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Atoms in molecules in real space: a fertile field
for chemical bonding
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José Manuel Guevara-Vela c

In this perspective, we review some recent advances in the concept of atoms-in-molecules from a real

space perspective. We first introduce the general formalism of atomic weight factors that allows unifying

the treatment of fuzzy and non-fuzzy decompositions under a common algebraic umbrella. We then

show how the use of reduced density matrices and their cumulants allows partitioning any quantum

mechanical observable into atomic or group contributions. This circumstance provides access to

electron counting as well as energy partitioning, on the same footing. We focus on how the fluctuations

of atomic populations, as measured by the statistical cumulants of the electron distribution functions,

are related to general multi-center bonding descriptors. Then we turn our attention to the interacting

quantum atom energy partitioning, which is briefly reviewed since several general accounts on it have

already appeared in the literature. More attention is paid to recent applications to large systems. Finally,

we consider how a common formalism to extract electron counts and energies can be used to establish

an algebraic justification for the extensively used bond order–bond energy relationships. We also briefly

review a path to recover one-electron functions from real space partitions. Although most of the

applications considered will be restricted to real space atoms taken from the quantum theory of atoms

in molecules, arguably the most successful of all the atomic partitions devised so far, all the take-home

messages from this perspective are generalizable to any real space decompositions.

1 Introduction

More than 60 years have passed since Charles Coulson
famously uttered the phrase ‘‘give us insight not numbers’’ in
a gala dinner speech at a conference in Colorado.1 As overused
as this quote may be, it has lost none of its inspirational power,
although in a recent influential article in the Journal of the
American Chemical Society,2 Neese and coworkers argued in
favor of having the cake and eating it too with their ‘‘give us
insight and numbers’’. Careful examination of this and other
contributions shows, however, that many of those who advocate
for having it all tend to approach the ‘‘insight’’ side from a
‘‘numbers’’ perspective, choosing methods to interpret the
chemical content of a computed wavefunction which are
neither general nor unique, and that typically depend on much
cruder assumptions than those they would admit on their

‘‘numbers’’. Arguably, the interpretation face of theoretical
chemistry still lags behind the astounding computational
advances witnessed in recent times, and the surge of artificial
intelligence and machine learning techniques3,4 will certainly
not contribute to improving this asymmetry soon.

Building an uncontested framework to extract chemical
information from quantum chemical calculations has proven more
difficult than improving the accuracy of the calculations them-
selves. There are several reasons that can be put forward to justify
this fact, which more or less converge on the historical dissociation
between the pre-quantum language spoken by chemists and the
algebraic formalism of quantum mechanics. Adapting our cher-
ished fuzzy chemical concepts—single and multiple bonds, lone
pairs and so on—to the rigid quantum mechanical framework is a
task that has been approached from the different perspectives
devised to find approximate solutions to Schrödinger’s equation.
However, although for instance valence bond (VB) and molecular
orbital (MO) theory will converge to the true wavefunction in well-
defined limits,5 this will not be necessarily the case with their
associated chemical interpretations. This situation has been the
source of much confusion and never-ending debates.

It is our opinion that any acceptable solution to this problem
must come from directly analyzing the wavefunction C of a system.
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The resulting interpretation should be independent of how C is
built, i.e. of the nature of its linearly combined components, be
them orthogonal Slater determinants or non-orthogonal VB
structures, and also of the type of basis sets, if any, used to
construct one-electron functions. These constraints almost
necessarily lead us to consider orbital invariant objects, such
as reduced density matrices (RDMs) or reduced densities (RDs)
of various orders written either in real or in momentum space.
Since chemists tend to think of molecules as real objects
evolving in real space, most, although not all,6–8 of these
approaches rest on real space RDMs. If atom-centered func-
tions are not allowed to be an essential part of the analysis of C,
atoms dissolve in the sea of the N-electron wavefunction, and so
does chemistry. In this regard, the authorized voice of Rueden-
berg and coworkers resonates when pointing out that in order
to build a theory of chemical bonding it is an essential requisite
to postulate that atoms are somehow preserved in molecules.9

The emergence of atoms in molecules is guaranteed by
Kato’s cusp theorem in the non-relativistic regime that we will
be focusing on.10 The lowest (first) order reduced density, the
electron density r(r), displays logarithmic cusps at nuclear
positions with slopes dependent on their nuclear charges. In
fact, the existence of cusps is an easy didactical shortcut to the
foundational theorems of density functional theory.11 The
density determines the type and position of the nuclei of a
molecule, thus its full Hamiltonian. Although these ideas were
not the historical origin of the use of r in chemical bonding, it
serves well our purposes: the simplest of all the RDMs allows us
to recognize the atoms comprising a molecule from its shape.
Provided that it is an accepted experimental fact (e.g. through
X-ray edge absorption spectroscopy) that regions close to the
nuclei (the atomic cores in chemical parlance) are not affected
much by the environment, the examination of r should allow
associating with a particular atom not only the nuclear posi-
tions but also its vicinities. A program to decompose the
density in real space into atomic contributions, or equivalently,
to decompose the space itself into atomic regions, should thus
be accessible. This endeavor was initiated decades ago by
Richard F. W. Bader,12 who proposed to use the topology
induced by an scalar field like the electron density to divide
the space into non-overlapping regions. The so-called Quantum
Theory of Atoms in Molecules (QTAIM) has been very success-
ful, paving the way to many other atomic partitions.

We review in this perspective the general framework behind
real space reasoning in the theory of the chemical bond. We
start by showing how a common formalism, based on atomic
weight factors, can be used to embrace most of the real space
atomic partitions defined so far, including fuzzy and non-fuzzy
(or non-overlapping) decompositions. We then turn our atten-
tion to show how reduced density matrices and their cumulant
residuals can be used to access the two faces of bonding,
related to electron counting and to the decomposition of the
molecular energy. Regarding electron counting, we focus on the
statistical distribution of the atomic populations, the so-called
electron distribution functions, stressing how the fluctuations
of these populations, as measured by the cumulant moments of

their distribution function, are related to bonding indices.
Then, we turn our attention to consider the energy decomposition
emanating from a real space atomic partition, the interacting
quantum atom approach (IQA). Provided that this methodology
has already been reviewed,13 we devote here our efforts to show
the latest developments in the field. The electron counting and
energy partitioning faces are then linked algebraically, showing
how an analytic first order expansion relates bond energies to
bond orders. Finally, a brief account describing how to recover
one-electron functions (orbitals) from real space cumulant den-
sities is also presented.

2 Atoms in real space

In quantum chemical topology (QCT), the focus is put in
extracting chemically relevant information from orbital invariant
scalar (or vector) fields that are used to provide a partition of the
physical space R3. Although modern QCT practitioners can
choose among a large number of these fields, the easiest and
best known partitioning consists of dividing R3 into as many
regions or domains as the number of atoms of a molecule,
associating each of these domains with one of the atoms of the
system. An isolated atom in real space consists of an atomic
nucleus and a given number of electrons characterized by an
electron density that extends to infinity, this implying that an
isolated atom has an infinite volume and that any point in space
should be associated with it. This clear image fades out as soon
as the system contains two or more nuclei, linked or not by a
chemical bond of whatever kind. To which atom does a point in
R3 belongs? Can a point in space belong to two or more atoms at
the same time? Are there better or worse ways to partition R3 into
atomic domains? None of these questions has an answer that
satisfies everyone. We describe in this work a number of options
that have been proposed over the years to carry out this atomic
partition of R3.

An algebraic approach to the atom-in-the-molecule that
encompasses a great variety of possible atomic definitions is
obtained through the use of weight factors oB(r), associated
with chemical objects B, that satisfy14,15

X
B

oBðrÞ ¼ 1 (1)

at any point in space r. There are infinite many ways to define
the oB’s, and the chemical objects B need not necessarily be
identified with atoms although we will do that here. Of course,
this does not preclude the possibility of joining together several
atoms into a single object (a functional group) in such a way
that the number of terms in eqn (1) remains less than the
number of atoms in the molecule.

Under this general framework any atomic partition can be
ascribed to one out of two broad categories: fuzzy and non-
fuzzy. In the former, each oB takes a non-zero value at any r that
can be taken as the degree of participation of atom B at that
point. In a way, a fuzzy partition can be considered as demo-
cratic, as each point belongs to some extent to all the atoms of
the system, while leaving a lot of freedom in how the different
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atomic weights decay (vide infra). In a non-fuzzy decomposition,
each point r is associated exclusively with one of the atoms, so
that if oA(r) = 1 then oB(r) = 0 for B a A. In these cases, the
freedom lies in how the atomic boundaries are chosen.

The shape of fuzzy atomic weights or the interatomic
boundaries of non-fuzzy partitions must satisfy several logical
as well as chemical constraints. In the first case, we expect the
weight of atom B to be close to one in the vicinity of its nucleus
and decay faster or slower according to its size, electronegativity,
and other descriptors. In the second, we expect an atomic region
to be compact, simply connected with a size in agreement with
chemical intuition. With these premises, we will now review
some of the partitions of both types that have been used to date
in QCT.

2.1 Non-fuzzy partitions

If follows from the above discussion that atoms in a non-fuzzy
partition do not overlap at all, but they are characterized by a
set of mutually exclusive domains OA such that oA(r A OA) = 1,
oA(r e OA) = 0 and OA-OB = +. The full set of atoms exhaust
the physical space (,AOA = R3). We will use OA to refer to the 3D
atomic domain of atom A whenever confusion between the
atom and its basin is possible. Different non-fuzzy partitions
differ in the way of choosing the OA.

Probably the oldest non-fuzzy atomic partition reported
comes from basic Solid State Physics,16 where a 3D region
around an atom, the Wigner–Seitz cell, is defined from geo-
metry alone by associating a point in space with its closest
nucleus. In a more general context these are the so-called
Voronoi cells of a system. A straightforward algorithm to build
them starts by building planes that bisect the lines connecting
a given nucleus A with all its neighboring nuclei. These planes
enclose a polyhedron that unambiguously defines OA. In order
to account for the different atomic sizes of, say, atoms A and B,
the plane that cuts their inter-nuclear axis can be located closer
to one of the two nuclei. This can be done by using a multitude
of chemical criteria, e.g. the ratio of atomic or ionic radii.17

The non-fuzzy atomic regions with Voronoi cells, particu-
larly if the latter do not take into account the different sizes of
the atoms, are merely geometric constructs not supported by
any theory or method. Endowed with a much deeper physical
meaning and defined on the basis of fundamental principles of
quantum mechanics lies the QTAIM framework,12,18 originally
introduced by Richard F. W. Bader and his collaborators, which
is nowadays used by a growing number of theoretical and non-
theoretical chemists. Despite detractors, QTAIM atoms are
without a doubt the ones that have the greatest number of
virtues from a theoretical point of view.19 The QTAIM also
paved the way to the development of general real space parti-
tions induced by the topology of other scalar fields, like the
electron localization function (ELF) of Becke and Edgecombe,20

that has proven its power in chemistry21 by isolating bonding
and non-boding regions in molecules and solids and providing
a simple framework to map arrow pushing onto computational
chemistry,22,23 or the electron localizability indicator (ELI) of
Kohout,6–8,24 that provides a partition similar to that of the ELF.

More recently, other atomic-like topological partitions have
been also introduced with their own merits. For instance, the
basins of the molecular electrostatic potential (MEP)25 define
neutral atoms by construction, as shown by Gadre,26,27 and
have been used in recent times by Espinosa and coworkers28 to
define zones of nucleophilic and electrophilic influence in
molecules and to probe bonding and reactivity by Gadre
et al.29 Similarly, the Ehrenfest force vector field has been used
to define force-like atoms30 that behave similarly to QTAIM
ones. Its computation is prone to errors from the asymptotically
wrong behavior of Gaussian functions, a problem that can be
solved by using Slater type orbitals, as shown by Dillen.31 Using
approximate expressions, Tsirelson and coworkers have made
use of this and other related fields to provide a very detailed
picture of interactions in crystals.32 Other fields, like the
Laplacian of r (r2r(r)),33–35 have also been examined, although
their basins have not been found as relevant for chemical
purposes. Although all of these partitions provide complemen-
tary tools in the theory of chemical bonding, we feel that most
of them are in a sense heirs to the QTAIM. Actually, MEP or
Ehrenfest atoms, for instance, are typically used together with
QTAIM ones.

In the QTAIM, the OA regions (customary called atomic
basins) are induced by the topology of the molecular electron
density r(r). The critical points (CPs) of r(r) satisfy rr(rc) = 0,
where 0 is the zero vector, and can be degenerate, lo 3, or non-
degenerate, l = 3, where l is the number of non-null eigen-
values of the Hessian matrix at the point rc, defined as Hij(rc) =
(q2r(r)/qxiqxj)r=rc

, with (x1,x2,x3� x,y,z). The non-degenerate CPs
are classified into four categories according to the number of
positive (p) and negative (n) eigenvalues of H: when s = p�n =
�3,�1,+1,+3 r(rc) is a maximum, a first-order saddle-point, a
second-order saddle-point, and a minimum, respectively. These
CPs are labelled as (l,s) = (3,�3),(3,�1),(3,+1), and (3,+3). The
atomic basins are bounded by surfaces that satisfy a zero-flux
condition rr(r)�n(r) = 0, where n is an outer vector normal to
the surface, which guarantees that the kinetic energy operator
is uniquely defined for a large family of plausible kinetic energy
densities within the atomic basin.19 This result is possibly the
main advantage of QTAIM atoms over other possible atomic
definitions. Note that the density at nuclear cusps is non-
differentiable, although topologically equivalent to a maximum.
When using Gaussian basis sets, the nuclear (3,�3) CPs do
coincide to a large precision with the actual position of the nuclei,
except in the case of very light atoms (say H), where one can find a
spurious significant difference between the nuclear position and
the maximum of r. Most times the number of maxima coincides
with the number of nuclei of the system, with a maximum per
atom. However, under some conditions, it is possible to find non-
nuclear maxima (NNM) in the electron density field. In some cases,
these are also spurious maxima, with r values very close to zero,
that often disappear when the basis set is changed or the quality of
the calculation is improved. However, in other cases NNMs do
possess real entity and physical meaning, having been successfully
related to localized or solvated electrons in electrides.36,37

Very simple metals like lithium were shown to undergo a metal
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to insulator transition at high pressure38 where the metallic
electrons localize at interstitial lattice sites, developing clear
NNMs. The combined use of several QCT descriptors has also
been used to distinguish electrides from similar species, con-
firming the existence of electride-like gas-phase molecules.39

When NNMs appear or disappear depending on the molecular
geometry and we would like to stick to a common number of
maxima at all the geometries, different tricks can be used to
distribute the space associated with the NNM among all the
other atomic basins that do have an associated atomic nucleus.
Be that as it may, the existence of NNMs of the electron density
can sometimes be aesthetically unsatisfactory. Noorizadeh has
proposed using the kinetic energy density, which shows no
NNMs, as a substitute of r(r) to determine pseudo-QTAIM
atomic basins.40 This author claims that atoms defined in this
way satisfy the virial theorem.

The (3,�1) first-order saddle points of r are particularly
relevant in the QTAIM. They are known as bond critical points
(BCPs) and are placed along (or close to) the inter-nuclear line
of some pairs of atoms. At equilibrium geometries, these points
do correspond to traditional chemical bonds in the vast major-
ity of cases. We will say no more here on this subject. Hundreds
of articles have been written about BCPs, their meaning, their
relevance to chemical bonding theory,41,42 and to the computa-
tional implementation that aims to locate them quickly and
without error. We mention here the algorithm of Yu and
Trinkle,43 a game changer for grid-based data that allows for
a very efficient determination of the topology of the electron
density in crystals.

The QTAIM has been generalized to systems with several
types of quantum particles by Shahbazian and Goli, who have
called their method the multi-component QTAIM (MC-QTAIM).44

The MC-QTAIM has been applied to exotic bonds involving
positrons and other elementary particles,45,46 among several other
promising applications.47

2.2 Fuzzy partitions

Contrary to the previous case, the weights oB(r) satisfying
eqn (1) can all of them be simultanously non-zero in fuzzy
partitions. In this way, every point r is shared to different
extents by all the atoms in the system. One of the possible
choices of the oB(r)’s was proposed by Axel Becke,48 just to
facilitate the 3D integration of the one-electron functions that
appear in Density Functional Theory (DFT). Indeed, any inte-
gral I ¼

Ð
FðrÞdr is exactly given by a sum of atomic contribu-

tions I ¼
P
B

IB ¼
P
B

Ð
FBðrÞdr as long as FB(r) = oB(r)F(r), and

the oB(r) weights satisfy eqn (1). If F(r) = r(r) this procedure
divides the total electron density into atomic densities.

In his original proposal, Becke defined the oB(r)’s by divid-
ing the space into fuzzy Voronoi polyedra that take into account
the different atomic sizes through tabulated atomic radii. If, for
the time being, we assume that all atoms are equal in size, the
classical Voronoi cell of an atom A can be defined as follows.
For the pair of atoms A and B, the elliptical coordinate mAB =
(rA � rB)/RAB is defined, where rA and rB are the distances from

nuclei A or B to a given point in space, and RAB is the distance
between both nuclei. Any point r in the plane that bisects this
line has mAB = 0. If the step function s(mAB) is defined as s(mAB) = 1
when �1 r mAB r 0 and s(mAB) = 0 when 0 o mAB r +1, the
Voronoi cell of atom A is given by a weight PA(r) = PBaAs(mAB), i.e. a
point in R3 with PA = 1 belongs to atom A, otherwise it belongs to a
different atom. The above definition provides a non-fuzzy parti-
tion of R3. However, a redefiniton of mAB in such a way that s(mAB)
does not change abruptly from 1 to 0 in going from A to B allows

for a fuzzy generalization of the partition. Becke’s choice is sðmÞ ¼
1

2
1� pkðmÞ½ � with pk(m) = p(pk�1(m)) and p1(m) = (3/2)m � (1/2)m3. A

small value of k, say k = 1, gives a slow decrease of s(m) as we move
away from the nucleus A, and k - N provides again the original
exhaustive partition. In general, the choice k = 3 is close to optimal
and quite appropriate. The equal-atomic-size Becke’s partition of

R3 ends by defining oAðrÞ ¼ PAðrÞ
�P

B

PBðrÞ through stock-

holder sharing, which automatically satisfies eqn (1). To account
for the different atomic sizes, Becke replaces mAB by a new
coordinate nAB = mAB + aAB(1 � mAB

2) in the definition of pk, where
|aAB| r 1/2. The plane that bisects the AB internuclear axis in the
original recipe is displaced towards center A or towards center B
for positive or negatives values of aAB, respectively. Requiring that
any point located in that plane (i.e. with nAB = 0) has rA/rB = RA/RB,
where RA and RB are Bragg–Slater radii of both atoms, leads to
aAB = uAB/(uAB

2 � 1), where uAB = (wAB � 1)/(wAB + 1) and wAB =
RA/RB. When aAB falls outside the |aAB| r 1/2 range, Becke simply
assigns the corresponding endpoint value to it.

Becke’s partition method has been improved over the years
to avoid some of its weak points. For instance, the atomic radii
RA used in the definition of nAB can be determined on the fly and
not from a tabulated list of values. When two atoms A and B are
bonded according to QTAIM, RA and RB can be obtained from
the distance of the BCP to both nuclei. If there is no a BCP point
between A and B, the original recipe can be used.14 This choice
leads to a modified Becke’s method whose behavior is close to
that of the exhaustive QTAIM partition. Another improvement
is to change the definition of nAB, by using49 nAB = (1 + mAB �
wAB(1 � mAB))/(1 + mAB + wAB(1 � mAB)), which automatically takes
into account the possible values of aAB greater than 1/2 or smaller
than �1/2. This situation is not so uncommon and often happens
when A and B have very different sizes. The above scheme,
implemented by Salvador and Ramos-Córdoba,49 has been named
topological fuzzy Voronoi cell (TFVC) partition by the authors. In an
attempt to the TFVC partition to provide atomic electron popula-
tions as similar as possible to the QTAIM values, they choose k = 4,
which does not imply an appreciable loss of precision of the
numerical integrations that are necessary. Voronoi atoms have also
been used by Fonseca Guerra and coworkers as a way to define the
so-called Voronoi deformation density (VDD) charges.50 Among
their many applications, they have been used to unravel a number
of reaction mechanisms and bonding types.51,52

As a last variant of Becke’s partition, it is worth mentioning
about the proposal by Köster et al.53 These authors point out
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that the computation of the oB(r)’s in the original algorithm
grows with the third power of the number of atoms, which
means that their calculation can be computationally very
expensive. To remedy this they employed a modification of
the atomic weight functions proposed by R. E. Stratmann
et al.54 that involves replacing the p1(m) expression used by
Becke by another functions q1(m;a), defined as q1(m;a) = �1,
q1(m;a) = (3/2)(m/a) � (1/2)(m/a)3, and q1(m;a) = +1 for m r �a,
�a o m o a and m Z a, respectively. Moreover, they iterate
this function three times to arrive finally at the function

sðm; aÞ ¼ 1

2
1� pfp½qðm; aÞ�g½ �, which is the analogous to Becke’s

s(m) function. Köster et al. choose a = 0.7. The different defini-
tion of q1 depending on the value of m dramatically reduces the
CPU time required to construct the integration grids.

We stress that both Becke and Voronoi-like decompositions
are geometric constructions lacking physical meaning. Their
usefulness lies in their computational efficiency, or, as in TCFV,
in its resemblance to other physically rooted decompositions,
like that provided by the QTAIM. A radically different way of
dividing the real space into fuzzy atoms is the one proposed by
Hirshfeld as soon as in 1977.55 In order to carry out a population
analysis in molecules, Hirshfeld introduced the reasonable idea
that, at each point in space, the ratio between the density of one of
the atoms (rA(r)) and the total electron density (r(r)) should be the
same as the ratio between the atomic density of the isolated atom A

(r0
A(r)) and the so-called promolecular density r0ðrÞ ¼

P
A

r0AðrÞ
� �

.

In other words

rAðrÞ
rðrÞ ¼

r0AðrÞP
A

r0AðrÞ
¼ oAðrÞ ) rAðrÞ ¼ oAðrÞrðrÞ: (2)

The r0
A(r)’s are usually taken as the spherically averaged atomic

densities of neutral atoms.
An outstanding virtue of the atomic densities defined by eqn (2)

is that they minimize the Kullback–Leibler entropy deficiency
functional,56 defined by S ¼

P
A

Ð
rAðrÞ ln rAðrÞ

�
r0AðrÞ

� �
dr; so that

these rA(r)’s best preserve the information contained in the refer-
ence r0

A(r)’s. This property places Hirshfeld’s and related atoms
among the very limited category of atoms-in-the-molecule that
satisfy the physical properties or mathematical constraints. We
refer the reader to the works of R. Nalewajski regarding the
information on theoric treatment of chemical bonding.57 The
original Hirshfeld partition exhibits some clear deficiencies. One
of them is the strong dependence of the final electron population
of the atoms-in-the-molecule (AIM) on the densities of isolated
atoms, which is given by �nA ¼

Ð
oAðrÞrðrÞdr �

Ð
rAðrÞdr. For

instance, the %nNa and %nCl values in the NaCl molecule, when the
neutral r0

Na0
and r0

Cl0
densities of the isolated atoms are used to

construct r0(r), are very different from those obtained when the
ionic references r0Naþ and r0Cl� are employed. In the first case, the
net charges qNa = ZNa � %nNa and qCl = ZCl � %nCl are too small, and
far from the values obtained when r0Naþ and r0Cl� are used in the
method. It seems that Hirshfeld’s original method tends to provide

atomic charges close to those of the isolated atomic densities, and
hence it does not account properly for ionic interactions.

There are several recent proposals aimed at improving
Hirshfeld’s original method. For instance, Bultinck et al.,58 in
an attempt to minimize the strong dependence of the values of
the %nA’s on the atomic densities of isolated atoms, proposed the
iterative Hirshfeld partition (Hirshfeld-I). As in the original
method, the starting point (iteration zero) is computing the
oA(r)’s given in eqn (2) from some reference atomic densities
r(0)

A (r)’s. Let us call these initial weights o(0)
A (r). They are

customary taken as the atomic densities of the isolated neutral
atoms, although it has been proven that the final results do not
depend on this choice. Next, the net charges of the atoms are

computed as qA ¼ ZA � �n
ð1Þ
A ¼ ZA �

Ð
rðrÞoð0ÞA ðrÞdr. If qA Z 0, a

new reference atomic density for A is obtained as rð1ÞA ðrÞ ¼
ð1� lÞr qA½ �

A ðrÞ þ lr qA½ �þ1
A ðrÞ; where l = qA � [qA] and [qA] stands

for the integer part of qA. This procedure is nothing but taking
the new reference atomic density for atom A as equal to the
interpolated value between the isolated densities of ions with
net charges [qA] and [qA] + 1. An analogous recipe is used in

case that qA o 0. Then, improved weight functions oð1ÞA ðrÞ ¼

rð1ÞA ðrÞ
�P

A

rð1ÞA ðrÞ are obtained, and from them new net charges

as qA ¼ ZA � �n
ð2Þ
A ¼ ZA �

Ð
rðrÞoð1ÞA ðrÞdr; in an iterative process

that converges when the qA’s in two successive cycles are less
than a threshold value. A fast iterative procedure has been
developed,59 based on Newton’s method, which allows the
convergence of the process to be achieved in very few cycles
(normally, less than 10). An important point of Hirshfeld-I
method is that the final atomic densities rA(r) yield total
electron populations of the atoms-in-the-molecule similar to
those provided by the atomic references used to calculate the
oA(r) weights of the last cycle. Better variants that try to improve
on still present caveats have also been published, like in the
variational Hirshfeld method proposed by Heidar-Zadeh and
coworkers.60 We will not extend here any more discussing the
progressive improvements of Hirshfeld’s method. For further
information, we refer the reader to ref. 60. We notice that close
to fifty years after Hirshfeld’s original idea, the literature is
riddled with a number of modified Hirshfeld rules that make it
difficult for a non-expert to choose among them. This should be
contrasted with QTAIM atoms, that have remained constant
over that period of time.

Another procedure to obtain atomic densities rA(r), very
similar in spirit to the one just discussed, although formally
different in its implementation is the iterative stockholder
partitioning.61 Contrary to Hirshfeld-like methods, it does not
require any calculation of the atomic densities of isolated
atoms. It starts assuming oA(r)’s equal to 1 for all the atoms.
Then, initial atomic densities are obtained by using

rAðrÞ ¼ oAðrÞ
,X

A

oAðrÞ
 !

� rðrÞ (3)
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These atomic densities are then spherically averaged around
their respective nuclei and taken as the next generation of
atomic weights,

oAðrÞ ¼
1

4p

ð
sin yAð ÞdyAdfArAðrÞ � rAðrÞh ia: (4)

The above integration is performed numerically and r refers
to the absolute position of an electron. The integral itself,
however, depends only on rA, the distance from nucleus A to
the point r. Eqn (3) and (4) are applied until convergence.

All the partitions discussed so far, and also several unreported
variants of them, require numerical integrations. In the case of
Becke-like partitions, the method was designed to recover a global
expectation value (typically, the exchange–correlation energy) by
adding up all the atomic components. Many algorithms have
been published to perform such integrations, but describing them
is beyond the scope of this paper. We only want to point out that
they can be grouped into two large families: those used for
exhaustive partitions of R3 (typically, although not exclusively,
the QTAIM partition) and those specifically focused on space
partitions in fuzzy atoms.

To conclude this subsection, we must finally mention some
other procedures that, albeit not strictly being atomic partitions
of real space, have been widely used over the years, or are
relevant to this particular work. Of course, it is mandatory to
mention Mulliken’s partition, used almost exclusively in the
context of population analyses, and conventionally defined by

rðrÞ ¼
P
A

rAðrÞ with rAðrÞ ¼
P
i;j

rAij fiðrÞfjðrÞ, where the f’s are

nucleus-centered primitive functions, rij are density matrix
elements, and rA

ij = rij, rA
ij = 0 or rA

ij = (1/2)rij when both fi

and fj, none of them, or only one of them (fi or fj) are centered
at nucleus A, respectively. Formally similar to Mulliken’s atoms
are the minimal deformation atoms defined by Fernández-Rico
et al.,62 called deformed atoms-in-molecules (DAM) by these
authors. They are determined by requiring that each bicentric
contributions to r(r) has a minimal deformation. In the end,

this criterion leads also to rðrÞ ¼
P
A

rAðrÞ and rAðrÞ ¼P
i;j

rAij fiðrÞfjðrÞ; where rA
ij takes the same values as in Mulliken’s

atoms, except when only fi or fj is centered at A, in which case
rA

ij = rij if the function centered at A is the one with the largest
exponent, and zero otherwise.

A comparison between the oA weights for the C and O atoms
of the CO molecule in some of the partitions discussed so far is
found in Fig. 1 (mod-H is a variant of the Hirshfeld partition
that has not been discussed here). As we can see, TFVC with k = 3
is the only case for which oC = oO = 0.5 at the BCP (denoted by a
solid vertical line at about 0.66a0). At this point the QTAIM
weight for the C (O) atom changes abruptly from 1 (0) to 0 (1).
Although the figure illustrates the behavior of oC and oO only
along the internuclear axis, it seems clear how the resemblance
between the QTAIM and TFVC partitions increases as k grows.

An important difference between fuzzy and non-fuzzy atoms
is illustrated in Fig. 2, where we have lotted the atomic density
of the left-H atom of the H2 molecule in four different

partitions. We can see that the DAM density considerably
invades the right part of the figure, that belongs in the QTAIM
partition to the right-H atom. To a lesser extent, this situation
also happens in the other two fuzzy partitions of the figure
(Becke and mod-H). This behavior of overlapping atomic
densities is general: fuzzy atoms display appreciable values in
areas that, according to the QTAIM exhaustive partition, should
be associated with other atomic moieties. Although orbital

Fig. 1 Hartree-Fock (HF) TZV(2p,3d)++ atomic weight functions oA(r) for
carbon (AQC) and oxygen (AQO) atoms of the CO molecule along the
internuclear axis. C and O nuclei are at the�0.0424 and�2.0424 positions
along the C–O axis, respectively. Labels Becke, TFVC (k = 3), and DAM
stand for the original Becke’s partition with Bragg–Slater radii, the modified
Becke’s partition with topological atoms, defined in the text as topological
fuzzy Voronoi cell (TFVC) partition, and the deformed atoms in molecules
(DAM) by Fernández-Rico et al., respectively. mod-H refers to a modified
Hirshfeld partition not described in the text. Reprinted with permission
from J. Chem. Theory Comput., 2006, 2, 90–102. Copyright 2006 Amer-
ican Chemical Society.

Fig. 2 CAS[2,2]/6-311G(p) atomic density for the left H atom of H2 along
the internuclear axis. Left and right H atoms are at �0.7 and +0.7a0,
respectively. Labels Becke and DAM have been defined in the text. mod-H
refers to a modified Hirshfeld partition not described in the text. CAS[n,m]
stands for a complete active space calculation with n electrons in m spin–
orbitals. Reprinted with permission from J. Chem. Theory Comput., 2006, 2,
90–102. Copyright 2006 American Chemical Society.
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interpenetration is at the core of chemical thinking, fuzzy
atoms seem to be less suitable than non-fuzzy ones as chemical
bonding issues are regarded.14

3 The two faces of bonding: electron
counting and energy decomposition

Once a suitable decomposition of a molecular system into
atoms has been chosen, i.e., once a set of atomic weights oA

has been adopted, all expectation values can be partitioned into
domain contributions. In order to simplify as much as possible,
we will only consider spin independent operators in what
follows. Let us take a general symmetric n-electron operator

Ô ¼
X

i1 o i2...o in

ô ri1 ; . . . ; rin
� �

: (5)

The structure of this expression includes, for instance, both the

kinetic energy, T̂ ¼
P
i

rri
2; as well as the interelectron repulsion

Ĝ ¼
P
io j

rij
�1 operators. Defining the nth order reduced density

matrix (nRDM) (in McWeeny’s normalization convention),63 as

rnð1; ... ;n;10; ... ;n0Þ¼
N

n

 !
n!

ð
C�ð10; ... ;N 0ÞCð1; ... ;NÞdnþ1 ���dN ;

(6)

where we have abbreviated spin-spatial coordinate xi as i, and
then the expectation value of operator Ô is given by

hOi¼ 1

n!

ð
ôrnð1; ... ;n;10; ... ;n0Þd1 ���dn: (7)

As it is customarily done, in this last expression, the operator
acts on unprimed coordinates, after which the primed coordinates
are equated to the unprimed ones before integration. Partitioning
now the position of each electron into atomic regions, i.e. introdu-
cing a

P
A

oA rið Þ¼1 term for each electron coordinate, we arrive at

a general atomic partition of hOi:

hOi¼ 1

n!

X
A1

���
X
An

OA1 ;...An ; (8)

where OA1;...An ¼
Ð
oA1
ð1Þ���oAnðnÞôrnð1; ... ;n;10; ... ;n0Þd1 ...dn.

In this way, the expectation value of any one-electron operator
will become a sum of atomic components, that of a two-electron
operator a sum of pairwise additive interatomic terms, etc.
Typically, but not necessarily, it is the expectation value of the
density matrices themselves as well as of the Hamiltonian of
the system that are decomposed into atomic contributions. In
the first case we come to the electron counting perspective of
chemical bonding that divides the number of electrons or
electron tuples (pairs, trios, etc.) in an atomic-wise manner.
Taken to the limit, when each of the N electrons is integrated
over some atomic domain, we come to the probability of finding
a given partition of the electrons into the m nuclei of the system,
what it has been called an electron distribution function (see
below).64 If the one particle density (the diagonal 1RDM) or the

electron density (r or 1RD) are integrated, we arrive at a popula-
tion analysis. Similarly, if the pair density (the 2RD) is integrated
over two different atomic regions, we get the number of electron
pairs between them, NAB, a figure that can be compared to the
product of the average electron populations, NA � NB.65 This
product would provide the number of pairs if the electron
populations of the two centers would be statistically indepen-
dent. The difference NAB � NANB is thus a measure of the
number of pairs shared between the atoms, a quantity that
chemists associate with Lewis pairs and with bond orders. Note
that this is actually a covariance. Descriptors based on the
fluctuation of electron populations lie at the heart of the success
of electron counting rules, and can be accessed through the so-
called cumulant density matrices (CDMs).

In this regard, Mayer66 defined a bond order that takes into
account the fact that, for atoms which interact with each other,
the expectation value hN̂AN̂Bi differs from the product hN̂Ai �
hN̂bi, where N̂A and N̂B are the atomic electron population
operators of atoms A and B, respectively. By using a second
quantization formalism for non-orthogonal orbitals, he
obtained dAB = �2[hN̂AN̂Bi � hN̂Ai � hN̂Bi]. Shortly after, Giam-
biagi et al.67 rewrote Mayer’s expression in the equivalent form
dAB = �2 h(N̂A � hN̂Ai) � (N̂B � hN̂Bi)i, which gives the bond
order a clear statistical interpretation, as it measures the
correlation between the charge fluctuations on the individual
atoms, vanishing when the motions of the electrons in A are
independent from the motions of the electrons in B. Some years
later, Angyan et al.68 made a comparison between two possible
definitions of the bond order: the one derived from the
exchange part of the two-particle density matrix and the other
expressed as the covariance of the number of electrons between
the atomic centers. Both definitions lead to identical formulae,
although they predict different dAB’s for correlated wavefunc-
tions, as a consequence of excluding the correlation component
of the two-particle density matrix. Actually, the fluctuation-
based definition of the bond order had alreay been proposed
in the seventies by Julg and Julg.69

If, in contrast, it is the Hamiltonian Ĥ that is partitioned, we
arrive at a decomposition of the total energy in real space.
Provided that the standard Coulomb Hamiltonian contains both
one-electron (e.g. the kinetic energy and electron–nucleus
attraction) as well as two-electron operators like the interelec-
tron repulsion, the total energy will be written as a sum of intra-
and inter-atomic terms. Separating these two types of contribu-
tions is the origin of the interacting quantum atoms (IQA)
approach,14,70 which is probably the only orbital invariant
energy decomposition scheme available at this time. As the
only non-local operator in Ĥ is the kinetic energy, the only
RDMs needed to perform an IQA decomposition are the non-
diagonal 1RDM and the diagonal 2RDM.

We notice that, save the kinetic energy, which is a non-
multiplicative operator that modifies non-trivially the 1RDM on
which it acts, both the electron–nucleus and electron–electron
interactions behave as distance-scaled RDMs. Thus, a close
relationship between electron-counting descriptors, which
depend on domain-averaged RDMs, and some IQA energetic
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terms exists. This provides a formal justification of the well-
known bond-order bond-energy (BEBO) relationships.71

3.1 Cumulant densities and density matrices

The nth-order cumulant density matrix (nCDM),72 rc
n, is

obtained after extracting from the nRDM, rn, all those compo-
nents that can be expressed in terms of RDMs of orders lower
than n. If the same procedure is done with the diagonal
components or reduced densities (RDs), the so-called cumulant
densities (nCDs) are obtained. nCDs and nCDMs contain infor-
mation about the n-electron correlations in the system. As Paul
Ziesche73 has shown, these objects are actually the generators
of the n-particle fluctuations of the electron distribution. In this
sense, nCDs are intimately linked to the previously commented
electron distribution functions,64,74,75 see below. Expressions
for several cumulants can be found in ref. 76. The first, second
and third order ones are, respectively,

rc
1(r1) = r1(r1), (9)

rc
2(r1,r2) = r1(r1)r1(r2) � r2(r1,r2), (10)

rc3 r1; r2; r3ð Þ ¼ r1r2r3 �
1

2
Ŝr1r23 þ

1

2
r123; (11)

where Ŝr1r23 = r1r23 + r2r13 + r3r12 are symmetrized products,
and ri, rij, and rijk are abbreviations for r1(ri), r2(ri,rj), and
r3(ri,rj,rk), respectively. The first order cumulant density is just
the electron density, and the second order one coincides with
the so-called exchange–correlation density, rxc

2 , which is imme-
diately related to the McWeeny’s exchange–correlation hole:

hxc r2jr1ð Þ ¼ �rxc r1; r2ð Þ
r1 r1ð Þ

¼ r2 r1; r2ð Þ
r1 r1ð Þ

� r1 r2ð Þ; (12)

that measures the difference between the (conditional) prob-
ability density of finding an electron at r2 when another is
located at r1 and the unconditional one, i.e. how the presence of
an electron at r1 influences another at r2. Note that the hole
integrates to one electron while the exchange–correlation den-
sity integrates to the total number of electrons in the system, N.

A relevant feature of nCDs is their extensivity, which allows
rc

n�1 to be obtained from rc
n by integrating out the nth electron:

rcn�1 r1; . . . ; rn�1ð Þ ¼
ð
rcn r1; r2; . . . ; rnð Þdrn: (13)

If we recursively apply this relation to electrons n, n � 1,. . ., 1
we obtain ð

rcn r1; . . . ; rnð Þdr1 � � � drn ¼ N: (14)

Thus, a partition of any nCD into atomic contributions by
integrating each of its electron coordinates over a given region
provides a decomposition of the N electrons to which the
cumulant integrates to, into atomic terms:

N ¼
X
A1

X
A2

� � �
X
An

NA1A2���An : (15)

The NA1A2� � �An
terms in the above expression, with all Ai’s

different, are n-center generalizations of the NAB two-center

populations, and provide the number of electrons involved in
n-center fluctuations/delocalization/bonding. This provides the
basis for introducing a hierarchy of electron counting techniques,
which lead to the multicenter bonding indices initially introduced
by Giambiagi, Bochicchio, Ponec, Bultinck, Matito, Solà and other
authors.77–80 We start by discussing electron counting issues, and
move afterwards to energetic ones. The formalism of reduced
density matrices of different orders as well as the nCDMs,
particularly the second order one, has been widely employed by
Alcoba, Bochicchio, Lain, Torre, and others, in the analysis of
local spins, the definition of several population analyses and
covalent bond-order definitions, atomic valences, or the effectively
unpaired electron density,81–86 using both orbital-based
(Mulliken) as well as topological partitions of space.

4 Electron counting

Armed with electrons as well as with energy partitioning, we
will now consider how this general framework has been used to
build insight into chemical bonding problems. Almost all the
results that we will review have been obtained with the exhaustive
QTAIM partition, although we stress that, as shown, the under-
lying methodology can be equally applied to any other partition.

4.1 Electron-number distribution functions

As explained in Section 3, any integral in which a given nRDM
or nRD appears as part of the integrand can be appropriately
partitioned into atomic (fuzzy or non-fuzzy) contributions. To
put it bluntly, an arbitrary function F(r1,. . .,rN), where N is the
number of electrons, can be expressed as a sum of mN con-
tributions, being m the number of atoms of the system:

F r1; . . . ; rNð Þ ¼
Xm
B1

� � �
Xm
BN

FB1 ���BN
r1; . . . ; rNð Þ; (16)

where

FB1� � �BN
(r1,. . .,rN) = oB1

(r1)� � �oBN
(rN)F(r1,. . .,rN). (17)

Taking F(r1,. . .,rN) = 1, it is evident that, just as eqn (1) performs
a partition of R3 into m domains, eqn (16) defines a partition of
the 3N-dimensional space into mN regions. Suppose now that
we have a normalized N-electron wavefunction C that (for the
time being) depends only on the spatial coordinates r1,. . .,rN,
and take F(r1,. . .,rN) = C*(r1,. . .,rN)C(r1,. . .,rN), which is nothing
but an scaled nRDM, then

Xm
B1

� � �
Xm
BN

ð
dr1 � � � drNFB1 ���BN

r1; . . . ; rNð Þ ¼ 1: (18)

Furthermore, assume that n1 values of the Bi’s are equal to O1,
n2 values are equal to O2,. . . and nm are equal to Om, with 0 r
ni r N and n1 + � � � + nm = N. Since F(r1,. . .,rN) is symmetric with
respect to the exchange of any two of the coordinates ri and rj,
eqn (18) can then be re-written as

X
n1 ;n2;...;nm

N!L
ð
dr1 � � � drNFB1 ���BN

r1; . . . ; rNð Þ ¼ 1; (19)
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where N!L = N!/[n1! � � � � � nm!]. The number of terms in the
summation is equal to NN,m = (N + m � 1)!/[N!(m � 1)!] that
counts all the possible ways to choose the n1,. . .,nm set of
electron counts such that their sum is equal to N. Similarly,
the factor N!L simply counts the number of different possibi-
lities of choosing the Bi fragments such that n1 of them
coincide with O1, n2 with O2, and so on. Without any loss of
generality it can be assumed that B1 = � � � = Bn1

= O1, Bn2+1 = � � � =
Bn1+n2

= O2, and the last nm domains are equal to Om.
Eqn (19) is valid for fuzzy or non-fuzzy partitions of R3.

However, in the latter case, where each oB(r) is 0 or 1, it is
customary to write it in the form

X
n1;n2;...;nm

N!L
ð
D

dr1 � � � drNF r1; . . . ; rNð Þ ¼ 1; (20)

where D is an N-dimensional domain in which the first n1

electrons are integrated over O1, the second n2 electrons over
O2,. . . and the last nm electrons over Om. Remembering that C is
normalized, each term of the above sum is the probability that
n1 electrons are found in O1, n2 electrons are found in O2,. . .

and nm electrons are found in Om

pðSÞ � p n1; n2; . . . ; nmð Þ

¼ N!L
ð
D

dr1 � � � drNF r1; . . . ; rNð Þ: (21)

This statement simply arises from Born’s interpretation of
quantum mechanics. The set S = (n1,n2,. . .,nm) � {ni} defines a
real space resonance structure (RSRS) and, from eqn (20), the
sum of all of them, as it should be, is equal to one:X

S

pðSÞ ¼ 1: (22)

We have been assuming so far that each Oi identifies an atom-
in-the-molecule. However, the oi’s of a subset of atoms can be
added up to define fragment weight functions. This means that
m in all of the above can be identified with the total number of
fragments in which we have grouped the atoms of the molecule.
For instance, in methane (CH4), we can define fragment 1 as
the carbon atom and fragment 2 as the sum of the four
hydrogen atoms. This gives m = 2; i.e. R3 = O1 + O2, with O1 �
O = OC and O1 � O0 = OH1

+ OH2
+ OH3

+ OH4
. In this and all two-

fragment partitions of R3, one has S = (n1,n2) and, since n1 + n2 =
N, each RSRS is defined by just providing the number of
electrons of one of the fragments; say n1 � n. Then, eqn (21)
can be written as

pOðnÞ ¼ N!

n!ðN � nÞ!

ð
O
dr1 � � � drn

ð
O0
drnþ1 � � � drNF r1; . . . ; rNð Þ:

(23)

Although eqn (21) is not properly a probability when the space
is divided into fuzzy atoms, eqn (20) still holds in this case and,
therefore, we will consider the former as a probability in what
follows.

The wavefunction C depends on the full set of electron
coordinates x1,. . .,xN, where xi = r1 � si is the product of a
spatial coordinate (ri) and a spin variable (si). Although the spin

variables si have not been included so far in our discussion, the
generalization of eqn (21) to take them into account is easy:

pðSÞ ¼ N!L
X

s1;...;sN

ð
D

dx1 � � � dxN C x1; . . . ; xNð Þj j2; (24)

where we have replaced F by |C|2.
As written, eqn (24) does not state what the spin for each of the

n1 electrons in O1, n2 electrons in O2, etc. is. If the N electrons are
split in two subsets of Na a and Nb b electrons, with Na + Nb = N, a
RSRS is defined now as S = (Sa;Sb) � {na

1,. . .,na
m;nb

1,. . .,nb
m}, p(S) �

p(Sa;Sb), and the probability that na
1 a electrons lie in O1, na2 a in

O2, etc., and nbm b electrons lie in Om, can be obtained by
considering 2m domains, the first m with a spin and the last m
with b spin. The result is

pðSÞ ¼ N!LaLb

ð
D

dx1 � � � dxN C x1; . . . ; xNð Þj j2; (25)

where Ls = [ns
1� � � � �nsm]�1 and s = (a,b). Now, D is a N-dimen-

sional domain such that the first na1 a electrons are integrated over
O1, the following na2 a electrons over O1,. . . and the last nb

m b
electrons over Om. The set of all probabilities, {p(S)}, is called the
electron number distribution function (EDF) of the system for the
given partition. When the number of electrons of each spin in
each domain is specified one speaks of a spin-resolved EDF.
Otherwise, we have a spin-unresolved EDF. There are NN,m =
(N + m� 1)!/[N!(m� 1)!] and NN,m = NNa,m� NNb,m = (Na + m� 1)!/
[Na!(m� 1)!]� (Nb + m� 1)!/[Nb!(m� 1)!] probabilities in the spin-
unresolved and spin-resolved EDFs, respectively. From their
definition, it is notorious that the spin-resolved EDFs give a more
detailed information than the spin-unresolved ones, and also that
the latter can be obtained by adding the spin-resolved probabil-
ities with a given value of na1 + nb

1, na
2 + nb2,. . ., and na

m + nb
m.

Fast algorithms to compute the EDF in both cases, especially
when the space is partitioned into not too many regions (say
m r 6) and the number of electrons is not too large (N r 30),
have been developed over the years. We refer the reader to the
original references to learn more about them.64,75,87,88 For
single-determinant wavefunctions (SDWs) there is no a priori
difficulty (even for large N’s) to calculate all the p(S)’s when the
space is divided exclusively into two regions O + O0 = R3, as an
explicit recursive formula was developed by Cancès et al.87 For
m 4 2, there is no explicit formula to compute the EDF.
However, in many circumstances, several approximations
endowed with a clear physical meaning can be used. Among
these, we highlight the so-called core approximation. In the
present context, it can be stated as follows: if from the set of
molecular orbitals (used almost universally in the construction
of C) a number of them are almost entirely localized on one of
the fragments, we can simultaneously increase by two (one a
plus one b) the number of electrons of that fragment per
localized orbital and exclude them from the calculation. In this
way, we can reduce the effective value of N considerably and
restrict the EDF calculation to the set of valence electrons.

It is customary in real space chemical bonding analyses to
measure the degree of localization of a (normalized) molecular
orbital (MO) fi(r) in a region O by the quantity hfi(r)|fi(r)iO,
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i.e. the overlap of this MO with itself in that region. This is the
diagonal element of the atomic overlap matrix (AOM),
defined by

S�Oji ¼ SO
ij ¼ fiðxÞjfiðxÞh iO� dsi ;sj

ð
oOðrÞf�i ðrÞfjðrÞdr: (26)

This AOM definition holds for fuzzy and non-fuzzy partitions of
space. The AOM integrals in all the domains O1,. . .,Om are the
basic building blocks that one needs to compute the EDF in all
cases (single- or multi-determinant wavefunctions (MDW), two
(m = 2) or more (m 4 2) fragments, . . .).

Extremely important for the analysis of chemical bonding by
statistical analysis of EDFs is the fact that SDWs give rise to
spin-resolved EDFs with a and b subsets of electrons that
behave as statistically independent entities. This means that
p(Sa;Sb) is given by the direct product of the a and b EDFs

p(Sa;Sb) = pa(Sa) # pb(Sb). (27)

This is no longer true for MDWs. However, even in this case,
there is a certain degree of a–b statistical independence which
greatly facilitates the calculation of the spin-resolved EDF.
When C is a MDW we can write it, in general, as

C ¼
X
r

crcr; (28)

where cr are (variational or fixed-by-symmetry) coefficients and
cr is a Slater determinant built with N-spin orbitals fr

1,. . .,fr
N.

When C in eqn (25) is replaced by the above expression, the
spin-resolved EDF results89

pðSÞ ¼
X
r;s

c�r csp
rs Sa;Sb� �

; (29)

where

prsðSa;SbÞ ¼ N!LaLb

ð
D

dx1 . . . dxNc
�
rcs; (30)

and it turns out that it can be written as the direct product of
the corresponding components for both spins, prs(Sa;Sb) =
prs
a (Sa) # prs

b (Sb). Actually, the computational time required to
perform this direct product is an important fraction of that
needed to obtain the full EDF, especially when the total number
of a and b probabilities is very high. In addition to the core
approximation that we have already discussed, much computer
time can also be saved by neglecting in eqn (28) those determi-
nants with coefficients cr smaller (in absolute value) than a
certain threshold value er, or those rs terms in the sum 29 for
which jc�r csjo ers; where ers is another (small) threshold value.

Probabilities for single domains obtained through the
Cancès fast algorithm87 have been widely used both using
QTAIM and ELF basins.90 They have also been employed to
define a new type of spatial partitioning in which general
regions that maximize the probability of finding a given num-
ber of electrons are obtained through shape optimization
techniques. These have been called maximum probability
domains (MPDs),91 and have been examined in molecules92,93

in the mean-field regime, and also in solids.94 MPDs have great
potential in the translation of chemical concepts, like the

electron pair of Lewis, to the orbital invariant realm, but are
notoriously difficult to compute and to generalize to the corre-
lated regime.95 Some efforts to elucidate their properties
and usefulness in the case of strong correlation have been
made through the use of model Hamiltonians like that of
Hubbard.96,97

4.1.1 Chemical bonding from the statistical analysis of
EDFs. Once the EDF of a molecule is available, it is possible
to use it to obtain all kinds of statistical information about it.
As an example, if all the m-fragment probabilities p(n1,n2,. . .,nm)
are known, the marginal probabilities of having n1 electrons in
O1, n2 electrons in O2,. . ., and nm�1 electrons in Om�1 irrespec-
tive of the value of nm are provided by

p n1; . . . ; nm�1ð Þ ¼
X
nm

p n1; n2; . . . ; nmð Þ: (31)

The one-fragment EDF can be obtained as

pðn1Þ ¼
X

n2;...;nm

p n1; n2; . . . ; nmð Þ; or (32)

p n1ð Þ ¼
X
n2

pðn1; n2Þ: (33)

We can obviously join several fragments into a single one, and
add the probabilities in a different way. For instance, if the EDF
for a partition R3 = O1 + O2 + O3 (i.e. m = 3) is known, and we join
O1 and O2 into a new fragment O0 = O1,O2, the p(n0,n3)’s are
given by

p n
0
1; n3

� 	
¼

X
n1;n2

n1þn2¼n10

p n1; n2; n3ð Þ: (34)

In short, all the probabilities for a given partition are immedi-
ately accessible if those for a partition with a larger number of
fragments are known.

Now, let us show how EDFs can provide valuable chemical
bonding information. If we start from the one-center con-
densed probabilities, the pO(n) values for a given fragment O
allow immediate recovery of its average electron population as

nOh i ¼
PN
n¼0

n� pOðnÞ; whose meaning is obvious: we simply

multiply each possible value of the number of electrons in
O(n) by its probability of occurrence (pO(n)) and carry out the
sum for all ns. This value coincides with that obtained by
integrating in R3 the density of the fragment,

nOh i ¼
XN
n¼0

n� pOðnÞ ¼
ð
rOðrÞdr; (35)

where rOðrÞ ¼
P
A2O

rAðrÞ ¼ rðrÞ
P
A2O

oAðrÞ. The sum over A

extends to all the atoms that belong to O. In non-fuzzy parti-
tions (in the QTAIM, for instance), the integral in eqn (35)
amounts to integrating the full density r(r) over the O region:ð

rOðrÞdr �
ð
O
rðrÞdr: (36)

At this point we can immediately notice how the EDF expands
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our knowledge about the electron distribution. A standard
population analysis will simply provide us with an average
number of electrons for an atom. With the use of EDFs one
clearly learns that the electron population fluctuates and that
the average is made up of several electron counts with different
probabilities of occurrence. Once this is understood, the rele-
vance of knowing the width of this atomic electron count
distribution becomes clear. If the width is very small, the atom
will display a very sharp distribution of its number of electrons.
We say that its electrons are localized. If, in contrast, the width
(variance) is large, these electrons must be necessarily deloca-
lized. Where? The covariance of a two-atom joint distribution
will inform us about this. Actually, the cumulants of the EDF
are immediately connected with those of the nRDMs.73,98

For instance, just as hnOi can be obtained from the EDF or from
r(r) (eqn (35) and (36)), the average hnAnBi, where A and B are any
two atoms of the system, can be computed in two different ways:

nAnB¼NABh i¼
X
S

nAnBp nA;nBð Þ¼
ð
rAB2 r1;r2ð Þdr1dr2; (37)

where rAB
2 (r1,r2) = oA(r1)oB(r2)r2(r1,r2). The covariance hnAnBi �

hnAihnBi = h(nA � NA)(nB � NB)i (with NA � hnAi and NB� hnBi) is a
measure of the statistical independence between the two atoms.
Note that this is the difference NAB � NANB commented above. In
the QTAIM, a scaled value of this fluctuation is called the deloca-
lization index (DI) dAB 99,100

dAB = �2cov(nA,nB) = �2h(nA � NA)(nB � NB)i, or (38)

¼ þ2
ð
A

dr1

ð
B

dr2 rxc r1; r2ð Þ: (39)

Thus, the second order cumulant of the probability distribution
function is directly related to the atomic-condensed integral
of the second order cumulant density. Similar, albeit more
cumbersome, relationships exist between the nth order cumu-
lant of the EDFs and integrals of the nCDs, which are used to
define multicenter bond orders.78 We note in passing that
electron population fluctuations in spatial domains have been
used many times in the literature to quantify electron localiza-
tion and delocalization.101,102 It is the fine-grained nature of the
EDFs that provides a new look at their intimate nature.

When the electron populations of A and B are independent
of each other, one has p(nA,nB) = p(nA) � p(nB), and then
cov(nA,nB) = 0, and dAB = 0. dAB is customarily associated with
the bond order between A and B, since it is easy to show that
when the AOMs are condensed a là Mulliken, it coincides with
the Wiberg–Mayer103,104 bond order. It is also closely related to
the covalent interaction energy between both atoms. In a two-
center molecule AB, the DI is positive definite, since an increase
in the number of electrons in A (nA) is accompanied by a
decrease in nB, and vice versa. In molecules with more than
two atoms, this is not necessarily the case. There are situations
(especially, but not only, in excited electronic states), which can
be described as exotic, in which an increase in the population
of one atom (say A) leads to an increase in the population of
another (say B). This gives rise to positive covariances between

both atoms and, consequently, to negative DIs.105 As a collor-
arly, the bond order thus measures the statistical dependence
of electron populations in two atoms. Similarly, a multicenter
bond thus only exist if there is mutual interdependence among
the electron populations of more than two atoms.

As pointed out dAB
Z 0 in diatomic molecules. However, the

limit case dAB = 0 can only occur when there is a single p(nA,nB) a
0 in the molecular EDF. This behaviour can be found, for
instance, in the dissociation limit (RAB - N) of the ground
state of dihydrogen, where the only resonance structure with
non-zero probability is that with one electron in each atom.
However, one can also show that at the Hartree–Fock (HF) level,
dAB does not vanish at dissociation. At this level of theory, the
wavefunction of H2 = HA�HB at any inter-nuclear distante RAB is
given by the C = |sg�sg| and the a and b electrons are statistically
independent. The probability that the a electron be found in

atoms A and B is the same, by symmetry, and equal to pað1; 0Þ ¼

pað0; 1Þ ¼
1

2
; and the same happens with the b electron,

pbð1; 0Þ ¼ pbð0; 1Þ ¼
1

2
. According to eqn (27), the spin-resolved

EDF consists of four equal probabilities; namely

pð1; 0; 0; 1Þ ¼ pð0; 1; 1; 0Þ ¼ pð1; 0; 1; 0Þ ¼ pð0; 1; 0; 1Þ ¼ 1

4
. The

sum of the first two is the spinless probability of finding one
electron in A and the other in B (p(1,1)), regardless of their spin,
and the third and fourth are the probabilities of finding both
electrons in A (p(2,0)) and B (p(0,2)), respectively. Eqn (35)
correctly predicts that each atom has on average one electron,
hnAi = hnBi = 1. However, eqn (38) gives dAB = 1 at any RAB, which
is clearly wrong and highlights the well-known dissociation
problem of the Hartree–Fock model when the two resulting
fragments are open shells. A minimum of two determinants
are necessary to correctly dissociate dihydrogen. A complete
active space calculation with two electrons in two spin–orbitals
(CAS[2,2]), with wavefunction C = c1|sg�sg| + c2|su�su|, where c1

and c2 are variational coefficients, remedies the problem and
results in dAB values very close to those of a full configuration
interaction (full-CI) calculation.98

At the equilibrium geometry, the mixing between the |sg�sg|
and |su�su| configurations in the CAS[2,2] wavefunction of
dihydrogen increases p(1,1) from 0.5 in the single-determi-
nant (SD) calculation to about 0.58, and decreases p(2,0) = p(0,2)
to 0.21. This behaviour can be easily rationalized (see below), and
is quite general. In homonuclear diatomic molecules, electron
correlation tends to narrow the distribution of probabilities
around its neutral atom (NA = NB = N/2) value, and this results
in a decrease of dAB. Actually, in the particular case of dihydrogen,
it is trivial to prove from eqn (38) and the equality p(2,0) = p(0,2)
that dAB = 4p(2,0) = 4p(0,2), so that the DI obviously decreases with
increasing p(1,1) since p(1,1) = 1 �p(2,0) �p(0,2). This result can
be corroborated in Table 1, which contains the EDF in dihydrogen
as obtained with different methods. Notice how badly the Mulli-
ken probabilities behave.

Another example of the decrease in dAB as the width of the
distribution decreases can be seen in Fig. 3, where we have
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plotted the HF and CAS[10,8] p(nA,nB) values for several fuzzy
partitions of space, as well as in the QTAIM partition, all for the
N2 molecule. Only non-negligible probabilities (nA Z 4 or nB r
10) are included in the figure. We observe that the HF p(nA,nB)’s
are very similar in all the partitions, but differ considerably
more in the correlated calculations (except p(6,8), which is very
similar in all the cases). If, in a simple way, we estimate the
width of the distribution by the value of p(7,7), we would
conclude that, according to our previous arguments, the corre-
lated dAB’s should decrease in the order Löwdin 4 Hirshfeld 4
Becke 4 QTAIM 4 Mulliken 4 DAM. As we can see in Table 2
this is what actually happens. The smaller differences between
the HF dAB’s is a consequence of the great similarity between
the HF distributions in the different partitions that we have
already commented on.

4.2 Modeling EDFs

EDFs allow for an interesting classification of chemical bonds.
Let us consider here only the two center case. The EDF for any

two-electron system divided into two fragments A and B is fully
characterized by p(2,0), p(1,1), and p(0,2), which can be col-
lected in the vector

p2 = [p(2,0),p(1,1),p(0,2)]. (40)

Since p(2,0) + p(1,1) + p(0,2) = 1, only two components of p2 are
independent. As seen in the dihydrogen case, p(2,0) = p(0,2),

with pð2; 0Þ ¼ 1

4
or pð2; 0Þo 1

4
for single- and multi-determinant

descriptions, respectively. These results can be immediately
extended to the SD case when both fragments are dissimilar.
Let p and 1 � p be the probabilities that a first electron of an a–
b electron pair is in A (p(A) = p) or B (p(B) = 1 � p), respectively.
Since both electrons on a SDW are independent and indistin-
guishable, we will have p(2,0) = p2, p(0,2) = (1 � p)2, and p(1,1) =
2p(1 � p). To generalize these expressions to the correlated
case, we can reason through a Bayesian analysis as follows.106

Provided that one of the electrons is in A, the probability that
the second one is in B is

p(B|A) = (1 + f )p(B) = (1 + f )(1 � p). (41)

Similarly, we have the following expression for the conditional
probability that the second electron is in A if it is for sure that
the first one is in B:

p(A|B) = (1 + f )p(A) = (1 + f )p. (42)

In eqn (41) and (42), f is a correlation factor whose value,
necessarily in the range �1 r f r +1, measures how correlated
the two electrons are. If f = 0, they are independent and p(B|A)
= p(B), p(A|B) = p(A), i.e. the probability that one of the electrons
lies in A or B does not depend on where the other electron is.
Positive values of f imply that p(A|B) 4 p and p(B|A) 4 (1 � p).
Both electrons are negatively correlated in this case and try to
avoid each other: if the first one is in A(B), finding the second
one in B(A) is more likely than if sites A(B) were empty. In
contrast, if f o 0 we have p(A|B) o p and p(B|A) o (1 � p), and
the presence of one of the electrons in A(B) increases the
probability of finding the other in the same region: both
electrons show a certain degree of bosonization.

The probability p(1,1) is given by

p(1,1) = p(A|B)p(B) + p(B|A)p(A) = 2(1 + f )p(1 � p), (43)

Table 1 CAS[2,2] EDF for H2 using different space partitions. Reprinted
with permission from Springer Nature Customer Service Centre Gmb:
Springer Nature, Theoretical Chemistry Accounts, generalized electron
number distribution functions: real space versus orbital space descriptions,
E. Francisco et al., 2010

EDF p(2,0) = p(0,2) p(1,1) dAB

QTAIM 0.2083 0.5833 0.8332
Becke 0.2126 0.5749 0.8502
Hirshfeld 0.2299 0.5402 0.9196
Mulliken 0.1365 0.7270 0.5460
Löwdin 0.2255 0.5490 0.9019
DAM 0.1561 0.6877 0.6245

Fig. 3 Hartree-Fock and correlated EDF for N2 according to different
space partitions. Reprinted with permission from Springer Nature Custo-
mer Service Centre Gmb: Springer Nature, Theoretical Chemistry
Accounts, Generalized electron number distribution functions: real space
versus orbital space descriptions, E. Francisco et al., 2010.

Table 2 Hartree–Fock and correlated CAS[10,8] p(7,7) values and delo-
calization indices, dAB, for the N2 molecule. Reprinted with permission
from Springer Nature Customer Service Centre Gmb: Springer Nature,
Theoretical Chemistry Accounts, generalized electron number distribution
functions: real space versus orbital space descriptions, E. Francisco et al.,
2010

HF CAS[10,8]

p(7,7) dAB p(7,7) dAB

QTAIM 0.3109 3.0408 0.3937 2.0113
Becke 0.3083 3.1073 0.3738 2.2298
Hirshfeld 0.2987 3.3664 0.3415 2.6879
Mulliken 0.3160 2.9110 0.4651 1.4618
Löwdin 0.2915 3.5613 0.3389 2.7703
DAM 0.3211 2.7834 0.5225 0.9998
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with p(A|B)p(B) = p(B|A)p(A) due to electron indistinguishability.
In the two limit cases f = 1 and f = �1, p(1,1) = 4p(1 � p) and
p(1,1) = 0, respectively. If, in addition, we are in the non-polar

case, we have p ¼ 1� p ¼ 1

2
, and p(1,1) = 1 for f = 1.

When an electron is in A the other is necessarily in A or B, so
that p(A|A) +p(B|A) = 1. Similarly p(A|B) +p(B|B) = 1. From these
two expressions and eqn (41) and (42) one obtains p(A|A) = 1 �
(1 + f )(1 � p) and p(B|B) = 1 � (1 + f )p. Finally, in addition to
eqn (43) for p(1,1), we have

p(2,0) = p(A)p(A|A) = p[1 � (1 + f )(1 � p)], (44)

p(0,2) = p(B)p(B|B) = (1 � p)[1 � (1 + f )p]. (45)

p(2,0) and p(0,2) can also be written as p(2,0) = p2� p f (1� p) and
p(0,2) = (1 � p)2 � p f (1 � p), or p(2,0) = p(2,0)indep � p f (1 � p)
and p(0,2) = p(0,2)indep � p f (1 � p); i.e. the same quantity, equal
to half the increase in p(1,1) due to correlation effects, must be
subtracted from their corresponding independent electron
values. In the end, any vector p2 is uniquely determined with
two chemically relevant parameters, the net electron transfer
towards site A given by q = 2p � 1, and the correlation factor f .
These are easily inverted, since f = {p(1,1)/[2p(1 � p)]} � 1 and

p ¼ 1

2
1þ pð2; 0Þ � pð0; 2Þ½ �.

If each electron has a probability p � SA of being in A and
1 �p � SB = 1 � SA of being in B and both electrons are
independent, the three components of p2 can be obtained from
the binomial distribution106

p na; nbð Þ ¼ 2!

na!nb!
pnað1� pÞnb (46)

yielding p(2,0) = p(0,2) = 1/4 and p(1,1) = 1/2 in the symmetric
case (p = 1/2). In a heteropolar union, one of the two fragments
is more likely to retain the electrons, and the polarity parameter
pa1/2. In the p = 0 or p = 1 limits, p2 collapses onto p2 = (0,0,1)
and p2 = (1,0,0), respectively. From eqn (46), p2 = [p2,2p(1 � p),
(1 � p)2]. This is the general expression of p2 for a (2c,2e)
uncorrelated bond. A (2c,2e) bond with correlated electrons
may be fully characterized from a Bayesian analysis of p2

through the p parameter (or the net electron charge transfer
towards fragment A, q = 2p � 1) and a correlation factor f =
p(1,1)/[2p(1 � p)] � 1,106 which is the coarse-grained analogue
of the standard f in density matrix theory. This is evident if the
above expression is written as

p(1,1) = 2p(1 � p)(1 + f ) = p(1,1)indep[1 + f ], (47)

which is the analogue of equation r2(r1,r2) = r(r1)r(r2)[1 +
f (r1,r2)] of density matrix theory. In this correlated case,
p(2,0) = p2 � p(1 � p) f and p(0,2) = (1 � p)2 � p(1 � p) f .

The correlation factor f lies in the range �1 r f r +1, and
cleanly classifies (2c,2e) links into three categories: (1) bonds
with statistically independent electrons ( f = 0); (ii) bonds with
electrons that try to avoid each other ( f 4 0 or p(1,1) 4
p(1,1)indep) or normal bonds (NB); (iii) bonds with positively
correlated electrons ( f o 0 or p(1,1) o p(1,1)indep). These are
related to the charge-shifted bonds (CSBs) in valence bond

theory.107 Note that, usually, electrons are negatively correlated,
so that they display positive correlation factors. Up to the
moment of writing, bosonized states have only been found in
excited states.105 Their electron distribution is so different from
what chemists are used to that they promise to provide new
insights into chemical bonding.

In the (q, f ) polarity-correlation coordinates, the DI between
A and B is dAB = 4(1 � f )p(1 � p) = (1 � f )(1 � q2). Thus, non-
polar (p = 1/2) NBs ( f 4 0) give dAB = 1 � f o 1, and non-polar
CSBs ( f o 0) display dAB = 1� f 4 1, with the limits dAB = 0 and
dAB = 2 when f = +1 or f = �1, respectively (thus, 0 r dAB r 2 in
non-polar bonds). The p2 vector in these two limit cases is given
by p2 = (0,1,0) and p2 = (1/2,0,1/2). p2 = (0,1,0) implies that,
whenever one takes a picture of the system, one of the electrons
lies in A and the other in B. That is, there is no electron sharing
at all. In this case, interpreting dAB as a bond order is coherent.
However, since p2 = (1/2,0,1/2) means that the two electrons are
either both found in A or in B, using dAB as a bond order in
strongly non-binomial EDFs with f C �1 should be undertaken
with care. In this case, the electron distribution does not resemble
any textbook model, and chemical intuition, which is heavily
based on them, fails. Note, however, that from the point of view of
the fluctuation of electron populations, dAB has the same inter-
pretation always.

Everything we have discussed in the last paragraphs is
beautifully illustrated in the triangular graphical representation
of Fig. 4, where all possible two-fragment two-electron EDFs are
plotted in a ternary diagram. The evolution of the delocalization
index, correlation factor or net charge transferred from one

Fig. 4 Ternary representation of a two-fragment two-electron EDF. For
any point inside the triangle, p(2,0), p(1,1), and p(0,2) are given by the
distances from it to the left, bottom and right sides, respectively. Isolines of
f from top (f = 1) to bottom (f = �1) are represented by full solid lines at
intervals of 0.25. Dashed lines, tangent to f isolines at the p(2,0) = p(0,2)
point, and growing from 0 (top) to 2 (bottom), in intervals of 0.25, are dAB

isolines. Constants q isolines, growing from q = �1 (left) to q = +1 (right), at
intervals of 0.2, are the vertical dashed green lines. The thick red solid line
separates NBs (upper part) from CSBs (lower part). Reproduced from
ref. 106 with permission from the Royal Society of Chemistry.
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fragment A to the other B is clearly identified. Note how the area
of normal bonds with positive f values is considerably smaller
(actually one third of the full area of the triangle) than that
corresponding to negative correlation factors. No diatomic
molecule in its ground state has been found yet to populate
the negative correlation factor region.

The generalization of the above ideas to more than a single
bond has already been presented.106 The idea is to recover the
full N-electron EDF, pN, in terms of the probabilities associated
with a smaller number of electrons. Let us consider that the
system has an even number of electrons (N = 2n), and assume
that (a) the molecule is well described by a set of n = N/2 two-
center, two electron (2c,2e) bonds, and (b) that all of these
bonds are independent of each other. Then,

pN = p2n C #n
i=1pi

2. (48)

The direct product symbol (#) in the above equation simply
takes this second assumption into account. We now assume
that pi

2 = [pi(2,0),pi(1,1),pi(0,2)], where

pi(1,1) = pi(1 � pi)2(1 + f i), (49)

pi(2,0) = pi
2 � pi(1 �pi) f i, (50)

pi(0,2) = (1 � pi)
2 � pi(1 � pi) f i. (51)

In this way, the set {pi, f i} (i = 1,n) defines pN. The better the
hypotheses (a) and (b), the better eqn (48) is fulfilled. The pair
of atoms involved in each pi

2 can be equal or different. In the
first case, one expects pi to be close to 1

2. A value of pi exactly
equal to 1

2 can only occur if, in addition to both atoms being
similar, they have a similar environment in the molecule. On
the other hand, when the polarity of both atoms is different, pi

will deviate from its mean value, getting closer to 1 (0) when the
atom A(B) is much more electronegative than B(A). The optimal
set {pi, f i} can be determined by minimizing the quantity d,
defined as

d ¼
X
S

pexactðSÞ � papproxðSÞ

 �2

; (52)

where pexact(S) are the exact probabilities and papprox(S) the
approximated ones obtained by applying eqn (48). To exploit
the above fitting strategy in those cases where one believes that
hypotheses (a) and (b) are reasonably accurate, the following
steps are taken: (1) A given number of types of bonds is
assumed and the initial values of pi and f i chosen, (2) each
pair of atoms of the molecule is assigned zero, one, or more of
the above types, and (3) d is minimized with respect to the
{pi, f i} parameters.

A very simple example can be used to illustrate the proce-
dure. Let us take a hypothetical molecule AB2� B1� A� B2 and
assume that a single (2c,2e) bond exists between the atom A
and each of the two similar atoms B. Then, there exists only a
type of bond and two optimizable quantities p1 = p2 = p and
f 1 = f 2 = f . The vector pN consists of nine components
p1(1,1)p2(1,1), p1(1,1)p2(2,0),. . ., p1(0,2)p2(0,2). Each of these
products contributes to the probability papprox(nA,nB1

,nB2
) of a

specific three-center four electrons RSRS. For example,

p1(1,1)p2(1,1) adds to papprox(2,1,1), p1(1,1)p2(2,0) adds to
papprox(3,1,0),. . ., and p1(0,2)p2(0,2) adds to papprox(0,0,4).

The presence in a molecule of lone or core electron pairs on
one or more of the atoms also fits into the above scheme. For
instance, in the trans-N2H2 molecule, we can reasonably
assume that the 1s cores of nitrogen atoms are not involved
in any bond. If we set pi = 1 and f i = 0 for one of these pairs, and
fix their values, its effect on pN will be to increase the number of
electrons in the corresponding atom by 2. Let us assume three
types of bonds here, types 1 and 2 associated with the N–N pair,
and type 3 to each N atom and the H atom closer to it. At the
CAS[12,8]/6-311G(d,p) level of calculation, the results obtained
after minimizing the d quantity can be seen in Fig. 5 and
Table 3. The agreement between the exact and fitted probabil-
ities is very good. Only a few fitted p(S)’s deviate a little from the
exact ones. As corresponds to two equivalent atoms in equiva-
lent environments, the p value for both N–N bonds is very close
to 1

2 (q C 0.0), with correlation factors being strongly positive.
This results in a p(1,1) probability much larger than p(2,0) =

p(0,2) and a dN1N2
i much smaller than 1.0. The p value for the

N–H bond is considerably larger than 0.5, which indicates a
clear polarization towards the nitrogen atom, as it is evident if
we compare the p(2,0) and p(0,2) values: if one takes an infinite
number of snapshots of the N–H bond, 48% of the time both
electrons will lie within the N region. The two electrons of these
N–H bonds are positively correlated ( f i o 0), although we
suspect that the value of f i is not very significant in this case,
and that it simply absorbs other electronic delocalizations that
have not been taken into account in our simple bonding model.
Finally, we should notice in the final part of Table 3 that the
approximate dAB’s are quite similar to the exact ones, particu-
larly for N–H bonds. In the table, N2–H3 and N1–H4 refer to the
hypothetical bonds between each N atom and the H atom
farthest from it. The exact dAB for them are close to 0.0, which
justifies that we have not assumed their existence in our model.

Fig. 5 Exact (y-axis) versus fitted (x-axis) EDF for N2H2 at the CAS[12,8]/
6-311G(d,p) level of calculation. Only non-equivalent probabilities with
pexact 4 0.02 are labeled. The four integers on each label are the number
of electrons in N1, N2, H1, and H2.
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The same happens with the hypothetical bond between the two
H atoms.

The d error in the above example is quite small (0.000028).
When this does not occur, it is very likely due to an inappropriate
choice of the proposed bonding pattern. When it is almost certain
that there are no (nc,2e) multicenter bonds (n 4 2), a decrease of d
may be achieved by including other p2 vectors in eqn (48). If, even
so, the value of d does not decrease, the initial assumption that EDF
can be represented as a direct product of (2c,2e) bonds is simply
wrong, and alternative models that explicitly account for these
forgotten (nc,2c) bonds should be developed. Although we will not
pursue this objective in this work, some didactic examples are
explained in some detail in ref. 98.

5 Energy decompositions

As stated in Section 3, the second face of chemical bonding is
energetic. After all, no bonding exists without an energetic
stabilization. This statement can be assessed with respect to some
appropriately defined set of fragments that interact or, in the case
of metastable bonds (like that in the O2

2+ cation, for instance108),
with respect to some finite geometrical perturbation. When
chemical insight is to be pursued it is clearly not sufficient to
report the overall dissociation energy; chemists would like to know
which fragments, bonds, or moieties are responsible for it and to
what extent. This background leads necessarily to consider an
energy decomposition scheme. Not unexpectedly, there are dozens,
if not hundreds of them out in the literature. Very grossly speaking,
three families of energy decomposition analyses (EDAs) have
survived through the present time. In the case of weakly interacting
systems, the traditional theory of intermolecular interactions that
computes the interaction between two (or more) unperturbed
fragments by means of perturbation theory has evolved into very
accurate and complex methods, among which we highlight the
well-known symmetry adapted perturbation theory (SAPT).109 SAPT
and related perturbative approaches suffer from two very clear
problems. On the one hand, they fail to converge easily in the short-
range regime, so that a user never knows when the perturbation

series stops being reliable. On the other hand, the use of unper-
turbed monomers fails to reflect the changes that their densities,
orbitals, etc. experiment after the interaction has taken place. When
a supermolecule is computed and compared to the interacting
fragments, the original Morokuma decomposition,110,111 general-
ized by Ziegler and Rauk,112 has turned into a set of very useful
recipes, frequently used in density functional calculations.113,114

This energy decomposition analysis depends heavily on how the
fragments that interact are chosen, being thus reference depen-
dent. Finally, if atoms are singled out from a molecule, another set
of EDAs emerge which compute their energies and mutual inter-
actions. This procedure can be done in orbital space, as for
instance, in the methods proposed by Head-Gordon and
coworkers,115 which also use some artificial states borrowing ideas
from Morokuma-like partitions, and depend obviously on how
atoms are extracted in orbital space. If done in real space, like in
the interacting quantum atom (IQA) decomposition,70,116–119 no
reference is needed at all, although the procedure now becomes
dependent on how the real space atoms are defined. From a
wavefunction, a consistent decomposition of the expectation value
of the Hamiltonian into atomic and pairwise additive contributions
is obtained. These ideas will be further discussed in the next
subsection.

5.1 The IQA energy partition

Let us consider either a fuzzy or an exhaustive partition of
space, as provided by a set of oA weights (see Section 2). Once
this has been chosen, the expectation value of the Hamiltonian
can be written as:

E ¼
X
A

ð
r
0
1
¼r1

oA r1ð Þĥ r1ð Þr1 r1; r
0
1

� 	
dr1

þ 1

2

X
A;B

ðð
oA r1ð ÞoB r2ð Þ

r2 r1; r2ð Þ
r12

dr1dr2 þ Vnn

¼
X
A

EA
self þ

1

2

X
AaB

EAB
int ;

(53)

Table 3 Parameters of the EDF fitting of N2H2 molecule at the CAS[12,8]/6-311G(d,p) level of calculation. N1–H3 and N2–H4 are the standard polar N–H
bonds, and N1–H4, N2–H3, and H3–H4 are non-bonded pairs

Pair - N1–N2 N1–N2 N1–H3 N2–H4

q 0.000375 �0.000216 0.379834 0.379834
p 0.500187 0.499892 0.689917 0.689917
f 0.594557 0.260804 �0.015801 �0.015801
dAB

i 0.405443 0.739196 0.869247 0.869247
p(2,0) 0.101548 0.184691 0.479365 0.479365
p(0,2) 0.101173 0.184907 0.099532 0.099532
p(1,1) 0.797279 0.630402 0.421103 0.421103

Atom - N1 N2 H3 H4

hnAiexact 7.375559 7.375307 0.624567 0.624567
hnAiapprox 7.379993 7.379675 0.620166 0.620166

Pair - N1–N2 N1–H3 N2–H3 N1–H4 N2–H4 H3–H4

dAB (exact) 1.077506 0.860953 0.032239 0.032262 0.860930 0.003975
dAB (approx) 1.144639 0.869247 0.000000 0.000000 0.869247 0.000000
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wherein r1 r1; r
0
1

� �
and r2(r1,r2) are 1RDM and the 2RD, respec-

tively, ĥ(r1) is the monoelectronic part of the electronic Hamil-
tonian as a function of the coordinates of electron 1, while r12

represents the distance between electrons 1 and 2 and Vnn is
the internuclear repulsion. Finally, EA

self and EAB
int represent the

energy terms which contain particles (i) in only one basin A or
(ii) in two different basins A and B, respectively, and are known
as the atomic self-energy of atom A and the interaction energy
between atoms A and B, respectively. Eqn (53) represents
the basis of the Interacting Quantum Atom (IQA) energy
partition.14,70

The atomic self-energy contains all those energy terms that
would survive after full dissociation of the system into its
atoms: the kinetic energy of the electrons, the electron-own
nucleus attraction and their mutual repulsion:

EA
self = TA + VAA

en + VAA
en. (54)

As we progressively dissociate a molecule into its atomic
components, all the atomic self-energies evolve to the in vacuo
atomic energies. An atom’s self-energy is the local expectation
value of the atomic Hamiltonian in-the-molecule. It is rather
obvious that the magnitude of a given EA

self will be on the same
scale as that of the in vacuo energy of A. Namely, about �0.5Eh

for a hydrogen atom, around �100Eh for a F moiety. This
means that, although no reference is needed to perform an
IQA decomposition, if a suitable atomic reference is chosen
(e.g. the evolved atomic states at dissociation) the energetic
difference between the self-energy and this reference energy
will be small, in the chemical scale, measuring the energy
associated with the chemical deformation experienced by the
atom on going from its reference to its in-the-molecule state.
We call these differences deformation energies:

EA
def = EA

self � EA
0, (55)

EA
0 being the chosen reference energy for atom A. Deformation

energies are typically positive, since it takes some energy to
deform a free atom to get it bonded. Their values are chemically
intuitive, in line with the traditional idea of valence excitation.
For instance, since Li in LiF has almost lost one electron which
has been taken by the very electronegative F atom, the in-the-
molecule state of Li is largely cationic, so its self-energy will
have been destabilized with respect to the neutral reference by
about its ionization potential. Similarly, we expect that the
deformation energy of fluorine in LiF to be small or even
negative, since although the moiety needs to be deformed to
get bonded, the atom will have also gained energy close to the
electron affinity of F in the process. These intuitions are
supported by actual calculations.120

In a similar manner, the interatomic interaction energy
between two atoms, EAB

int, contains all energetic components
affecting mutual interaction of their electrons and nuclei: the
attraction between the electrons on A and the nucleus of B and
vice versa, the repulsion between the electrons lying in A and
those lying in B, and the internuclear repulsion:

EAB
int = VAB

en + VBA
en + VAB

ee + VAB
nn. (56)

In the large interatomic distance limit, EAB
int provides exactly the

interaction energy that is obtained from perturbation
approaches. Nevertheless, an important difference is that EAB

int,
unlike perturbational methods, has a well-defined limit at any
distance. The interaction energy can be chemically exploited by
dividing the pair density r2(r1,r2), into Coulombic and
exchange–correlation terms, as in Eq. 10. If this is done, EAB

int

becomes a sum of a Coulombic term, which depends only on
the 1RD, i.e. on classical electrostatics from the quantum-
mechanically obtained densities, and an exchange–correlation
term, purely quantum-mechanical in origin:

EAB
int = VAB

cl + VAB
xc . (57)

The first is clearly related to ionicity, while the second, which
comes from integrating an interelectron distance-scaled, mea-
sures the energetic effect of electron fluctuation (or delocaliza-
tion) and thus provides a direct connection with covalency. The
interaction energy between two atoms is thus divided into a
term that tends to the standard multipolar series at large
interatomic distances, dominated by the fist non-zero atomic
multipolar moments, and a contribution which does only exist
due to quantum fluctuations. These ideas are chemically
appealing and they have been documented in detail.13

The IQA partition can be exploited at different levels of
granularity, viz., it can be equally applied to groups of atoms
G;H . . . so that

E ¼
X
G

EG
self þ

1

2

X
GaH

EGH
int ; (58)

wherein

EG
self ¼

X
A2G

EA
self þ

1

2

X
A;B2G

X
AaB

EAB
int ; (59)

and

EGH
int ¼

X
A2G

X
B2H

EAB
int : (60)

The interaction energy between two groups G andH can
also be divided in Coulombic and exchange–correlation con-
tributions, VGH

cl and VGH
xc in a similar fashion to EAB

int in
eqn (57). This ability of the IQA approach to provide chemically
intuitive answers at different granularities allows for a relatively
easy way to compare it to other energy decomposition methods.
The other way around is not so obvious. We refer the reader to
specific publications on the subject for further information.121,122

IQA can also be used in the multi-component MC-QTAIM
formalism.47 This is a very promising strategy that may help
understand how chemical bonding evolves when the Born–
Oppenheimer approximation breaks and the quantum nature
of nuclei needs to be considered. We refer the reader to the
above reference for further details.

Although r1 r1; r
0
1

� �
and r2(r1,r2) are not attainable via Kohn-

Sham Density Functional Theory (KS-DFT), it is possible to
divide the KS-DFT electronic energies using scaling techniques
as suggested in ref. 123 and 124. Taking into account the
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popularity of the KS-DFT in modern computational chemistry,
this pragmatic strategy has reinforced the applicability and
interest of IQA. However, the relatively-high computational cost
of IQA is the major inconvenience that remains for its wide-
spread use. This situation, which occurs because the IQA terms
involve the integration of scalar fields over very irregular regions,

is aggravated for correlated scalar fields r1 r1; r1
0� �

and r2(r1;r2).
We expect that such calculations could be accelerated by intro-
ducing carefully-controlled approximations, as found in the case
of the partition of MP2 correlation energies using effective two-
electron matrices,125 which reduces in B 80% of the computa-
tional cost for double- and triple-z basis sets. More considerable
reductions in computer time may result for larger basis sets.

5.2 Multifaceted applications of IQA

Chemists are often interested in the nature and the relative
strength of covalent and noncovalent interactions under different
circumstances. Indeed they characterize all kinds of interactions
in terms of heuristic, intuitive chemical concepts such as steric
hindrance, p-conjugation, aromaticity, cooperative and antico-
operative effects, etc. Within this context, the IQA method can
provide much valuable information, not only by assessing the
energetic magnitude and essential features of chemical contacts
in diverse scenarios, but also by providing quantitative descriptors
of those concepts that are not associated with Dirac observables
and thereby lack a rigorous mathematical definition. Thus, we will
show that the applicability of the QTAIM and IQA methods is
gradually expanding and, as recently noticed by Richter et al.,126

their additional computational effort is more than compensated
by the great amount of useful information they provide. Several
authors have used IQA to provide unified models of chemical
bonding. In this sense, Cukrowski,127 has advocated for using
fragments in his Fragment Attributed Molecular System
Energy Change (FAMSEC) familiy of methods to solve a battery
of chemically relevant problems.128–130

In this perspective, we will focus on the IQA analysis
performed within the QTAIM framework although it can also
be applied to other scalar fields such as the ELF partition.131–133

Let us discuss first the characterization of selected noncovalent
complexes, which is no doubt one of the most typical goals of
EDAs. In this regard, IQA has been successfully employed to
explain the experimentally observed Hydrogen Bond (HB)
cooperative effects in water clusters.134 For example, IQA has
unveiled that double HB donors and acceptors of HB can also
be associated with marked cooperative effects,135 in contrast
with the traditional view that associates them with anti-
cooperative effects.136 Likewise, the IQA partition puts forward
a hierarchy of HB strength within water clusters as a function of
the single/double and donor/acceptor character of the involved
monomers.137 In general, IQA has proven useful to characterize
the underlying classical and quantum-mechanical effects in
other prototypical noncovalent interactions, such as the crucial
role played by the exchange–correlation stabilization comple-
menting the electrostatic picture of both anion–p138 and halo-
gen bonding139,140 complexes.

Perhaps one of the major appealing features of IQA is the
determination of the attractive or repulsive character of A� � �B
or G � � �H interactions as well as their covalent and ionic
contributions. For instance, the stabilizing role of the H� � �H
interaction proposed by Matta and coworkers143 has been the
subject of considerable debate.144,145 Several IQA studies146–148

have confirmed the attractive character of this interaction. In
like manner, the IQA energy partition and other EDAs have
been exploited to determine that the CH� � �HC interactions in
the ‘‘in–in’’ conformation of ortho-xylene are also attractive.149

Therefore, the larger stability of the ‘‘out–out’’ conformer is due
to other factors which include charge delocalization and
aromaticity.

Let us consider in more detail another similar problem, the
IQA assessment of the so-called Jørgensen Secondary Inter-
action Hypothesis (JSIH).141,142 The JSIH states that the relative
strength of similar H-bond complexes can be determined by the
balance between the attractive and repulsive interactions
among the frontier atoms between the interacting monomers.
For example, JSIH correctly predicts that amides dimerize more
strongly than imides because imide dimerization is impaired
by a repulsion that involves the oxygens of the spectator
carbonyls (dashed arrows in Fig. 6(a)). Additionally, the JSIH
rightly foretells that AAA–DDD complexes are stronger than
those of the type AAD–DDA wherein A stands for HB acceptors
and D for HB donors. In turn, AAD–DDA clusters are stronger
than those of the sort ADA–DAD (Fig. 6(b)). Nevertheless, the JSIH
wrongly foresees that the strength of amide–imide heterodimers
should be intermediate between that of the corresponding homo-
dimers (Fig. 6(c)). However, the IQA descriptors indicate that all
the atoms within the monomers should be considered to properly
account for the intermolecular formation energy (see for example
atom C1 in Fig. 6(d)). Ref. 141 concludes that the relative strengths
of homo- and hetero-dimers of amides and imides can be better
explained by considering the acidity and the basicity of the
involved HB donors and acceptors, respectively.

As stated above, the QTAIM and IQA methods of wave
function analysis contribute to the understanding of intuitive
and heuristic chemical ideas. An intuitive chemical concept
whose quantum mechanical foundation has been addressed by
means of IQA is Sterical Hindrance (SH).150 For a given pair of
frontier atoms A� � �B located in different molecules, their defor-
mation energies EA

def and EB
def can be fitted to an exponential

decaying function,151 which corresponds to the repulsive part of
the Buckingham potential Urep B exp(�ar).152 This observation
has led to the proposal that EA

def + EB
def equals the short-range

repulsion energy of these atoms, and that such repulsive inter-
action acts over distances longer than previously envisioned
(other IQA studies153 predict a different behavior of the H atom
in this regard). More recently, it has been pointed out154 that
changes in the number of electrons have a very significant
contribution in deformation energies. In other words, an assess-
ment of the SH energetics would be biased by alterations in the
electronic population of the atoms in a process under considera-
tion. Hence, charge transfer energy should be subtracted from
the deformation energy to yield a quantitative measure of the SH
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of atom A, that is, EA
SH = EA

def � EA
CT where EA

CT = EA
ref(N) � EA

ref(N
0)

estimates the charge transfer contribution when N and N0 are
the electrons of A in its final and initial (reference) states,
respectively. The suitability of the EA

SH expression has been
validated in different archetypical systems such as atomic com-
pression and SN2 reactions in which SH is usually invoked.

Clearly, the strengthening or weakening of chemical inter-
actions under different scenarios as provided by IQA can be
very useful to understand chemical reactivity, especially
when the appropriate IQA descriptors are monitored along
the process to determining which interactions or atoms are
mostly responsible for the occurrence (or lack of) of a chemical
reaction, what might result in directives for the tuning of
chemical modifications in reactants. In addition the selection
of group-based IQA quantities is normally required given that,
besides the atoms involved directly in the bond forming/breaking,

other contributions need to be considered in order to account
for the net energy changes along the reaction profiles.155 For
instance, the changes in the steric energy associated with reacting
molecules (i.e., EG

SH) supports the kinetic role of SH that is
traditionally claimed to play in the competition between SN2
and E2 reactions.156 On the other hand, the geometric and
electronic deformation of a diene/dienophile helps to understand
the origin of the endo–exo preference in prototypical Diels–Alder
reactions157 while the atomic IQA decomposition of the IRC
profiles explains the synchronous or asynchronous character of
the polar Diels–Alder reactions.126 Focusing also on the proper
fragment quantities, the IQA study of the bifunctional catalysis
played by water clusters158 shows how water monomers encom-
passing the reaction between SO3 and H2O to yield H2SO4 mitigate
the changes in chemical bonding across the rate-limiting step of
the process, thereby reducing the activation energy as more water

Fig. 6 (a) and (b) Jorgensen Secondary Interaction Hypothesis (JSIH) applications to the study of hydrogen bonded systems. Solid/dashed arrows
indicate JSIH attractions/repulsions between the interacting molecules. The JSIH predicts that (a) the amide homodimers are more strongly bound than
imide homodimers and (b) the order of strength for complexes with hydrogen bond acceptors (A) and donors (D) is AAA-DDD 4 AAD-DDA 4 ADA-DAD.
(c) Association constants and changes in chemical shift in CDCl3 at 251 of d-valerolactam and 3,3-dimethylglutarimide. The heterodimer is more strongly
bound than the two homodimers. (d) IQA energy partition for the dimerization of 3,3-dimethylglutarimide. One monomer and its atoms are indicated in
green color. Ditto for the other monomer and orange color. The values are reported in kcal mol�1. Note that the interactions of C1 with the interacting
monomer I are also important to the interaction between the two monomers. The deformation energies of the monomers are 16.4 and 20.0 kcal mol�1

so that the formation energy of the dimer is � 10.4 kcal mol�1. Adapted from ref. 141 and 142 with permission from the Royal Society of Chemistry.
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molecules are included in the system. Similar results are obtained
for the hydrolysis of oxyrane and its methyl derivatives in neutral
water.159

The utility of IQA to describe chemical reactivity can be
augmented by coupling it with the reaction force, F(x) =
�(dE(x)/dx), a projection of the Hellmann–Feynman forces
acting on the nuclei of a molecular system onto a reaction
coordinate x that is usually determined by an intrinsic reaction
coordinate algorithm. Thus, the IQA decomposition of F(x) into
self-atomic/group components and classical/exchange–correla-
tion interaction terms, which can be obtained through differ-
entiation of cubic splines, yields chemically appealing images
in terms of bonds, covalency and ionicity for different types of
reactions.160,161 Similar descriptions can be obtained with the
closely-related Reduced Energy Gradient (REG) technique,162

which relates the gradient of selected IQA components to the
gradient of the total energy with respect to an arbitrary reaction
coordinate for binding or reactive processes.

The versatility of IQA is further illustrated by its application
to the study of excited-state chemistry, including noncovalent
interactions, charge transfer and photochemical reactions.164

Indeed, the EOM-CCSD excitation energies can be divided into
intra and inter-atomic energies according to the IQA
formalism,163,165 allowing thus to establish the atoms and
chemical bonds wherein the excitation energy resides. This
kind of analysis has been performed in the 1 1A00 and 2 1A0

electronic states of the water dimer in the Cs configuration
(Fig. 7). Also of particular interest may be the relevant applica-
tions on molecular crystals, like the detailed characterization166

of the polymorphism in succinic acid crystals or the assessment
of noncovalent contacts within selected hydrogen storage mate-
rials KN(CH3)2BH3 and LiN(CH3)2BH3.167 Other materials that
have been examined with the IQA energy partition are the
donor–acceptor charge–transfer tetrathiafulvalene–tetracyano-
quinodimethane cocrystals.168 More specifically, the IQA
approach unveils the stabilizing (or destabilizing) character of

C� � �S, Csp3–H� � �S and S� � �S interactions within these systems.
Likewise, the IQA method characterizes Cl� � �S, Cl� � �Cl and
O� � �Cl contacts in trimers of 2-chloro-5-methoxy-naphtho[1,2-
d]thiazole, used as an archetype in the study of organic
semiconductors.169 Actually, a specific implementation of the
IQA method for the study of crystals has been developed and

successfully tested in crystals with different types of bondings.170

Eventually, this enhanced IQA methodology will permit to tackle
interesting and challenging problems, such as the origin of
different stabilities of crystalline phases (e.g. graphite versus
diamond).

5.3 Understanding organometallics using IQA

Computational chemistry has been intensively (and success-
fully) applied to investigate the structure and properties of
organometallic complexes, which are usually attractive targets
for the design of catalysts and functional materials.171 Thus,
the activity of such systems can be carefully tuned through
ligand design and metal selection based on the structure–
property relationships predicted by modern QM methods.
However, nontrivial electronic structure effects usually intro-
duce additional complexity in the interpretation of the proper-
ties of organometallic compounds, which represent, thus, a
particular challenge to the various EDA methodologies. Hence,
we review here some representative studies showing the cap-
ability of IQA to yield valuable insight into organometallic
chemistry.

One of the characteristic features of IQA, the assessment on
an equal-footing of all metal� � �ligand, ligand� � �ligand and/or
metal� � �metal pairwise interactions can shed further light on
complex bonding effects involving either direct or through-
space interactions. A striking example is found in the recent
analysis172 of the [Mn+� � �CR3]1�n pyramidal adducts constituted
by alkaline and alkaline-earth cations (Mn+ = Li+,Na+,Ca2+,. . .)
and various anionic fragments (e.g., C(CN)3

�,CF3
�,C(Ph)3

�).
For these species, the IQA shows unambiguously that the Mn+

cation gives only slightly-favorable or repulsive interactions
with the central C atom, but establishes significant exchange–
correlation interactions with the rest of the atoms that account
for the overall stabilization of the adduct. Interestingly, this
energetic pattern is markedly different from those of the typical
covalent or ionic bonds dominated by direct (i.e., 1,2) contribu-
tions, suggesting thus that the collective interactions resulting
from through-space (1,n with n 4 2) interactions constitute a
genuine type of chemical bonding characteristic of organo-
metallic complexes.172

Other non-evident or surprising electronic properties have
been observed in metal� � �metal bonds like the Rh� � �Cr bond in
rhodium(I) complexes stabilized by hemichelation (i.e., hetero-
bisligation where one of the two sites binds the metal
noncovalently),173 which turns out to be mainly governed by
electrostatics according to the QTAIM and IQA analysis. The
same methods have been applied to the Ag� � �Ag174,175 and
Au� � �Au176 interactions, revealing significant cooperative
effects in the Au� � �Au bonds. Similarly, the nature of the
metal–carbene bonds has been examined in the cyclopropeny-
lidene� � �MX2 and imidazol-2-ylidene� � �MBr2 complexes in
which M = Be, Mg, Zn and X = Br, H.177 Curiously, the results
show that Be forms the strongest M–C bonds followed by Mg
and Zn while the H atoms bound to the metal centers hinder
the M–C bond in comparison with the electron-withdrawing Br
atoms. This observation is consistent with the fact that the

Fig. 7 Deformation energies of the hydrogen bond donor and acceptor in
(H2O)2 in its electronic systems 1 1A00 (left) and 1 1A0 due to electronic
photoexcitation. The IQA interaction energy between the monomers is
reported as well. Reproduced from ref. 163. Copyright 2020 John Wiley
and Sons, Inc.
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main contribution to the M–C bond energetics is again electro-
statics. Some metal–carbonyl compounds, which are usually
recognized as archetypes for the study of metal–metal bonding
and the ligand-bridges between metallic centers, have been also
subject to IQA analysis, as in the case of the [Ni2(CO)n]�

complexes in which the Ni–CO bond is dominated by the
covalent contribution even to the extent that the electrostatic
component of the energetics of the Ni–C chemical bond is
slightly repulsive.178 In contrast, the metal–CO bonds in the
recently synthesized [M(CO)8] complexes with M = Ca, Sr, Ba turn
out to be dominated by electrostatics without any significant
p-back donation according to the corresponding IQA pairwise
contributions complemented with several QTAIM descriptors.179

Regarding the role of noncovalent interactions within organome-
tallic complexes, we find a representative example in ref. 180,
which addresses the intramolecular contacts within the six-
coordinated Zn complexes, [Zn(bpy)(H2O)4]2+, [Zn(bpy)2(H2O)2]2+

and [Zn(bpy)3]2+ in which bpy = 2,20-bipyridyl. The IQA results
reveal the magnitude of cooperative effects exerted by the bpy
ligands, i.e., the Zn–O and Zn–N bond strengths decrease with
the number of bpy ligands bonded to Zn while the CH� � �N
and CH� � �O interactions within the coordination complexes are
reinforced.

Concerning organometallic catalysis, it is clear that the
computation and analysis of the IQA descriptors along the
reaction profiles may offer a wealth of information useful to
elucidate the relative importance of the metal and substituent
effects. This is shown, for example, in a mechanistic study of
ammonia fixation by Ir-based complexes,181 showing how the
ionic contribution of the Ir–X bonds with different ligands
modulates the activation energies. In another recent study,182

the breaking of a Ru–O chemical bond during the initiation step
of Hoveyda–Grubbs Catalysts (HGCs),183 which are extensively
used in olefine methathesis reactions, has been rationalized
thanks to the IQA picture of the reactive Ru–O bond as mainly
dominated by electrostatics (roughly 90% of ERu–O

int comes from the
classical contribution in eqn (57)). In this way, the impact on the
initiation kinetics due to substitution at different positions of
HGCs is well understood in terms of their electron donor and
withdrawing influence. Moreover, the most labile HGC precata-
lysts have the smallest values of |ERu–O

int |,182 which may be con-
sidered as a reliable reactivity index.

Finally, we briefly comment on the growing interest in
understanding the role of noncovalent contacts in organo-
metallic reactivity.184 In this respect, the agostic interactions,
whose nature is still unclear,185,186 are frequently crucial in the
understanding and tuning of reactivity, e.g., in C–H bond activa-
tion via Concerted Metallation Deprotonations (CDM).187 For
instance, Fig. 8 displays the different interactions within the
agostic species involved in the CMD mechanism of cyclopallada-
tion and cyclonickelation of N,N-dimethylbenzylamine deter-
mined with QTAIM, IQA and Local Energy Decompositions
(LED). One can see that several contributions govern the inter-
actions between the metal and its surrounding environment such
as electrostatics, charge transfer and covalency. The first two-
mentioned components of the interaction energy are consistent

with the observation that the overall process is very sensitive to the
charge of the metallic center. Another metalation process that has
been investigated using the QTAIM and IQA methods is the
cyclometalation of CpCo(III) species via base-promoted CDM.188

By tracking the changes in the pairwise ionic and covalent
contributions throughout the whole reaction path, it has been
possible to ascertain the key role played by Co� � �O contacts as the
driving force for the reaction to take place. The IQA analyses also
reveal that bulky ligands of HGCs participate in CH� � �Cl contacts
and CH� � �Ru agostic interactions,182 and may contribute to the
weakening of the reactive Ru–O bonds. Overall, these and other
examples suggest that the IQA and QTAIM approaches might be
critical in building a paradigm of chemical reactivity based on
noncovalent interactions as suggested by Cornaton and Djukic.184

5.4 IQA as a computational tool for biomolecular modelling

Some of the early studies in QCT made clear that the real-space
theories provide useful descriptors that correlate with biological/
pharmacological properties and identify all kinds of noncovalent
interactions.189–191 In this respect, IQA could represent a sig-
nificant leap forward in pharmalocoly by discerning the actual
energetic impact of specific interactions on the stability and
conformational properties of large biomolecules. The prospects
of achieving such long-term goals are continuously increasing,
not merely because of the higher performance of computers, but,
more importantly, because of the methodological advances.
Thus, the ad hoc adoption of additive exchange–correlation
Khon–Sham energies into the IQA framework,123,124 which can
be complemented with pairwise dispersion energies as calcu-
lated with the Grimme’s D3 potential,192 is especially remarkable

Fig. 8 Agostic species in the concerted metalation deprotonation
mechanism in the cyclopalladation and cyclonickelation of N,N-
dimethylbenzylamine. The IQA, QTAIM and LED analyses reveal the
different kinds of interactions between the metallic center and other
atoms within the molecule, namely, electrostatic attractions and repul-
sions, and exchange and charge-transfer interactions. Figure taken from
ref. 187.
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given that modern DFT methods are the default choice for large
systems. The computational hurdles are also being reduced by
the efficient IQA functionality in the popular AIMAll suite193 or
by the nearly linear-scaling version of our PROMOLDEN code,
which relies on atomic subsets of localized MOs and employs
fast multipolar algorithms for the calculation of distant
exchange–correlation interactions.75 As a result, the IQA parti-
tioning of the total energies derived from DFT densities is
currently feasible for medium-sized molecules (50–200 atoms).
We also note that, according to recent results,194 the IQA-style
partitioning of the electronic energy calculated with fast semi-
empirical QM methods could give atomic and interatomic
energy descriptors for large molecules close to those derived
from conventional IQA/DFT.

In recent years, several computational studies have validated
different IQA protocols and applied them to obtain new
chemical insight into biomolecular properties. Thus, it has
been shown that the DFT-D3 (or HF-D3) IQA categorizes the
S66 set of noncovalent complexes similarly as perturbation
methods do and, interestingly, unveils the atomic hot spots
involved in the interactions.195 The same approach has been
extended to the analysis of conformational energies of organic
and peptide molecules196 in such a way that, once that a
convenient fragmentation is chosen, IQA provides a balanced
description of various intramolecular effects associated with
classical electrostatics, exchange–correlation, etc. Other works
have also exploited the IQA ability to assess both intramolecular
and intermolecular contacts in systems relevant in biology. For
instance, the IQA analysis of the conformers of vitamin C197 or
proline198 points out that the intramolecular HBs are the main
factors determining their relative stability in the gas-phase.
Considering molecular association, the IQA descriptors reveal
the relative strength and the nature of the key interactions.
Selected examples include the alkaline/alkaline-earth cations in
complex with bioorganic ligands (dominated by electrostatics,
but modulated by exchange–correlation), the H-bonded aspar-
tate dimer (mainly electrostatic, but encompassing a certain

covalency),199 and the arrangements of neutral/charged DNA
nucleobases (the exchange–correlation energy between the
H-bonded atoms is the determinant for the neutral forms
whereas both the H-bonded and the adjacent atoms contribute
to the electrostatic stabilization of the charged bases; see
Fig. 9).200 Other representative IQA studies on molecular clusters
have focused on the characterization of cooperative effects
(a guanine quartet in complex with metal cations or porphyrin
molecules),201,202 the identification of preferred binding sites
(the adeninate anion interacting with Na+/K+ counterions),203

and the strength of charged-assisted H-bonds.204

The IQA scoring of key interactions between a ligand and its
biological target could be particularly useful for fragment-based
drug design by assessing the suitability of chemical modifica-
tions, as suggested by the recent studies on zimlovisertib, an
interleukin-1 receptor-associated kinase 4 inhibitor, currently
in trials for its use in patients of COVID-19 pneumonia,205 and
on two drug candidates targeting the hepatitis C virus NS5B
protein.206 Similarly, an insightful view of enzymatic catalysis
can be gained by tracking the strengthening/forming or weak-
ening/breaking of chemical bonds through the evolution of
selected IQA terms along the energy profiles derived from
cluster models. This idea is nicely demonstrated in the complex
energetic mechanisms that have been drawn using the REG
method for the peptide hydrolysis in the aspartic active site
of the HIV-1 protease207 and the phosphoryl-transfer process in
b-phosphoglucomutase.208

Molecules of biological relevance range from those formed
by a few atoms (e.g., water, ions, small drugs, etc.) to flexible
and large macromolecules like proteins and nucleic acids. The
properties of these molecules are generally simulated using
classical force field (FF) methods that comprise bonded energy
terms (bond-angle-dihedral) and pairwise terms accounting for
the long-range non-bonded interactions. For some specific
interactions, whose inclusion in FFs may be problematic, IQA
can provide rigorous quantitative descriptions like that of the
charge penetration energy.209 This contribution to the inter-
action energy is characterized by IQA as an intramolecular
electrostatic effect closely related to other deformation compo-
nents induced by intermolecular overlap (e.g., the repulsive
SH). Furthermore, to overcome some of the limitations of the
classical FFs, there is growing interest in the use of the EDAs for
the design, parametrisation, and validation of the next-
generation (ab initio) FF methods.210 Among the ongoing
projects in this field, we point out here the development of
the FFLUX method191 by Popelier and co-workers that is based
on a rigorous QTAIM formalism. This development exploits the
machine-learning method kriging to construct accurate models
that represent the fluctuating atomic IQA energies or the
(polarized) atomic multipole moments as a function of posi-
tions of all atoms in the system. FFLUX combines the (kriging)
intraatomic energy with the electrostatic energy among the
(kriging) atomic multipole moments, including also an empiri-
cal dispersion potential. The latest FFLUX implementation,
which has been efficiently parallelized, reproduces minimum-
energy conformations of small molecules and peptides,211,212

Fig. 9 IQA contributions to the bond energy for the G� � �C base-pairing
interaction. Geometries and electron densities were computed for 39
different base pairs and their corresponding individual bases at the M06-
2X/TZVP computational level. Reprinted with permission from ref. 200.
Copyright 2021 American Chemical Society.
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and simulates both water clusters and liquid water.213–215 Work
is still on progress to optimize the method for developing
chemically accurate and transferable kriging models of atomic
properties,216,217 as well as to include the non-electrostatic
intermolecular energy in a fully integrated and unified way.215

The pursuit to quantify atomic and group energy contribu-
tions in biomolecular systems requires the treatment of solvent
and environmental effects within the IQA framework. Although
the EDA decompositions of QM energies including environ-
mental effects have been scarce, it turns out that the IQA net
atomic energies can easily absorb the electrostatic continuum-
solvent effects,219 allowing thus the partition of hydration
energies into effective atomic and group contributions. Similarly,
in the case of hybrid QM/MM (molecular mechanics) methodolo-
gies, which combine the QM description of a region of interest with
the classical FF representation of the surroundings, the electrostatic
interaction between QM and MM atoms can be readily included as
one more pairwise IQA term.218 The pairwise QM–MM dispersion
energy as well as the effective atomic solvation energies extracted
from classical Poisson-Boltzmann (PB) calculations are analogously
incorporated, so that a consistent IQA partitioning of the QM/MM-
PB interaction energies in protein-ligand systems is now feasible. In
addition, the IQA descriptors of the QM/MM model systems can
detect and monitor the underlying unbalance between QM–QM
and QM–MM interactions, quantifying thus the overpolarisation of
the QM region (see Fig. 10).218 Hence, IQA and other EDAs220 could
help in the diagnosis of QM/MM methodological problems and in
the evaluation of possible solutions.

Certainly, the significant number and scope of the computa-
tional studies that are reviewed in this subsection support the
potential of the IQA-based descriptors to gain valuable data and
information from the QM and QM/MM calculations on bio-
molecules, ranging from the energetic assessment of all kinds
of interactions (covalent and noncovalent, short and long-
range) to the determination of reference data useful for the
development and validation of modern FF and hybrid methods.

However, various obstacles lie ahead for the development and
consolidation of more user-friendly IQA tools that may become
the favorite EDA method in this field. Obviously, despite the
latest advances, it is still required to simplify and speed up the
challenging biomolecular applications of IQA as well as to
control and ameliorate the impact of the numerical errors that
affect especially the decomposition of relative energy differences.
Hopefully, the IQA applicability may be enhanced by introducing
controlled approximations, for example, by constructing
machine-learning models for selected IQA components as a
function of molecular geometry. But in addition to faster imple-
mentations, it will be necessary to optimize and standardise the
selection and/or averaging of the myriad of atomic and
fragment-based IQA terms that arise in large systems in order
to design meaningful and robust descriptors that may help guide
the design and optimization of biomolecules.

6 The electron counting-bond energy
link

One of the most interesting features that emerges from using a
single framework to derive both electron counting descriptors
as well as energetic ones is the possible algebraic relationship
between both. This notion lies deep in traditional chemical
intuition, which takes for granted that bond energies are
proportional to bond orders. For instance, a double C–C bond
displays close to double the bond energy of a C–C single link.
One of the main problems to formalize this relationship is the
absence of an universally accepted definition of bond energy
(BE).221,222 As soon as we move from a diatomic to a general
polyatomic system, a large set of phenomena, including relaxa-
tion of fragments, non-additivity effects, etc., sets on, preclud-
ing a consensus on how to define such an important chemical
concept as bond strength from an energetic viewpoint. For
many, all these effects can only be separated apropriately if we

Fig. 10 Schematic representation of the formal MM- QM conversion of the water molecules in the second shell around one M(II) cation. Note that the
electrostatic interaction energies (in au) between the metal and the first and second water shells depend on the QM-MM boundary. The structures were
built from molecular dynamics snapshots and each cation is solvated by a spherical cap of 5400 MM waters. The IQA calculations were performed at the
HF-D3/cc-pVTZ(-g)/MM level. Reprinted with permission of the authors from ref. 218.
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are able to quantify the energetic cost of transforming an
isolated atom into an atom-in-the-molecule. This leads to the
so-called intrinsic bond energies.223,224 It has been shown225

that a real space partition like IQA provides a conceptually
clean way out. EAB

int can be safely read as an in situ bond energy
(IBE) that behaves exactly as other intrinsic bond energies
proposed in the literature do. The IBE is the interaction (bond)
energy between two fragments that have already been deformed
to their in-the-molecule state. The total energy is fully recovered
as a pairwise additive sum of all these IBEs plus the fragments’
deformation energy costs (the IQA Edefs). Interestingly, the BE
non-additivity problem is solved by allowing for the existence of
interactions between all pair of fragments, not only between
those who are directly bonded in a chemical sense (drawing a
dash in between).

IQA thus provides a consistent definition of the (in situ)
bond energy which can now be compared to bond orders (BOs).
To do so, we notice that both the electrostatic (or classical or
ionic) and the exchange–correlation (or covalent) contributions
to the interatomic interaction energies can be written in a
formally equivalent way:

EAB
cl or xc ¼

ð
A

dr1

ð
B

dr2
tcl or xc r1; r2ð Þ

r12
;

tcl r1; r2ð Þ ¼ rt r1ð Þrt r2ð Þ;

txc r1; r2ð Þ ¼ �rxc r1; r2ð Þ:

(61)

In this expression, a classical nuclear density, rnðrÞ ¼P
a
Zad r� Rað Þ, where a runs over the nuclei and Z denotes

the nuclear charge, has been added to the electron density r to
define a total (electronic plus nuclear) charge density, rt(r) =
rn(r) � r(r). We now recall that the covalent bond order, as
measured by the delocalization index dAB, given by eqn (39)
which, apart from the r12 interelectron distance, is just a scaled
EAB

xc . Using a bipolar expansion, which is always convergent
unlike the more commonly found multipolar expansion,226 it
has been shown71 that both the covalent and ionic terms can be
written as Taylor series in which the leading terms are

EAB
xc � �

dAB

2RAB
; (62)

EAB
cl �

QAQB

RAB
; (63)

where QA, and QB are the total (nuclear plus electronic) charges
of A and B. In this sense, iAB = �QAQB can be taken as an ionic
bond order. Doing so, a total bond order eAB = iAB + dAB can be
defined such that the total interaction energy EAB

int E �eAB/RAB.
An algebraic relationship is thus uncovered between electron

counting descriptors (bond orders) and (in situ) bond energies.
Surprisingly, the leading term in the covalent energy contribu-
tion follows an inverse power law much as the ionic one. It is very
satisfying that a clear model of this behavior is straightforward
from the analysis of EDFs. In a purely covalent bond, as
examined, the total probability of finding two electrons in one

center is 1/4 + 1/4 = 1/2. In these situations a �1/RAB attraction
exists between them, leading to an overall �1/(2RAB) interaction.
No interaction, to first order, occurs when one electron lies in
each neutral center. We believe that this model shows neatly that
the origin of all interactions in a Coulombic Hamiltonian is
electrostatic in nature.

The first order approximation reproduces reasonably well
the exactly computed IQA/QTAIM covalent, ionic, and total
interaction energies. Fig. 11 shows this comparison. In most
cases, the leading order term of the expansion leads to semi-
quantitative agreement with the exactly computed values. We
have also shown that the agreement improves considerably if
further order in the series expansion of both the covalent and
ionic energies is taken into account.227

7 Recovering one-electron pictures

Regardless of the intrinsic power that real space methods have
shown in chemical bonding issues, it cannot be denied that
most chemists still use and pursue orbital pictures to rationalize
their findings. Since delocalized canonical orbitals do not con-
form to the standard Lewis image, localized functions have
become important in one-particle images of the chemical bond.
Being Slater determinants invariant under unitary transforma-
tions of their orbitals, many different localization techniques
have been devised over the years, like the now standard Edmis-
ton–Ruedenberg229 or Pipek–Mezey230 procedures. Simulta-
neously, a quest for a simplified description of a complex
wavefunction in terms of a set of atomic-like orbitals as close
as possible to a minimal basis set has led to well-known
procedures, like Weinhold and coworkers’ natural bond orbital
(NBO) formalism,231 that has been severely criticized (see for
instance ref. 232). Newer ideas have not ceased to be proposed,

Fig. 11 Comparison of the leading order covalent (Exc), ionic (Ecl), and
total interaction energies (Eint) with their exactly computed values for a set
of over 800 different compounds covering several types of bonding
regimes. Taken from ref. 228, where more details can be found, with
permission granted by the retained rights of the authors. Data are provided
in kcal mol�1.
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like in the case of the so-called intrinsic atomic orbitals
proposed by Knizia,233 or in the adaptive natural density parti-
tioning (AdNDP) method of Zubarev and Boldyrev,234 that allows
to tell easily two- from multi-center bonds, and that has been
also generalized to solids.235 Clearly, chemists are used to
manipulate orbitals in very many clever ways, and it is relevant
to examine the possibility of recovering effective one-particle
functions from real space methods.

The combined use of a real space partition into fuzzy or non-
fuzzy atoms together with an Open Quantum Systems (OQS)
perspective of QCT236–238 is a relatively straightforward, yet
powerful way to access one-electron images of different flavors.

These one-electron functions can be visualized and compared
between different systems, as well as with orbitals obtained by
other methods as those described in the previous paragraph.
Their analyses allow drawing significant conclusions, which are
difficult or impossible to obtain in other ways. Among the
different existing possibilities, in this work we will only com-
ment on three of them: the domain averaged Fermi hole
(DAFH) orbitals, the natural adaptive molecular orbitals
(NAdOs), and the fragment natural orbitals (FNO). Interest-
ingly, all of them converge onto the domain natural orbitals
(DNO) developed by Ponec in the case of one region and SDWs.
When describing how these one-electron functions are
obtained, we will only present an illustrative example, without
further discussion (see Fig. 12–14), for which we refer the
reader to the original references.

7.1 Domain-averaged Fermi hole orbitals (DAFH)

The DAFH molecular orbitals of atom or fragment A are
obtained by diagonalizing the exchange–correlation density
rxc

2 after one of the electron coordinates has already been
integrated over A. In a basis of canonical orbitals fi, assuming
for simplicity a closed-shell (N = 2n) molecule, real spin–
orbitals, and after integrating out the spin variables, we
arrive at

rxc2 r1; r2ð Þ ¼
XM
ijkl

Zijklfi r1ð Þfj r1ð Þfk r2ð Þfl r2ð Þ (64)

Threrein, M is the size of the MO basis, and Zijkl are coefficients
coming from the expansion of the wavefunction in terms of
Slater determinants, with Zijkl = 2dikdjl for SDWs. If electron 2 is
integrated over fragment A, the spinless DAFH GA(r) function is

Fig. 12 |f| = 0.08 a.u. isosurface of the non-core valence 1c and 2c DAFH
functions found in methanol at the CCSD(T)//cc-pVDZ level. 1c and 2c
occupations and percentage of population localized are also shown.
Reproduced from ref. 255 with permission from the Royal Society of
Chemistry.

Fig. 13 |c| = 0.05 a.u. isosurfaces for the non-core NAdOs in the B2 and C2 molecules. The numbers below correspond to their respective occupa-
tions nab

i at the ROHF and CAS levels, with a 6-311G(d,p)++ basis set. C2 data in parenthesis. Reproduced from ref. 256. Copyright 2015
John Wiley and Sons, Inc.
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obtained:

GA r1ð Þ ¼
ð
A

dr2rxc2 r1; r2ð Þ ¼
X
ij

fi r1ð ÞGA
ij fj r2ð Þ; (65)

where GA
ij ¼

P
kl

ZijklS
A
kl . The diagonalization of GA/2 = GA

a = GA
b

leads to a set of M DAFH MOs fA
i (r) and their corresponding

occupation numbers nA
i . The DAFH MOs of highest occupancy

for the methanol molecule and their occupation numbers at
the CCSD(T)//cc-pVDZ level are provided in Fig. 12. These are
well-defined functions obtained at any level of theory that
preserve conventional chemical wisdom and that are invariant
under orbital tranformations of the underlying wavefunction.
Notice how close to two the propulations are, much as in NBO
analyses, without the need of the involved and some times
ad hoc transformations that lead to natural bond orbitals.

We can use the DAFH to write

GAðrÞ ¼
XM
i

2nAi fA
i ðrÞ


 �2
; (66)

where the factor 2 accounts for both the a and b components of
GA, which turn out to be equal in a closed-shell molecule. The
above expression was originally derived by Ponec,239,240 and the
analysis of the fA

i and nA
i functions was carried out later by Ponec

and other authors.241–250 The formalism has been applied to a
very large number of systems, both for fuzzy- and non-fuzzy
partitions of space, and at equilibrium and non-equilibrium
geometries. DAFHs are also intimately related to the effective
atomic orbitals of Mayer,251 which have been very successfully
used by Salvador and coworkers to obtain oxidation states
in agreement with the IUPAC’s recommendations.252,253 From
now on, we will call the fA

i s obtained for SDWs domain natural
orbitals (DNOs). In the SDW case, GA acquires a very simple form,
since it is given by GA = 2SA, where SA is the AOM defined in
eqn (26).

The occupation numbers nA
i satisfy 2

PM
i¼1

nAi ¼ nAh i, the aver-
age number of electrons in A. Given that

Ð
R3rxc r; r2ð Þdr2 ¼ rðrÞ,

we also have
P
A

GAðrÞ ¼ rðrÞ. From eqn (39), (65) and (66), the

delocalization index between A and B, dAB, is given by248

dAB ¼ 4
X
i

nAi

ð
B

fA
i ðrÞ


 �2
dr ¼ 4

X
i

nBi

ð
A

fB
i ðrÞ


 �2
dr; (67)

¼ 2
X
i

nAi

ð
B

fA
i ðrÞ


 �2
drþ 2

X
i

nBi

ð
A

fB
i ðrÞ


 �2
dr: (68)

eqn (68) arises due to the symmetry
Ð
BG

AðrÞdr ¼
Ð
AG

BðrÞdr. dAB

takes a simpler form when the sum of fragments A and B exhaust
the system (A,B = R3). Then, the first integral in eqn (68) is equal

to 1 � sA
i , where sAi ¼

Ð
A fA

i ðrÞ

 �2

dr;, and the second becomes

1 � sB
i , where sBi ¼

Ð
B fB

i ðrÞ

 �2

dr; so dAB can be written as

dAB ¼ 2
X
i

nAi 1� sAi
� �

þ 2
X
i

nBi 1� sBi
� �

: (69)

As already stated, both contributions to dAB are equal. However,
fA

i a fB
i and nA

i (1 � sA
i ) a nB

i (1 � sB
i ) in general wavefunctions.

Nonetheless, further simplifications in the formalism, very illu-
minating as regards the relevance of DNOs in chemical bonding
theory, take place for SDWs when A,B = R3.254 In this case, using
the property SB = I� SA, it can be shown that fA

i = fB
i , and not only

that: DNOs, in addition to being orthonormal in R3, are also
orthogonal in A and B, with hfA

i |fj
AiA = dijs

A
i = dij(1 � hfB

i |fB
j iB) =

dij(1 � sB
i ). Moreover, the occupations of both fragments are

related by nA
i = 1 � nB

i , and are equal to the respective overlaps
in the fragments, nA

i = sA
i and nB

i = sB
i . In the end, all these

transformations allow us to write eqn (69) as

dAB ¼ 4
X
i

sAi 1� sAi
� �

¼ 4
X
i

sBi 1� sBi
� �

: (70)

The relevance of the above equation is that it connects the
bond order between A and B, measured through dAB, with the
localized or delocalized character of the DNOs. A DNO highly
localized in A (sA

i = 1 � sB
i C 1) or in B (sB

i = 1 � sA
i C 1) hardly

contributes to dAB and only those orbitals significantly delocalized
in both fragments give rise to significant contributions to the
bond order. In an indirect way, the exchange–correlation inter-
action energy between two fragments A and B (VAB

xc ), as long as
A,B = R3 and the wavefunction is a SDW expressed in terms of
the DNOs, is completely dominated by those DNOs with appreci-
able delocalization in A and B simultaneously. The contribution of

Fig. 14 |j| = 0.05 a.u. isosurface of the s (left) and p (center and right) S–O FNOs of the SO4
2� anion at the B3LYP//def2-QZVPPD level of calculation.

The rightmost graph corresponds to the lone pair of oxygen atom. Reprinted with permission of the authors from ref. 257.
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those DNOs that are strongly localized in one of the two fragments
is very small. This picture offers an extraordinarily coherent image
of our electron counting formalism plus IQA energy partitioning
method. Expressed in a language quite familiar to chemists: the
core electrons of a system (represented in this case by highly
localized DNOs in one of the fragments) have little relevance, both
from the point of view of the bond order (i.e. the dAB value), as well
as from the energetic viewpoint (i.e. the VAB

xc value).

7.2 Natural adaptive molecular orbitals (NAdOs)

The use of cumulant densities allow for a rather simple general-
ization of DNOs to the multicenter case. As we have seen, if one
electron coordinate of the nth-order cumulant density (nCD),
rc

n, is integrated out we recover the (n � 1)th CD (eqn (13)).
Taking, for instance, n = 3,

rc2 r1; r2ð Þ ¼ rxc r1; r2ð Þ ¼
ð
R3

dr3rc3 r1; r2; r3ð Þ; (71)

Alternatively, if we integrate r1 in a region OA and r2 in another
region OB, what it is obtained is the one-electron function rab(r)

rabðrÞ ¼
ð
OA

dr1

ð
OB

dr2rc3 r1; r2; rð Þ: (72)

Expressed in the basis {fi} of canonical orbitals,

rab(r) = (f1f2� � �)Dab(f1f2� � �)†, (73)

where Dab is a symmetric matrix that can be diagonalized. In
terms of its eigenvalues {nab

i } and eigenvectors {cab
i }

rabðrÞ ¼
X
i

nabi cab
i ðrÞ

�� ��2: (74)

Since
Ð
R3drrabðrÞ ¼ dAB=2, and each cab

i (r) is normalized, the

nab
i s obey the sum rule 2

P
i

nabi ¼ dAB. Thus, 2 � nab
i is the

contribution of cab
i (r) to the bond order between A and B, and

each cab
i itself defines a two-center natural adaptive orbital

(NAdO). This means that two-center NAdOs induce a one-
electron decomposition of any two-center delocalization index.

The generalization to an arbitrary n is straightforward:256

rab���nðrÞ ¼
ð
OA

dr1

ð
OB

dr2 � � �
ð
On

drnrcnþ1 r1; . . . ; rn; rð Þ; (75)

= (f1f2� � �)Dab� � �n(f1f2� � �)†, (76)

and

¼
X
i

nab���ni cab���n
i ðrÞ

�� ��2; (77)

where {cab� � �n
i } and {nab� � �n

i } are the n-center NAdOs and their
eigenvalues, respectively. Since

Ð
R3drrab���nðrÞ ¼ dAB���n=n! and

the cab� � �n
i (r)’s are again normalized, the sum rule is now

n!
P
i

nab���ni ¼ dAB���n; than can be taken as an n-center delocaliza-

tion index. When n = 1, the generalized density ra(r) coincides
with the DAFH function GA(r) defined in the previous subsec-
tion, and the 1-center NAdOs ca

i (r) and their eigenvalues

na
i ’s are equal to twice the DAFH occupancies (2nA

i ) and DAFH
MOs fA

i (r).
The n-center NAdOs provide clear images of n-center bonds,

and are adaptively localized or delocalized over the n centers
used to compute them. If one NAdO is fully localized over one
center, it represents a core or lone-pair orbital of that center
and does not contribute to any n-center bond (n 4 1). If one of
the NAdOs is completely localized over n centers, it describes a
pure n-center bond. In contrast, a NAdO which is only partly
localized on n centers signals the existence of higher order
multicenter bonding. For instance, NAdOs obtained for n = 1 can
be fully localized on one center (i.e. they describe core or lone
pair orbitals) or delocalized over two or more centers, describing
in this second case the existence of at least two-center bonding.
This means that the NAdOS obtained by diagonalizing ra(r) can
be used to analyze chemical bonds in real space if we focus our
attention on their delocalized components. This procedure is, in
fact, the usual way in which Ponec’s DAFHs have generally been
used since they were proposed. Nonetheless, we note that the
formalism just introduced is more suitable for this purpose.
Moreover, n-center NAdOs obtained as described here transform
according to the irreducible representations of the group of the n
centers involved in obtaining them. No a posteriori matrix
transformation as, for instance, an isopycnic rotation, is neces-
sary to achieve this.

As an example, the valence NAdOs obtained for the B2 and
C2 molecules, described at the restricted open shell HF (ROHF)
as well as the CAS levels are shown in Fig. 13. It can be clearly seen
that their shape is easily interpreted with standard chemical
wisdom, and that we clearly isolate s or p contributions as in
standard molecular orbital theory. NAdOs, however, contain extra
information, since their occupation numbers measure their con-
tribution to the total bond order. Thus we see that both in
dicarbon and diboron the sg and su functions contribute con-
siderably to bonding at the mean-field level, leading to a close to
quadruple bond image in C2, but that the su function becomes
considerably less important upon inclusion of correlation.

7.3 Fragment natural orbitals (FNOs)

Much as in the NBO paradigm it is the atomic blocks of the 1RDM
written in an atom-centered basis which is diagonalized to provide
natural atomic orbitals,231 the consideration of an atom or frag-
ment in real space as an open quantum system (OQS) can be used
to define real space analogues of an atomic RDMs. We call
fragment natural orbitals (FNOs) the orbitals obtained for a frag-
ment A of a molecule after diagonalizing its OQS 1RDM. It can be
shown238 that the 1RDM of an atom or fragment A can be written
as rA(r;r0) = oA(r)oA(r0)r(r;r0), where oA is a weight factor as defined
above (when A is a single atom) or the sum of the weight factors of
all the atoms that make up the fragment otherwise, and r(r;r0) is
the standard 1RDM of the whole molecule. When the latter is
expressed in a basis of orthonormal orbitals |uii,

rðr; r0Þ ¼
X
i;j

u�i ðr0ÞrijujðrÞ ¼ juirhuj; (78)

rA(r;r0) results
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rA(r;r0) = oA(r)|uirhu|oA(r0). (79)

The matrix representation of rA(r;r0) in the |uii basis is simply
SArSA, where SA is the standard AOM matrix (eqn (26)) when A is
an atom, or the sum of the AOMs of all the atoms that make up
the fragment A. The FNOs of this fragment are obtained by
diagonalizing SArSA, taking care that the basis |uii is not ortho-
normal in A. This is equivalent to diagonalize rA = (SA)1/2r(SA)1/2,
i.e. rAU = Udiag(lA). An alternative possibility is to first express the
standard 1RDM in the Löwdin orthogonalized basis |upi, defined
as |upi = |ui(SA)�1/2. In this basis, the matrix representation of
rA(r;r0) is directly rA. Be that as it may, FNOs of fragment A are
given by |ji = |upiU = |ui (SA)�1/2U � |uiC. The ji functions
are orthonormal in A but not in R3, since hj|jiR3 = U†(SA)�1U =
C†C a I.

In SDWs, r = 2I (where I is the identity matrix) and, there-
fore, rA = (SA)1/2r(SA)1/2 = 2SA, so that the matrix representation
of rA(r;r0) coincides with twice the AOM in fragment A. In other
words, rA it is equal to the GA matrix that is diagonalized in the
derivation of Ponec’s DNOs. This means that DNOs and FNOs are
the same in this case, as well as their respective occupations, lA

i =
2nA

i . Furthermore, since SA is positive definite, all lA
i s are greater

than zero, so there are no DNOs or FNOs with negative occupations
in case of SDWs. This equivalence between DNOs and FNOs in
SDWs extends also to 1- and 2-center NAdOs provided that A,B =
R3, since Da = SA, Db = SB, and Dab = (SASB + SBSA)/2 in SDWs. The
diagonalization of these three matrices lead to the same eigenvec-
tors, ca

i = cb
i = cab

i , for SB = I � SA. Moreover, occupations derived
from Da and Db are related by na

i = 1 � nb
i and each na

i is the self-
overlap integral of ca

i in A, nai ¼
Ð
OA

c�ai ðrÞca
i ðrÞdr.

We took the SO4
2� anion as an example to illustrate FNOs.

In Fig. 14 we present the bonding FNOs for one of the four
equivalent S–O pairs, as well as the oxygen lone pair FNO. As we
clearly see, there is a triple S–O bond (one s and two equivalent
p bonds).

8 Summary and conclusions

We have reviewed in this perspective some recent advances in the
concept of an atom-in-a-molecule from a real space viewpoint. We
have shown that both fuzzy and non-fuzzy decompositions can be
dealt with, on the same footing, when atomic weight functions are
used and have examined a few of the best-known weights in both
categories. Once an atom (or fragment) is so defined, a wealth of
chemically relevant information becomes accessible by using
reduced densities or density matrices and their irreducible parts,
the so-called cumulant densities or density matrices. We have
stressed how the expectation value of any operator can be written
as a sum of atomic contributions. This is not the case in many
other methodologies. When the expectation values of the densi-
ties themselves are partitioned, we obtain atomic, interatomic, or,
in general, polyatomic populations that provide, in the limit, the
full statistical electron distribution function. The relationship
between the fluctuation of the atomic or fragment populations
and the real space multicenter bond orders has been highlighted.
This link is particularly important, and not so well known. When

the total Hamiltonian operator is partitioned instead, an energy
decomposition arises, the interacting quantum atoms (IQA)
method, which writes the total energy of a system as a sum of
atomic or fragment self-energies and pairwise additive intera-
tomic (interfragment) interactions. We have focused on recent
expansions of IQA to intermolecular interactions and biologically
important compounds. A straightforward link between electron
counting and IQA has also been reviewed. Finally, a means to
recover one-electron functions, i.e. orbitals, from real space parti-
tions, has also been provided.

The definition of an atom-in-a-molecule as a real space
object provides a unique way to examine the spatial distribu-
tion of the electrons in a molecule. By adopting this viewpoint,
fully compatible with the underlying quantum mechanical
reality, the chemist’s language shifts from orbitals (which if
endowed with an energetic signature must be delocalized) to
interactions. Instead of isolating electrons from nuclei and
considering more or less delocalized objects that exactly host
one or two electrons, the real space perspective considers
spatial regions associated with interacting atoms or fragments.
These regions do not possess an immutable but a fluctuating
number of particles. The fluctuations can be followed if the
probabilities of finding a given partition of the electrons in the
set of atomic regions, i.e. the electron distribution function, are
computed. The number of atoms involved in these population
fluctuations decides whether we have two-center or multi-
center bonds, which can be visualized by building appropriate
one-electron functions that further decompose bond orders
using an orbital-like narrative.
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94 M. Causà and A. Savin, J. Phys. Chem. A, 2011, 115,
13139–13148.

95 A. Scemama, M. Caffarel and A. Savin, J. Comput. Chem.,
2006, 28, 442–454.

96 G. Acke, S. D. Baerdemacker, P. W. Claeys,
M. V. Raemdonck, W. Poelmans, D. V. Neck and
P. Bultinck, Mol. Phys., 2016, 114, 1392–1405.

97 D. V. Hende, L. Lemmens, S. D. Baerdemacker, D. V. Neck,
P. Bultinck and G. Acke, J. Comput. Chem., 2022, 43,
457–464.
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A. S. Novikov, J. Comput. Chem., 2021, 42, 676–687.
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144 J. Poater, M. Solà and F. M. Bickelhaupt, Chem. – Eur. J.,
2006, 12, 2889–2895.
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PhysChem, 2021, 22, 775–787.

155 J. Jara-Cortes, B. Landeros-Rivera and J. Hernandez-
Trujillo, Phys. Chem. Chem. Phys., 2018, 20, 27558–27570.

156 M. Gallegos, A. Costales and Á. Martı́n Pendás, J. Phys.
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182 P. Śliwa, M. P. Mitoraj, F. Sagan and J. Handzlik, J. Mol.

Model., 2019, 25, 331.
183 V. Thiel, M. Hendann, K.-J. Wannowius and H. Plenio,

J. Am. Chem. Soc., 2011, 134, 1104–1114.
184 Y. Cornaton and J.-P. Djukic, Acc. Chem. Res., 2021, 54,

3828–3840.
185 M. A. Sajjad, J. A. Harrison, A. J. Nielson and

P. Schwerdtfeger, Organometallics, 2018, 37, 3659–3669.

186 J. A. Harrison, A. J. Nielson, M. A. Sajjad and
P. Schwerdtfeger, Organometallics, 2019, 38, 1903–1916.

187 Y. Cornaton and J.-P. Djukic, Phys. Chem. Chem. Phys.,
2019, 21, 20486–20498.

188 F. Wu, C. Deraedt, Y. Cornaton, J. Contreras-Garcia,
M. Boucher, L. Karmazin, C. Bailly and J.-P. Djukic, Orga-
nometallics, 2020, 39, 2609–2629.

189 C. F. Matta, J. Comput. Chem., 2014, 35, 1165–1198.
190 P. Popelier, Curr. Top. Med. Chem., 2012, 12, 1924–1934.
191 P. L. A. Popelier, J. Mol. Model., 2022, 28, 276-1-41.
192 S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2011,

1, 211–228.
193 T. A. Keith, AIMAll 19.10.12, 2019, http://aim.tkgritsmill.

com.
194 H. Salazar-Lozas, J. M. Guevara-Vela, Á. Martı́n Pendás,
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218 R. López, N. Dı́az, E. Francisco, Á. Martı́n Pendás and
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227 Á. Martı́n Pendás, J. L. Casals-Sainz and E. Francisco,

Chem. – Eur. J., 2018, 25, 309–314.
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