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“d-electron interactions” induced CoV,0O¢—Fe—NF
for efficient oxygen evolution reactionfy

Yuchao Guo, & Gaojie Yan, Xi Sun, Shuo Wang, Li Chen and Yi Feng*

The investigation of cost-effective, highly efficient, and environmentally friendly non-noble-metal-based
electrocatalysts is imperative for oxygen evolution reactions (OER). Herein, CoV,0¢ grown on nickel
foam (NF) was selected as the fundamental material, and Fe?" is introduced through a simple Fe®*
immersion treatment to synthesize CoV,Og—Fe—NF. Fe?* is transformed into high oxidation state Fel2+o+
due to interactions between the 3d electrons of transition metals. /In situ Raman spectroscopy analysis
reveals the specific process of OER in the presence of Fe®*?* Being in a higher oxidation state, Fe@*¥*
provides more active sites, which is beneficial for the reaction between water molecules and the reactive
sites of the electrocatalyst, ultimately enhancing the accelerated OER process. CoV,Og—Fe—NF exhibited
an overpotential of only 298 mV at 100 mA cm™2 in 1 M KOH electrolyte, which is lower than that of
CoV,06-NF (348 mV), as well as the comparative samples: Fe—NF (390 mV) and NF (570 mV). The
exploration of high performance, triggered synergistically by the cooperative effect of transition metal 3d
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Energy has played a vital role in the progress of human civili-
zation. Today, the urgent environmental issues caused by the
burning of traditional fossil fuels are becoming more evident,
and the foreseeable catastrophic consequences have spurred
humanity to develop clean energy. Hydrogen, as a high energy
density (120 MJ kg™ ') and carbon-neutral fuel, aligns with the
new concept of civilization development and presents an ideal
alternative to fossil fuels."* Water splitting into hydrogen and
oxygen (H,O — H, +1/20,), operated by electricity derived from
renewable energy sources, is recognized as a viable approach to
large-scale hydrogen production.”” In water splitting, the
hydrogen evolution reaction (HER) occurs at the cathode and
the oxygen evolution reaction (OER) occurs at the anode. The
OER involves a four-electron transfer, whereas the HER involves
only a two-electron transfer. Thus, the efficiency of water-
splitting is determined by the slower OER, which attracts
considerable research attention. Both Pt and RuO, are excellent
electrocatalysts for OER as they are noble-metal-based
materials,**° but their elemental scarcity and prohibitive cost
severely limit their universal applications. A fundamental
challenge that attracts the attention of researchers is to design
low-cost electrocatalysts that are highly active and long-lived for
water oxidation and proton reduction.
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electrons, provides insights into the design of transition metal electrocatalysts for highly efficient OER.

Great attention has been devoted to Transition Metal
Compounds (TMCs) such as oxides, nitrides, dichalcogenides,
and phosphides.” ¢ Due to their unsaturated coordination and
high electrical conductivity, these cations can act as active
catalytic centers for adsorption/activation of OER intermedi-
ates. Guided by the Brewer-Engel bond valence theory, the
combination of early transition metals with empty or half-filled
vacant d-orbitals and late transition metals with internally
paired d-electrons will achieve a significant synergistic effect. As
proof the valence electron configuration of V>* is 3d0 with
empty 3d orbital occupy, which is in favor of regulating the local
electronic coordination environment.'” Some recent research
discovered that incorporation of V into late transition metals
could effectively enhance the OER activity of the catalysts.'*>' Fe
has a unique advantage in optimizing the electronic structure of
Ni and Co because of the similar ionic radius and 3d orbital
electron configurations.” At the beginning of 1947, Hickling
et al. found that operating a Ni-alkaline cell in the KOH solution
containing only 1 ppm Fe impurity could greatly contract the
cell voltage and reduce the OER onset potential, indicating that
the introduction of trace Fe would significantly enhance the
electrocatalytic activity.>® It was reported that Fe acted as a fast
active site in (Ni, Fe)OOH and (Co, Fe)OOH while NiOOH and
CoOOH only contribute as conductive carriers.** In 2021 Wang
et al. found the interfacial electron transfer from Fe to Co and Ni
optimizes the eg filling of Co and Fe sites, which is beneficial for
the surface reconstruction to COOOH and FeOOH during OER
process.>

In this study, we used a simple preparation route to grow
CoV,0¢ on the surface of pre-Fe-treated nickel foam. Through
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a redox reaction (2Fe** + 2Ni — 2Fe*" + Ni*") introduced Fe**
into the CoV,04—NF.

XPS analyses showed the synergistic interaction of Fe, V, and
Co cations in the CoV,0¢-Fe-NF catalyst, indicating that Fe**
via 3d electron interaction turns into a novel electronic struc-
ture of Fe*"9",

Metals with higher oxidation states provide the optimum
bonding strength between cations and water molecules and
intermediates, making Fe*"”"* beneficial to reacting with the
adsorbed OH™ and finally deriving an accelerated OER
process.?® This work had explain for the study of the synergistic
catalytic effect for OER of metal sites in Co-O-Fe-O-V system.

The CoV,0s-Fe-NF was synthesized via convenient Fe-
treatment and subsequent sol-gel reaction (Fig. 1, details in
ESIT). The CoV,06-NF counterpart was synthesized in almost
identical method except Fe-treatment, while sample just after
Fe-treatment was also synthesized and designated as Fe-NF.
After that, related tests were used to characterize samples. The
X-ray diffraction (XRD) patterns were displayed in Fig. S17 for
Fe-NF. The diffraction peaks at 26 = 19.7°, 31.9°, 36.8° and
57.6° match well with the (020), (111), (201), and (241) planes of
orthorhombi of FeCl,-(H,0), (JCPDS No. 97-001-5597) which
confirmed the occurrence of the redox reactions. The XRD
patterns of CoV,04-NF and CoV,0s-Fe-NF were displayed in
Fig. S2.1 For CoV,0¢-NF, the diffraction peaks at 20 = 17.6°,
21.9°, 22.4°, 26.1°, 27.6°, 29.1°, 35.7°, 39.7°, and 48.5° match
well with the (101), (102), (022), (031), (122), (112), (202), (203),
(051) and (144) planes of CoV,0¢-(H,0), (JCPDS No. 00-041-
0420) identified the successful synthesis of CoV,O¢ on the
surface of NF. A slight peak shift observed in CoV,0s-Fe-NF
suggest the retained cobalt vanadate crystalline structure with
Fe incorporation, while diminished peaks at 20 = 17.6", 26.0°
and 42.8° imply differential exposure of crystalline surfaces. The
morphology of CoV,0s-Fe-NF, CoV,04-NF, Fe-NF and NF
samples were characterized via scanning electron microscopy
(SEM). Contrasted with an approximately smooth NF surface
(Fig. S3bt), Fig. 2a illustrated the nano-array-like structure on
the surface of Fe-NF, which transformed into densely distrib-
uted nanoparticles in CoV,0s-Fe-NF after the sol-gel reaction.
The size of the nanoparticles on CoV,0s-Fe-NF was estimated
to be 90 nm in diameter (Fig. 2b). The physical photo of
CoV,0¢-Fe-NF was shown in Fig. S3a.f The sample was
uniformly deposited on the three-dimensional NF skeleton. The
SEM image of the cross section showed that the thickness of the
deposited layer of the prepared sample was about 4.79 pum.
Transmission electron microscopy (TEM) image of one
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Fig. 1 Synthesis scheme of CoV,O¢—Fe—NF.
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detached piece of stacked nanoparticles on CoV,04-Fe-NF was
displayed in Fig. 2c¢, while the high-resolution transmission
electron microscopy (HRTEM) image could be seen in Fig. 2d.
The lattice fringes observed in the HRTEM image with lengths
of 0.379 nm and 0.224 nm coincide with the (112) and (022)
plane of CoV,0¢- (H,0),, which was in accordance with the XRD
result. Elemental mapping (Fig. 2f) demonstrated the uniform
distribution of Co, Fe, V and O on the nanoparticle.

The atomic ratio of Fe, Co, V, and O was estimated using
Energy Dispersive Spectrometry (EDS) and found to be 1:5.24:
11.62:36.46. Additionally, the (Co + Fe):V:0 ratio was
approximately 1:1.857:5.823, exhibiting a similarity to the
stoichiometry of CoV,Og (Fig. S41). The atomic ratio of Co: Fe:
V was further confirmed using inductively coupled plasma-
optical emission spectroscopy (ICP-OES), resulting in an esti-
mated ratio of 7.27 : 1: 17.24. The (Co + Fe) : V ratio was found to
be approximately 1 :2.08 (Table S17). The atomic ratio of (Co +
Fe):V: O, as well as the XRD pattern of CoV,0,-Fe-NF, suggests
that Fe was incorporated into the crystalline structure of
CoV,04-(H,0), in the cationic position, consistent with obser-
vations reported in other studies.>”>°

To show the surface chemical environment and electronic
interaction of CoV,0-Fe-NF and CoV,04-NF, they were char-
acterized by X-ray photoelectron spectroscopy (XPS). The survey
XPS spectra reveal the presence of Co, V, Fe, O in CoV,0-Fe-NF
(Fig. 3a) and Co, V, O in CoV,0-NF (Fig. S51), respectively. In
high resolution spectra of Co 2p (Fig. 3b), significant peaks
around 781 and 797 eV could be attributed to the spin-orbit
splitting to Co 2p;, and Co 2py), (ref. 30 and 31) for both
CoV,06-Fe-NF and CoV,0,-NF. As for CoV,04-NF, peaks
centre at 780.85 and 796.90 eV corresponded with Co®* while
the 782.70 and 798.55 eV peaks corresponded with Co®"with two
satellite peaks locate at 782.70 and 803.43 eV. Corresponding
peaks exhibited a blue shift in CoV,0s-Fe-NF. Specifically, Co®*
peaks demonstrated ~0.37 eV shift to lower binding energy at
780.62 and 796.53 eV, while Co>" peaks display ~0.86 eV shifted
to 782.26 and 797.69 eV.**** The blue shift suggested a lower
valence state of Co species in CoV,04s-Fe-NF,* which was
further confirmed by a lower Co®>*/Co®" ratio of (0.66) compared
with CoV,0¢-NF (0.88) calculated via corresponding peak area.

Fig. 3c demonstrates high resolution XPS spectra of V 2p,
with distinct peaks located at 517 and 524 eV respectively
attributed to V 2p3, and V 2p,,. Concerning CoV,04-NF,
deconvoluted peaks of V 2p;/, and V 2p;,, indicate the presence
of high valence V** (517.02, 523.78 eV) and V>* (517.37, 524.76
eV). Although a minor blue shift (~0.07 eV) could be observed in
CoV,0¢-Fe-NF, a lower V>'/V*" ratio (0.65) versus CoV,0s-NF
(0.82) suggests less oxidated V species after Fe incorporation®*—*
(Table S2t). The typical Fe 2p spectrum of CoV,0s-Fe-NF was
displayed in (Fig. 3d), where peaks centred at (714.27 eV) and
(719.90 eV) are identified to Fe** and Fe®', respectively.®
Meanwhile, the high resolution O 1s spectrum (Fig. 4e and f) of
CoV,04-NF and CoV,04-Fe-NF could be deconvoluted into
three peaks in the vicinity of 530, 531.9 and 533.4 eV, which
represent the existence of lattice O (L-O), metal-O (M-O) and
absorbed O, respectively.*®
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Fig. 2 (a) SEM image of Fe—NF, (b) SEM image of CoV,0¢—Fe-NF, (c) TEM image of CoV,0¢—Fe-NF, (d) corresponding HRTEM image of
CoV,06-Fe—-NF, (e) and (f) corresponding elemental mapping.

The effect of Fe incorporation in CoV,04-NF was further the scan rate of 2 mV s ' were shown in Fig. 4a. CoV,04-Fe-NF
investigated by evaluating the electrocatalytic OER perfor- exhibited considerable electrocatalytic OER activity with the
mances in a three-electrode setup with 1 M KOH solution lowest overpotential at the current density of 100 mA cm > (298
(details in ESIt). Linear Sweep Voltammetry (LSV) curves with mV), which surpassed the CoV,04-NF (348 mV), Fe-NF (390
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Fig. 3 (a) XPS survey of CoV,0¢—Fe—NF, (b) XPS spectra patterns of Co 2p and (c) V 2p, (d) XPS spectra of Fe2p, O 1s XPS spectra of () CoV,Og—

NF and (f) CoV,0g—Fe—NF.
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Fig. 4 The OER performance of the electrocatalysts in 1.0 M KOH. (a) LSV curves, (b) Tafel slopes, (c) Nyquist curves, (d) double layer capac-
itances, (e) ECSA normalized LSV curves and (f) comparison of CoV,0g—Fe—NF with other reported similar OER electrocatalysts in alkaline media.

mvV), and NF (570 mV) in this work. Compared with the LSV
curves of NF, the evidently promoted OER performance of
CoV,06-Fe-NF and CoV,06-NF, especially at high over-
potential, imply that the OER activities dominantly result from
cobalt vanadate or Fe incorporated cobalt vanadate. Moreover,
the OER performance of CoV,0¢-Fe-NF was also competitive
among a majority of transition metal catalysts (Fig. 4f).>**®
Compared with the LSV curves of NF, the evidently promoted
OER performance of CoV,04-Fe-NF and CoV,04-NF, especially
at high overpotential, imply that the OER activities dominantly
result from cobalt vanadate or Fe incorporated cobalt vanadate.

Next, the OER kinetics of the catalysts were also evaluated by
Tafel plots (Fig. 4b). Among all synthesized catalysts, CoV,06-
Fe-NF exhibited the smaller Tafel slope (67.1 mV dec ') than
CoV,04-NF (126.31 mV dec™ '), Fe-NF (127.89 mV dec™ '), and
NF (403.17 mV dec ™). It indicates that the kinetics of CoV,04-
Fe-NF were accelerated, owing that Tafel slopes were closely
related to the rate-determine-steps (RDSs) and electron-transfer
reactions.”*® Turnover frequencies (TOF, based on total
amount of metals, details in ESIf) of CoV,0¢-Fe-NF and
CoV,06-NF were also assessed to investigate the promotion in
electrocatalytic efficiency (Fig. S6T). At an overpotential of
298 mV, CoV,0,-Fe-NF displayed an almost higher TOF value
(0.059 s™') than CoV,04-NF (0.003 s~ ). The ascending trend of
TOF value against overpotential reveals that CoV,0s-Fe-NF had
higher TOF values, indicating that it surpasses electrocatalytic
efficiency even at large current density. Electrochemical
impedance spectroscopy (EIS) further elucidated the electro-
catalytic charge transfer of CoV,0s-Fe-NF and its synthesized
counterparts (Fig. 4c). CoV,0-Fe-NF exhibited a smaller
semicircle in the equivalent Nyquist plot, with a fitted charge-
transfer resistance (R.) 0.99 Q, compared to other obtained

© 2023 The Author(s). Published by the Royal Society of Chemistry

catalysts (CoV,04-NF: 1.26 Q; Fe-NF: 10.32 Q; NF: 46.49 Q) at
the overpotential of 605 mV. It was demonstrated that CoV,0¢—
Fe-NF has higher conductivity and accelerated charge transfer
due to Fe incorporation.”

To disclose the origin of promoted electrocatalytic perfor-
mance of CoV,0¢-Fe-NF, electrochemical active surface area
(ECSA) was estimated by double-layer capacitance (Cq4;) method
(details in ESI}), since ECSA has positive relationship with Cg
values. The Cq values were obtained by measuring cyclic vol-
tammetry (CV) at different scan rates in the non-faradaic
regions under the same conditions.” (Fig. S77). According to
the Cy4 values of the synthesized electrocatalysts (Fig. 4d),
CoV,04-Fe-NF exhibited the higher ECSA of 69.0 cm?® than
CoV,04-NF (64.3 cm?®), Fe-NF (47.5 cm?) and NF (38.5 cm?),
indicating an increase in active sites due to the introduction of
Fe. To gain a general understanding of the intrinsic activities,
OER polarization curves normalized by ECSA values were
plotted in Fig. 4e. The CoV,04-Fe-NF still outperformed
CoV,06-NF, demonstrating an intrinsically promoted OER
electrocatalytic ability, which could be attributed to the induced
Fe. In addition, stability investigated by chronopotentiometry
(CP) method was another essential property to evaluate the
performance of electrocatalysts (Fig. S8t). The CP test showed
that CoV,04-Fe-NF maintained a current density of 50 mA
ecm ™ with no significant decrease in current observed after 48
hours of continuous electrochemical OER testing, indicating
the superior long-term stability of the catalyst.

To further probing possible changes in morphology or phase
transformations during OER process, SEM and TEM images of
CoV,06-Fe-NF were recorded after a post-OER for 48 h. SEM
images in (Fig. 5a) illustrated the nanosheets reconstructed on
the surface of CoV,0s-Fe-NF. The morphology was further

RSC Adv, 2023, 13, 18488-18495 | 18491
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characterized via TEM (Fig. 5b and c¢) HRTEM image demon-
strated the lattice fringes of 0.247 nm and 0.236 nm, which
coincided with (130) and (111) plane of FeOOH (JCPDS No.97-
000-1544). TEM image of post-OER CoV,0-NF was demon-
strated in Fig. S9,T where the HRTEM image also illustrates the
crystalline COOOH (012) and (101) at the surface. Raman spec-
troscopy of post-OER CoV,04-Fe-NF (Fig. S107) demonstrated
the E,, bending (461 cm™') and A,, stretching (538 cm™")
vibration of Co-O in CoOOH.?>** A peak centered at 205 cm "
could be typically assigned to a-FeOOH, and the other peak of
the doublets (550 cm ') were likely to be covered by adjacent
CoOOH® Raman peaks. On the contrary, identical Raman peaks
of vanadate are too weak to be found in the Raman spectra.

The HRTEM and Raman results indicated the structural
change on the surface of CoV,0¢-Fe-NF, in which CoOOH and
a-FeOOH act as real OER catalysts.

In the previously reported mechanism for 3d metal-based
catalysts in alkaline media, the OER undergoes through
following four elementary steps:*>>°

*+OH™ — OH* +e¢” (1)
OH*+ OH™ — O*+ H,O () + e~ (2)
O*+ OH™ — OOH* + e~ (3)
OOH* + OH™ — O, + H,O ()+ ¢~ 4)

Next, to verify the mentioned mechanism of OER activity
enhancement and identify the origin of CoOOOH and FeOOH, in
situ Raman spectroscopy was conducted to clarify the structural
change under the OER process (Fig. 5d). Potentials from 1.2 V to

600 800 1000

200 400
Raman shift(cm™)

Fig. 5 (a) SEM, (b) TEM, and (c) HRTEM image of post-OER CoV,0¢-
Fe—NF, (d) in situ Raman spectra of CoV,Og—Fe—NF at the potentials
of 1.2-17 Vin 1 M KOH.
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1.7 V (vs. RHE) were applied to CoV,0s-Fe-NF, and the Raman
spectra recorded at open circuit potential demonstrated similar
peaks with as synthesized CoV,0s-Fe-NF. When the potential
of 1.2 V was applied, intensity of peaks(513 cm " and 681 cm ™,
corresponding to the A, stretching vibration mode of Co-0;*
803 cm ™' and 870 cm ™' belong to the A, stretching vibration
mode of V=0%%) exhibited obvious decrease, and disappeared at
1.4 V, indicating the structural change of vanadate in the cata-
lyst. In addition, the Co-O (of CoOOH) Raman peaks appeared
at 1.4 V, which gradually increased with the ascending poten-
tial. Raman peaks of o-FeOOH was generated at 1.55 V
(205 ecm ™" and 550 cm™ ') with an increasing intensity at higher
overpotential. Notably, peak at 550 cm ™" was not obvious due to
the overlapping A, stretching vibration mode peak of Co-O in
CoOOH. The in situ Raman spectra clarified the structural
change of CoV,0¢-Fe-NF under OER process, resulting that the
vanadate were believed to be conducive on generating more
active sites-FeOOH.

Based on the Pauli*® exclusion principle and Hund's rule,*
the synergistically electronic interplay of Co, Fe, and V cations
in CoV,04-Fe-NF was well explained in light of the analysis of
valence electron structures of metal ions. A Co-O-V unit
(Fig. 6a) was used to analyze the electronic interaction of Co
and V cations in CoV,04-NF. The valence electron configuration
of Co®" was at high-spin state 3d7 with full t,, orbital and one-
electron-filled e, orbital; the valence electron configuration of
V°* was at high-spin state 3d0 with empty t,, orbital and empty
e, orbital, which was in favor of the t-donation from bridging O
to V. Thus, the repulsion between O 2p and Co 3d would be
relieved, leading to a 3d electron form e, orbital of Co*" delo-
calization on the Co-O-V unit.

The valence electron of Fe”* was 3d6, consisting of four-
electron-filled t,, orbital and one-electron-filled e, orbital.*’
Based on the above description, stronger electron interaction
could make a 3d electron from e, orbital of Fe*" delocalizing on

Delocalization

Fig. 6 Schematic representations of the electronic coupling among
(@) Co and V in CoV,06—NF and (b) Co, Fe and V in CoV,0Og—Fe—NF.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the Co-O-Fe-O-V unit when the Fe** being introduced into the
system (Fig. 6b).

Electron delocalization caused the valence state of Fe** to
increase (3) and that Co and V to decrease 81 and 32. This could
be supported by the result of the XPS result. Meanwhile, the
electron transfer from Fe to Co and V optimizes the eg filling of
Co, V and Fe sites, which is beneficial or the surface recon-
struction to CoOOH and FeOOH during OER process.

Conclusions

We use a simple preparation route to grow CoV,0¢ on the
surface of pre-Fe-treated nickel foam. Through a redox reaction
(2Fe*" + 2Ni — 2Fe*" + Ni*"), it introduced Fe** into the CoV,0q
system. The 3d electron interaction of Co-O-Fe-O-V turns Fe**
into a novel electronic structure of Fe*"?*. The Fe®*"?" is
beneficial for reacting with the adsorbed OH™ and finally
derives an accelerated OER process. The CoV,0s-Fe-NF
exhibits superior OER activity with an overpotential of 298 mV
to drive a current density of 100 mA cm ™2, This work introduces
a new strategy for the development of novel electrocatalysts
towards OER and can be broadly applied to the exploration of
advanced materials in generalized catalysis applications.
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