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ulation of the reaction site by
a cucurbit[7]uril macrocycle†

Nazar Rad and Volodymyr Sashuk *

Competitive inhibition can be overcome by increasing the amount of catalyst in the reaction mixture. Here

we present a pseudorotaxane system that circumvents this rule. A merocyanine inhibitor linked with the

substrate obstructs the binding of the macrocyclic catalyst at the electrophilic reaction site preventing

catalysis. Under UV light merocyanine is converted to the spiropyran form, losing its inhibition properties,

thereby allowing the catalyst to bind the reaction center and promote the reaction. Moreover, when

more than one nucleophile is present in the reaction mixture, the pseudorotaxane can scavenge

a selected nucleophile and change the final product ratio. This work is a step forward in the

development of new types of regulation in catalytic systems with remote control.
Introduction

Competitive inhibition is a widespread mechanism of regula-
tion of catalytic activity, where an inhibitor molecule competes
with a substrate for the active center.1 This type of inhibition
can however be attenuated or completely stopped by increasing
the amount of catalyst. This is due to the saturation of the
competitive binder followed by the substrate–catalyst complex
buildup. Here we present a way to switch off/on the inhibition
regardless of the excess of the catalyst. For this, the substrate is
merged with the inhibitor into onemolecule. This design allows
for the regulation not only the reaction rates but also product
selectivity of external chemical reactions.

Our system is based on pseudorotaxane2 and depicted in
Fig. 1A. It is composed of a cucurbit[7]uril macrocycle3 (Fig. 1C)
having affinity to a molecular axis (Fig. 1B) containing two
stations. The rst station is benzaldehyde which also serves as
a reaction site. The second heptyl station is terminated with
spiropyran photoswitch4 as a regulator. Both stations are con-
nected by a dimethylammonium group. The ammonium group
confers solubility in water and keeps the macrocycle on the axle
by the coulombic stabilization with partially negatively charged
carbonyl rims. When the photoswitch is in the open mer-
ocyanine form (MCH, OFF state), the macrocycle binds prefer-
entially the heptyl station due to the additional attraction with
a positive charge on the indole ring, preventing the threading of
the secondmacrocycle (for steric and electrostatic reasons), and
therefore, has a limited inuence on the condensation reaction
my of Sciences, Kasprzaka 44/52, 01-224
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12444
of benzaldehyde with a nucleophile, i.e. hydrazide (Fig. 1D).
Switching to the neutral spiropyran form (SP, ON state) cancels
the electrostatic interaction of the macrocycle with the regulator
and allows it to bind a more favorable benzaldehyde station,
where it catalyzes the hydrazonation5 due to the stabilization of
protonated reaction species.6 Details on the synthesis and
isomerization behavior of the axle (UV-Vis spectra) can be found
in the ESI (pp. S2–S22).†
Fig. 1 (A) General presentation of the system; (B and C) chemical
structures of the macrocycle and axle in different states; (D)
condensation reaction occurring on the axle in the presence of methyl
hydrazinocarboxylate.
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Fig. 2 (A) 1H NMR spectra showing the shifts of the proton signals of the axle (5 mM) alone and after the addition of themacrocycle (5 mM) in the
dark (top) and under constant light illumination (bottom), acetonitrile-d3/D2O mixture (v/v z 40 : 60), pD z 3, 298 K. Residual solvents (water
and acetonitrile) are denoted with asterisks. Lettering of signal corresponds to that shown in Fig. 1A. (B) Illustrations obtained after semi-empirical
optimization at the PM6 level with the D3 dispersive term.
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Results and discussion

We began our study with the complexation study. The axle and
CB7 in the dark (OFF state) were mixed in a 1 : 1 ratio at 5 mM
concentration in acetonitrile-d3/D2O mixture with HCl added to
keep the pD constant (z3). NMR titrations showed the equi-
molar interaction and threading of the macrocycle on the axle
(Fig. S32†). Since the direct determination of the association
constant was impossible, displacement experiments using an
ammonium benzaldehyde were carried out (pp. S23–S31, ESI†).
This gave Ka ¼ 8.8 � 104 � 0.8 M−1 indicating high stability of
the formed pseudorotaxane and that as little as 3% of it exists in
the disassembled state (p. S26, ESI†). The detailed examination
of the NMR spectra (Fig. 2A, top) showed that the macrocycle
rests mostly on the aliphatic chain in close proximity to the
stopper. This is evidenced by the upeld shiing of repeating
methylene units, and downeld shis of adjacent spiropyran
protons. Upon illumination of the system with blue light (ON
state), the macrocycle preferably docks to the benzaldehyde
station with one rim located vis-à-vis the ammonium group, and
© 2022 The Author(s). Published by the Royal Society of Chemistry
the other out of the axle. This is manifested by upeld shis of
all protons up to the ammonium group, and downeld shi of
a non-benzylic CH2 group next to it (Fig. 2A, bottom). The
process is accompanied by a 4-fold decrease in the binding
strength due to the cancellation of electrostatic attraction with
indolium nitrogen atom. Note that not all shis of the axle
protons are consistent with the supposed position of the mac-
rocycle. For instance, protons of the aromatic station remain
shielded in either state. This indicates that the macrocycle
performs the Brownian motion, and the apparent shi is the
result of the average distribution of the macrocycle on both
stations. It is estimated that the macrocycle in the ON state
spends about 5 times more on the aromatic station than in the
OFF state (p. S26, ESI†).

Aer the study of the interaction patterns of the axle with the
macrocycle, we started catalytic experiments. Accordingly, we
administered methyl hydrazinocarboxylate in 20 equiv. The
employment of the excess of hydrazide (pKa z 3.2, Fig. S39,
ESI†) pursued three goals: (i) buffering of the system as pho-
toswitching causes signicant alteration of acidity;7 under these
Chem. Sci., 2022, 13, 12440–12444 | 12441
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Fig. 3 Comparison of the rates of the hydrazonation of the axle (75
mM) at different amounts of CB7 in the dark (grey bars) and under
constant light irradiation (blue bars), acetonitrile/H2O mixture (v/v z
40 : 60), pH z 3, 298 K. The determination of the rates is described in
pp. S34–S35, ESI.†
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conditions (pH z 3), hydrazonation, which is pH-sensitive,5 is
neither too fast nor too slow, and the spiropyran ring does not
undergo degradation; (ii) shiing the reaction equilibrium
towards the hydrazonation product due to the reversibility of
the process; (iii) downgrading the reaction order from 2° to
pseudo 1° in respect to the axle, thereby facilitating the
description of the reaction kinetics. Catalysis was studied by
UV-Vis spectroscopy at different axle-macrocycle ratios under
light and dark conditions (Fig. 3, pp. S32–S34, ESI†). As can be
seen, in the OFF state, up to ca. 1 equiv. of CB7, the reaction rate
slightly increased due to the partial formation of an active
complex at the benzaldehyde station; however, when more CB7
was employed, the reaction rate remained practically
unchanged due to the saturation of the aliphatic station with
Fig. 4 Acceleration of the hydrazonation reaction under constant
light irradiation (blue region) after the initial z60 s stay of the system
(100 mM) in the dark (grey region), acetonitrile/H2Omixture (v/vz 40 :
60), pH z 3, 298 K. Note that Y stands for the product yield, and the
first datapoint in the blue region corresponds to the steady state of the
photoswitch.

12442 | Chem. Sci., 2022, 13, 12440–12444
the macrocycle, and the inability of the second macrocycle to
thread onto the axle. The distinct behavior of the system was
observed under irradiation (ON state). The reaction rate
increased steadily with increasing amount of CB7 until the
stoppage at a 5 : 1 macrocycle-axle ratio, which corresponds to
the presence 80% of the assembled pseudorotaxane (Table S2,
SI†). At this ratio, the reaction sped up about 5.4 times
compared to the dark (Table S3, ESI†). This is practically the
same value we obtained for the relative population of the
macrocycle on the aromatic station in each state (vide supra).
That is, catalysis by the macrocycle occurs only when it resides
on the aromatic station, as originally planned. Control experi-
ments without macrocycle conrm this (Fig. 3, 0 equiv. of CB7),
showing that the reaction in the dark is even faster, which is
likely due to the intramolecular stabilization of protonated
aldehyde by the sulfonic group.8 Importantly, the acceleration
of the reaction can be done at any time (Fig. 4). Furthermore,
aer the reaction is complete, the system can be readily rein-
stated. It is enough to lower the pH (Fig. S42, ESI†), as the
hydrazide detaches itself.

Considering the electrophilic character and tuneable reac-
tivity of the pseudorotaxane, we tested it for scavenging nucle-
ophiles from the reaction mixtures to affect the reaction
Fig. 5 Reaction of 4-nitrobenzaldehyde (1 equiv., 3.6 mM) with the
mixture of two hydrazides (0.75 equiv. each) in the presence of the
pseudorotaxane (1 equiv.), acetonitrile-d3/D2Omixture (v/vz 40 : 60),
pD z 3, 298 K. In the OFF state, since CB7 ring spends more time on
the distal heptyl station, the stabilities of the hydrazone products of the
pseudorotaxane are comparable, resulting in lower consumption of
semicarbazide by the pseudorotaxane and higher yield of the nitro-
benzaldehyde product. Upon light irradiation (ON state), the interac-
tion of CB7 ring with the semicarbazide residue increases the stability
of the corresponding pseudorotaxane derivative, reducing the amount
of semicarbazide and the nitrobenzaldehyde product. NMR spectra of
the reaction mixtures and the substrate/product distributions are
shown in the ESI (Fig. S43–S44, Table S4).†

© 2022 The Author(s). Published by the Royal Society of Chemistry
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outcomes. Recently, Hecht and co-workers demonstrated that
a reacting diarylethene photoswitch can change the yield of
a chemical reaction.9 We went further using our switching
system to alter the reaction selectivity. As a proof-of-principle,
we have chosen a condensation reaction between 4-nitro-
benzaldehyde and the mixture of two hydrazides (the used early
in this study methyl hydrazinocarboxylate and the additional
semicarbazide, Fig. 5). In the presence of the disabled pseu-
dorotaxane (in the dark), the reaction proceeds non-selectively
affording the mixture of two hydrazones in a ratio of 2.6 : 1.
However, aer the activation with light, the axle preferentially
reacts with semicarbazide, rendering the methyl hydrazine-
carboxylate derivative as the predominant product (12 : 1). To
unravel the mechanism of the selectivity change, we conducted
a set of experiments. NMR showed that 4-nitrobenzaldehyde
practically does not interact with CB7 (Fig. S45, ESI†), that is,
the observed effect is solely the result of the pseudorotaxane
operation. Further investigation revealed that the semi-
carbazide product of the axle binds CB7 slightly differently
(Fig. S46, ESI†) and affords probably a more stable complex
than one produced from methyl hydrazinocarboxylate. This
ultimately leads to the depletion of the reaction mixture into
semicarbazide, and the selective reaction of 4-nitro-
benzaldehyde with the resulted excess of methyl hydrazine-
carboxylate. In other words, the pseudorotaxane toggled by light
is capable of shiing the thermodynamic equilibrium of two
concurrent chemical reactions, which are inherently non-
photoresponsive.
Conclusions

In summary, we developed a new type of regulation of supra-
molecular catalysis. Photoswitchable inhibitor linked with
substrate into one molecule impedes the increase in the reac-
tion rate upon increasing the amount of catalyst. Aer deacti-
vation of the inhibitor with light, the system starts to exhibit the
typical catalysis enhancement until the saturation of the reac-
tion site. Importantly, the prepared pseudorotaxane can regu-
late not only self-reaction but also the outcome of external
reactions. When exposed to light it scavenges a selected nucle-
ophile and improves the product selectivity. Ongoing research
in our laboratory is aimed at improving and adapting the pre-
sented system for various purposes.
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