data splitting and sampling.

The strategy with the most favourable accuracy for photo-
catalytic NO conversion prediction was identied as “modied
property-prior strategy” (average MSE = 8.63), followed closely
by “parameter orientated prediction” (average MSE = 9.46) and
“all-feature orientated prediction” (average MSE = 11.71). On
the other hand, relative to other strategies, the “modied
property-prior strategy” exhibits a narrower MSE distribution.
This shows that the “modied property-prior strategy” has both
stronger predictive capability and higher tolerance for different
data splitting. In other words, it indicates a higher reliability for
the data simulation when employing this strategy. In terms of
photocatalytic NOx conversion prediction, “parameter orien-
tated prediction” is seen to be the best strategy (average MSE =

0.68), followed closely by “property-prior prediction” (average
MSE = 0.72) and “modied property-prior prediction” (average
MSE = 0.73), and they exhibit an obvious narrower MSE
distribution than the other three strategies, highlighting the
robustness of their predictions. It's worth noting that since the
data are not normalized during modelling, the average MSE
score for predicting photocatalytic NO and NOxwill differ due to
a wider range of values seen in photocatalytic NO conversion
compared with photocatalytic NOx conversion. It does not mean
that using this strategy to predict photocatalytic NOx conversion
is more suitable compared with NO prediction, and therefore,
the performance of each strategy for predicting photocatalytic
NO and NOx should be evaluated respectively.

All strategies show more random MSE distributions and
higher MSEs in the prediction of NO2 selectivity over 56 cycles.
More or less, the “modied property-prior strategy” and
“property-prior strategy” perform the best, with the lowest
scores of 680 and 698, respectively. It is surprising that the two-
tiered models based on predicted properties show better
performance in predicting different photocatalytic targets, and
we also noticed that strategies that include real properties in the
target prediction process (i.e. strategies 2,3, and 6) always get
lower MSEs and broader MSE distributions. A possible reason is
that the predicted properties smooth the noise in the experi-
mental measurements, so the relationship between these
attributes and targets can be learned more easily during the ML
prediction process.

In addition, when the model predicts photocatalytic perfor-
mance, the data points with higher true corresponding target
values generally obtain a higher prediction error. This shows
that ML predictions are more likely to underestimate the pho-
tocatalytic conversion performance of the material. This may
also be caused by limitations in our data. For example, the data
points with excellent performance (i.e., high photocatalytic
conversion performance) are relatively sparsely distributed.
Therefore, when these high-performance data points are
selected as the test set, the model is faced with a more scarce
training set of high-performance examples, and high perfor-
mance samples are omitted in some groups. This results in the
model being unable to effectively learn the actual data
This journal is © The Royal Society of Chemistry 2024
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Fig. 8 (a) Evaluation of the ML strategy based on LOOCV and NCV, and visualized performance of Mean Squared Error (MSE) in predicting (b)
photocatalytic NO conversion, (c) photocatalytic NOx conversion and (d) photocatalytic NO2 selectivity in 56 NCV cycles for each ML strategy,
where colours represent the number of times the MSE falls within this range.

This journal is © The Royal Society of Chemistry 2024 J. Mater. Chem. A, 2024, 12, 13281–13298 | 13293
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distribution during training; therefore, the model's insufficient
ability to generalise these data points during the learning
process results in an underestimation of the material's photo-
catalytic performance predictions.

3.5.2 Predictive performance based on optimal strategies.
Given their lowest MSEs, the “modied property-prior strategy”
was used to predict NO conversion and NO2 selectivity on the
entire data set, while the “property-prior strategy” was used to
predict NOx conversion from our synthesis parameters and
physicochemical data in this work. A 5-fold cross-validation is
used to determine the best model in each prediction step. The
results of this are summarized in Table 3.

Fig. 9(a)–(c) show the scatter plot of NO conversion, NOx

conversion and NO2 selectivity on the predicted results against
their real results, respectively. Their average MSE and R2 scores
are also indicated in the plots. The data show that the average
MSE of the model for predicting NO conversion is 4.87, and the
average MSE of the model for predicting NOx conversion and
NO2 selectivity is 0.85 and 359 respectively. This means that the
model's errors in predicting the three target values are ±2.21,
±0.92, and ±18.95% respectively. In the process of predicting
NO, the model's test values and actual values have a high degree
of agreement (R2 is ∼0.75), whereas, in predicting NOx conver-
sion and NO2 selectivity, the model's agreements are worse (R2

is approximately 0.36 and 0.29, respectively). As mentioned
above, the model underestimates data points with high
performance to some extent and tends to concentrate NO2

selectivity between 40 and 80%. We recognize that the R2 values
were lower for these functional properties, which is mainly
caused by the inherent uncertainty within the dataset itself. The
relatively lower R2 values reect the model's response to the
complexity of the data, rather than solely indicating a deciency
in the performance of the model. Of course, some physico-
chemical properties that strongly govern these functional
properties may not have been considered in the dataset, such as
the charge carrier mobility, etc. However, it should be noted that
our ML predictions have to some extent reduced the
Table 3 Summary of the optimised ML models and their hyper-parame

Predicted feature Best regression model

Crystal size AdaBoost regressor
101 phase XGB regressor
200 phase SVR
211 phase AdaBoost regressor
220 phase AdaBoost regressor
Bandgap Random forest regressor

VLT Random forest regressor
Rq SVR
SSA XGBRegressor
Charpop XGBRegressor
Charlife SVR
NO AdaBoost regressor
NOx SVR
NO2 Random forest regressor

13294 | J. Mater. Chem. A, 2024, 12, 13281–13298
randomness of the original data and made trends among the
data clearer. From Fig. 9, we found that the ML model still
effectively recognized whether the data point is a potential
“high performance” point. This demonstrates that the ML
model has successfully captured the general data trends
through the measured sample properties, and this indicates
that the model can be employed to primarily judge whether
a product would have potential high NOx photocatalytic oxida-
tion performance based only on the synthesis conditions in
future industrial production and experimental design, and
thereby enables an efficient screening of promising material
designs and avoids time-consuming “trial-and-error”
approaches (see Section 3.5.3).

SHAP values (Shapley Additive ExPlanations value plots),
consequently, were used to measure the contribution of each
feature towards the model's prediction.71 This provided insight
into which input features had a stronger inuence on photo-
catalytic NO and NOx activity prediction. The SHAP plot for the
NO conversion of the material is plot in Fig. 9(d) below. In the
plot, a positive SHAP value indicates an enhancement in the
predictive performance of the feature, while a negative SHAP
value denotes a diminishment.72 From these results, it can be
concluded that sample surface roughness and charge carrier
lifetime are the most inuential factors that control photo-
catalytic NOx conversion. However, features such as the crystal
properties as well as the bandgap are seen to have minor
predictive contributions also. This result coincides with our
experimental observations. Moreover, the positive and negative
SHAP values indicate the enhancement or weakening of the
prediction performance by the feature values of the feature.
Taking the SSA of the sample as an example, scatter points with
higher SHAP values tend to have higher feature values (pink
color), which indicates that it is easier to obtain high NO
removal efficiency for samples with higher surface areas. In
contrast, as for VLT, although it does not play a decisive role in
the determination of NO conversion, when the SHAP value is
higher, VLT exhibits lower values (blue color), which shows that
ters to predict each input feature

Optimized hyper-parameter

Learning_rate = 0.001, n_estimators = 100
Learning_rate = 0.1, n_estimators = 50, max_depth = 3
C = 1, gamma = 1, kernel = ‘rbf’
Learning_rate = 0.1, n_estimators = 100
Learning_rate = 1, n_estimators = 100
n_estimators = 200, min_samples_leaf = 2, min_samples_split =
10
n_estimators = 50, min_samples_split = 5, max_depth = 10
C = 100, gamma = 0.1, kernel = ‘rbf’
Learning_rate = 0.1, n_estimators = 200, max_depth = 7
Learning_rate = 0.001, n_estimators = 200, max_depth = 7
C = 10, gamma = 1, kernel = ‘rbf’
Learning_rate = 0.01, n_estimators = 100
C = 10, gamma = 0.001, kernel = ‘rbf’
n_estimators = 200, min_samples_leaf = 2, min_samples_split =
10

This journal is © The Royal Society of Chemistry 2024
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Fig. 9 (a) SHAP value for predicting photocatalytic NO conversion when applying the “modified property-prior prediction” strategy; experi-
mental versus predictive value in simulations of (b) photocatalytic NO conversion, (c) photocatalytic NOx conversion and (d) photocatalytic NO2

selectivity.
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samples with high NO conversion tend to be more opaque.
These conclusions are consistent with those in our comparative
experimental section and conrm the rationality and inter-
pretability of our prediction model.

Moreover, the ML strategy also describes the importance of
synthetic parameters in predicting photocatalytic NO activity. It
is found that the model emphasizes the deposition temperature
as a key factor affecting photocatalytic NO activity, where higher
deposition temperatures usually lead to an increase in activity.
The bubbler temperature and synthesis time during the
synthesis are also major factors affecting the photocatalytic NO
activity, whereas the selection of precursors has a relatively
small impact on the results. This shows that the model suggests
payingmuch attention to the control of deposition temperature,
bubbler temperature and synthesis time in future production to
enhance the NO conversion efficiency, while regulating the
selection of precursors, however, might have a smaller contri-
bution to improving the NO conversion.

The SHAP values of NOx conversion and NO2 selectivity
predicted by the model can be found in Fig. S34.† It is note-
worthy that the model emphasizes the contribution of crystal
size and (101) crystal orientation to photocatalytic NOx conver-
sion and NO2 selectivity, respectively. A higher crystal size helps
to increase the overall conversion rate of NOx, and the preferred
orientation of the anatase (101) phase is negatively correlated
This journal is © The Royal Society of Chemistry 2024
with NO2 selectivity. This indicates that increasing the anatase
(101) phase can potentially reduce NO2 selectivity in photo-
catalytic NO removal. This conclusion was not evident experi-
mentally, and the reliability of this conclusion requires a deeper
study.73

3.5.3 Industrial application and optimisation. Based on
the existing data set and applying the best ML strategies, we
simulated a total of 27 379 data points with different synthesis
conditions (Fig. S35(b)–(d)†), in which TTIP, TiEt and TiBu were
employed as precursors. The synthesis parameters encom-
passed a range of deposition temperatures from 350 to 600 °C
(10 °C increments), bubbler temperatures from 100 to 220 °C
(10 °C increments), and synthesis times from 1 to 27 min (1 min
increments). All generated data, qualitatively speaking, were
deemed reliable, as no negative values were predicted for any of
the physicochemical properties and photocatalytic NOx activity
never outstripped NO activity.

Combining some of the most signicant considerations for
industrial applications of self-cleaning glass for photocatalytic
NOx remediation, we introduce a novel metric. This metric not
only encompasses the photocatalytic NO activity, but also
accounts for the product transparency and suppression of NO2

production in the photocatalytic process.62 The new metric
denoted photocatalytic VLT×NO/NO2, as expressed in eqn (12),
J. Mater. Chem. A, 2024, 12, 13281–13298 | 13295
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Table 4 Validation of ML predicted data and actual data with optimal samples under the new metric

Sample
NO conversion
(%)

NOx conversion
(%)

NO2 selectivity
(%) VLT (%)

Score from the
new metric

Predicted TiEt_430_210_1 2.16 0.687 50.1 80 8636
Actual TiEt_430_210_1 0.412 0.361 8.19 77 2913
Commercial self-cleaning glass 0.274 0.178 34.8 77 1377
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where [X] means the corresponding value derived from our
simulated data, expressed in percentage terms:

MetricVLT×NO/NO2
= [VLT] × [NO] × (100% − [NO2]) (12)

Here, higher values indicate a good balance between high
conversion of NO species to HNO3 and high transparency,
which is oen a requirement for glazing applications.62

Under this new metric, we can lter 5742 data points that
meet the requirements of high transparency, where VLT $ 70.
Among them, when using TiEt as the precursor, 3325 data
points were seen, and when using TiBu as the precursor 2032
points were seen. The smallest number of data points of just
385 was observed when TTIP was used as the precursor. This
shows that using TiEt is more likely to obtain products of high
transparency for glazing applications.

For the optimal conditions predicted by our ML model, we
synthesized a new coating, using the TiEt precursor as an
example, to validate the precision of our ML-assisted optimi-
sation. A picture of the new synthesized sample can be found in
Fig. S35,† along with predictions. The results of the measured
and predicted value are summarised in Table 4), and although
the photocatalytic NO activity and NO2 selectivity differed
somewhat from the prediction, the VLT value was accurately
predicted. Importantly, based on our metric, this sample
ranked 3rd out of the other 12 samples produced in our study
using TiEt which possess VLT > 70%, and showed a metric more
than double that of a commercial self-cleaning glass.

Although there was a some deviation between the predicted
values and outcomes for photocatalytic performances, this
could mainly be attributed to the large error range in our NO2

selectivity predictions. What should also be noted is that not all
relevant physicochemical properties could be measured in our
study, and fed into the ML model. For example, the conduction
and valence band edge energy levels were not measured, which
affect the ability of the material to drive the redox reactions that
ultimately convert NOx. On the other hand, our training data set
was limited to 56 unique samples. Although the experimental
data were reliable and of high quality, we understand that ML
analysis is limited by this relatively small number of groups.
One approach to improve our ML strategy would be to apply an
iterative optimization approach, where one produces coatings
based on optimal predictions from the current ML model, and
then repeatedly inputs data from these new coatings back into
the ML model to rene it. Alternatively, some optimization
algorithms based on stochastic processes and Articial Intelli-
gence (AI) may result in more precise predictions, minimising
the number of unique samples require to be produced and
tested.74
13296 | J. Mater. Chem. A, 2024, 12, 13281–13298
4 Conclusion

This study involved the systematic study of the relationships
between the synthesis parameters, physico-chemical properties
and photocatalytic NOx activity of TiO2 coatings on glass
produced by APCVD. Our analysis combined experimental
methods with machine learning-assisted analysis, with the
main conclusions of the study as follows:

1. 58 distinct TiO2 coatings on glass were produced by
systematically varying the synthesis parameters, with the most
active coating produced using TiEt at a deposition temperature
of 600 °C, a synthesis time of 3 minutes and a bubbler
temperature of 160 °C. The sample showed a photocatalytic NO
conversion efficiency of ∼22.3% and a NOx conversion effi-
ciency of ∼6.6%, with these values being 60-fold higher than
those of a commercial self-cleaning glass.

2. The impacts of synthesis parameters on the physico-
chemical properties and photocatalytic NOx removal activity
were qualitatively determined through our analysis of experi-
mental results. It was found that the deposition temperature
appeared to play the most inuential role, with more active
coatings produced at higher temperatures. In addition, a nega-
tive correlation between the material's optical properties, such
as visible light transmittance and optical bandgap, and the
photocatalytic NO and NOx removal efficiency were also
observed, whereas the surface roughness and photogenerated
charge carrier kinetics of the sample were positively correlated
with the sample photocatalytic NO and NOx removal efficiency.

3. Two effective machine learning strategies were identied.
Their accuracy and robustness in predicting the photocatalytic
activity were rigorously evaluated and compared. The optimal
strategy showed an excellent performance for predicting pho-
tocatalytic NO conversion (MSE= 4.87 and R2= 0.75). The SHAP
value obtained by the optimal strategy revealed that the most
inuential factors for predicting the photocatalytic NO activity
include sample surface roughness, carrier lifetime and visible
light transmittance (VLT), while factors such as crystal proper-
ties and the optical bandgap have less of an impact. In terms of
synthetic parameters, deposition temperature and bubbler
temperature were identied as key synthesis parameters that
control the photocatalytic activity. Importantly, these ndings
were highly consistent with our experimental observations.

4. Simulated data points were generated from our optimised
ML model to identify synthesis conditions that meet the
requirements of high transparency and the highest possible
photocatalytic activity for the potential application of photo-
catalytic glazing for remediating NOx pollution. The ML model
was validated by producing a new sample in accordance with
the predicted synthetic conditions. This new sample was found
This journal is © The Royal Society of Chemistry 2024
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to show comparatively high photocatalytic activity (ranking 3rd
out of the 12 samples produced in our study using the same
precursor that possessed similarly high transparency), whilst
maintaining high visible light transmittance (77%). Moreover,
it showed a photocatalytic NOx removal activity near double that
of a commercial self-cleaning glass.

In summary, this article is the rst study to systematically
explore the relationships between synthesis parameters, physi-
cochemical properties and photocatalytic NOx conversion effi-
ciency of TiO2 coatings using ML strategies. Importantly, we
believe that this novel approach will not only provide guidance
on the future production of TiO2 coatings on window glass for
photocatalytic NOx remediation, but also showcases a more
general approach to the optimisation of photocatalytic coatings
that could be used for a range of processes.
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