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Machine learning ensures rapid and precise
selection of gold sea-urchin-like nanoparticles for
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Sustainable energy strategies, particularly solar-to-hydrogen production, are anticipated to overcome the
global reliance on fossil fuels. Thereby, materials enabling the production of green hydrogen from water
and sunlight are continuously designed, e.g., ZnO nanostructures coated by gold sea-urchin-like nano-
particles, which employ the light-to-plasmon resonance to realize photoelectrochemical water splitting.
But such light-to-plasmon resonance is strongly impacted by the size, the species, and the concentration
of the metal nanoparticles coating on the ZnO nanoflower surfaces. Therefore, a precise prediction of the
surface plasmon resonance is crucial to achieving an optimized nanoparticle fabrication of the desired
light-to-plasmon resonance. To this end, we synthesized a substantial amount of metal (gold) nano-
particles of different sizes and species, which are further coated on ZnO nanoflowers. Subsequently, we
utilized a genetic algorithm neural network (GANN) to obtain the synergistically trained model by consid-
ering the light-to-plasmon conversion efficiencies and fabrication parameters, such as multiple metal
species, precursor concentrations, surfactant concentrations, linker concentrations, and coating times. In
addition, we integrated into the model's training the data of nanoparticles due to their inherent complex-
ity, which manifests the light-to-plasmon conversion efficiency far from the coupling state. Therefore, the
trained model can guide us to obtain a rapid and automatic selection of fabrication parameters of the
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nanoparticles with the anticipated light-to-plasmon resonance, which is more efficient than an empirical
selection. The capability of the method achieved in this work furthermore demonstrates a successful pro-
jection of the light-to-plasmon conversion efficiency and contributes to an efficient selection of the fab-

rsc.li/nanoscale rication parameters leading to the anticipated properties.

optical sensors, and gas sensors.'” 2" As a typical nano metal-

oxide, zinc oxide (ZnO), a conventional n-type semiconductor

Introduction

Global reliance on fossil fuels has led to an energy crisis and
urges a sustainable energy strategy, especially solar-to-hydro-
gen production, thus stimulating substantial efforts in explor-
ing nanoscale materials."”” In the nano-dimension, materials
can alter their characteristics,>*” ™ such as, the reactivity to
light, enabling electron polarization on the metal surface, or
facilitating the electron excitation to the conduction band.”"®
Thereby, nano metals and metal-oxides display prominent
functions, especially the light-to-plasmon resonance, which
can be utilized to optimize the development of solar cells,
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with a wide bandgap of 3.37 eV at room temperature, has an
absorbance peak of 340-370 nm within the ultraviolet
range.>*>® In addition to its excellent conductivity, ZnO has
outstanding biological compatibility and low toxicity, unlike
most photosensitive materials (CdS, PdS, GaSe, and BiSe).
Moreover, ZnO, owing to its hexagonal wurtzite crystallinity,
exhibits a variety of anisotropic morphologies associated with
the different synthesis methods, e.g., nanorods, nanosheets,
nanoflower, and nanowires.?*> However, ZnO still presents
deficiencies in properties, ie., the electron-hole recombina-
tion rate and the restricted response in the UV region. In this
regard, many strategies have been proposed to increase the
associated visible light absorption by coating ZnO substrates
with various nanometals or narrowing the bandgap of ZnO
substrates by introducing defects.>* These attempts have thus
demonstrated that a coating of plasmonic nanoparticles on
metal oxides can reduce the electron/hole recombination and

This journal is © The Royal Society of Chemistry 2022
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consequently improves the light-to-electron
efficiency to improve the utilization of visible light.
Moreover, the creation and separation of charge carriers can
be enhanced when a Schottky barrier occurs on the hetero-
junction between metal oxides and noble nanoparticles.?”*
Therefore, noble nanoparticles are introduced to coat ZnO sub-
strates by applying organic linkers (e.g., MPTMS or similar
molecules). However, such coatings cannot subsequently
improve the charge transport and thermal endurance of ZnO
substrates, although some of their properties can be enhanced
by exploiting hazardous organic linkers.*!

To overcome such bottlenecks, machine learning (ML)
methods have emerged as a powerful tool to discover an opti-
mized process for material preparations.’>**®® ML as a new
tool has shown its uniqueness in materials sciences, e.g., deci-
phering crystallography** and discovering superconducting
materials.*> Moreover, the development of high-performance
computing enables an extensive application of artificial neural
networks (ANNs) and deep learning. ANNs have been used to
construct models to establish the relationship between the
physical properties of photonic materials and the associated
electromagnetic responses. The established model can sub-
sequently project the electromagnetic responses of a photonic
material once their physical parameters are input.*® However,
there are only a few published studies where ML is employed
to discover an optimized method to prepare nanoparticles of
an anticipated surface plasmon resonance.***”

In this work, we successfully established a model trained by
a genetic algorithm artificial network (GANN), a method
applied in ML to train models to project the light-to-plasmon
resonance. To do so, we empirically synthesized ZnO nano-
flowers on the ITO substrates and subsequently coated the gold
nanoparticles onto ZnO nanoflowers by ultraviolet treatment.*®
Furthermore, a mixture of sodium citrate, hydroquinone, and
HAuCl,, is loaded to generate the second growth of gold nano-
particles. The optical and morphological properties of Au/ZnO
were subsequently analyzed by UV-visible spectroscopy,
quantum efficiency (QE), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and X-ray powder
diffraction (XRD). Thereby, we trained the model through GANN
by utilizing the parameters of nanoparticle fabrications and the
yielded light-to-plasmon resonances. Consequently, we achieved
a projection enabling us to select the fabrication parameters for
the anticipated light-to-plasmon resonance.

Results and discussion
Crystalline characteristics

The crystallography of the fabricated ZnO nanoflowers was
analyzed by XRD in Fig. 1. The peak at 34.44° corresponds to
the plane (002), indicating that the hexagonal wurtzite struc-
ture was preferentially formed in the [001] direction.
Furthermore, the measured lattice planes of (100) and (101)
suggested the fabricated ZnO nanoflowers have a polycrystal-
line structure. We could moreover find a peak at 38.1° of low

This journal is © The Royal Society of Chemistry 2022
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Fig.1 XRD patterns of the Au-decorated ZnO nanoflowers. The
symbols depict the positions of the analyzed reflections from the Au,
ZnO, and ITO planes. The Au-coated ZnO nanoflowers are synthesized
using 10~* M chloroauric acid, 0.2 wt% sodium citrate, and 3500 pL of
hydroquinone. The phase analysis is executed by comparing to JCPD
Standard (No. 75-576).

intensity, corresponding to the (111) plane of the metallic
gold. The other measured lattice planes, such as (211), (222),
(440), (611), (622), and (444), indicated the polycrystalline
structure of the ITO thin film.

Decision flow

In order to obtain a well-trained model through GANN for the
prediction, a delicate design of experiments is crucial to
obtaining high-quality data and thus ensuring the trained
model of high accuracy (Fig. 2). In selecting the inputs to train
the model, we carefully considered the reaction mechanism,
data analysis, and the collected data from previous experi-
ments because a lucid comprehension of the reaction mecha-
nism can lead to an appropriate input of the experimental
parameters to train the model. Therefore, the trained model
can yield a precise data projection in the range of interpolation
and modulation of the activated-plasmon enhancement for
the desired condition. In this regard, we systematically
arranged the experimental parameters with a carefully
designed distribution and could thus decrease the experi-
mental amount. The achieved experimental results alongside
the experimental parameters are exploited to initiate the
model training with the necessary definitions, e.g., the length
of data, the amount of data, the crossover ratio, the mutation
ratio, and the calculation functions. However, the data varying
beyond the average standard were eliminated to train the
model. Subsequently, the residual data were further used and
filtered according to their adaptability. However, a careful fil-
tration is necessary as it can mislead the model training and
cause mutation. After the preliminary model training, we can
establish a premature model, which still has deficiencies to

Nanoscale, 2022, 14,13532-13541 | 13533
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Fig. 2 Machine learning framework of a closed learning loop based on GANN. The frame is separated into two sections. White represents the
exploration and the parameter setting, and color represents the data input selection, the model establishment, and the feedback mechanism.

match the data. Hence, we need a mutation to process the
derived crossover data. In addition, a feedback mechanism is
required to guarantee an accurate prediction. Thereafter, we
can gain a well-trained model once we accomplish a complete
loop as shown in Fig. 2.

Model establishment

Three different algorithms, ANN, genetic algorithm (GA), and
GANN, are usually applied to address nonlinear questions in
conventional programming. We thereby employed these
methods to derive a prediction of the position of surface
plasmon resonance, which was verified by the empirical inves-
tigation (Fig. 2). We additionally defined a regression line (Y =
X) as an ideal prediction. Namely, the closer the projected data
are located to the regression line, the higher accuracy the
trained model has. To maintain consistency, we utilized the
same sets of parameters in training the model through the
three algorithms aforementioned (Fig. 3). The generated
results by applying ANN manifested a lower distribution con-
densation than GA and GANN, suggesting ANN in our study
can lead to a more precise prediction (Fig. 3). Such precise pre-
diction relies on the neuromorphic system of ANN, which can
optimize the specific weights and generate a better classifi-
cation. However, due to a lack of evolution, ANN is inefficient
in handling complex questions. On the contrary, GA can gene-
rate a fitting function for our research by forming a crossover
of the input parameters and mutations for multiple solutions.
Therefore, a combination of ANN and GA can yield a more
efficient model by considering the crossover and mutations.

13534 | Nanoscale, 2022, 14,13532-13541

Moreover, this combination supports a feedback mechanism
to modify and optimize the network structure, thus realizing
deep learning on multiple levels.

After learning cycles, we achieved the prediction model
through GANN, and we thereafter obtained the plasmon posi-
tions, the quantum efficiencies (QE), and the reciprocals of the
full widths at half maximum (FWHMs) (Fig. 4). In training the
model, we considered the experimental parameters, ie., the
times of the UV treatment and the hydroquinone amounts, as
the dependent variables. On the contrary, we considered the
anticipated parameters as independent variables, the positions
of the surface plasmon resonance, the QEs, and the FWHMs.
Therefore, the positions of the surface plasmon resonance can
be projected concerning the times of the UV treatments and
the hydroquinone amounts (Fig. 4a), where the color scale bar
represents the plasmon shifting of a max wavelength of
585 nm (in red). The other colors in Fig. 4a represent decreas-
ing plasmon positions from orange to blue (min: 525 nm). A
larger wavelength of the surface plasmon resonance occurred
at a hydroquinone amount in the range of 2200-2600 pL and
the gold colloid amount of 7-22 pL. The lower wavelength of
the surface plasmon resonance happened with a hydro-
quinone amount of less than 1100 pL or with a UV treatment
over 20 min. Similarly, we obtained a QE prediction in Fig. 4b,
where the red color is the maximum efficiency and the blue
color is the minimum efficiency. The lower QE occurred when
the hydroquinone amount was 1500-1900 pL or 2400-2800 pL.
Interestingly, there was a small range displaying an impressive
QE up to 66%, where the hydroquinone amount was around

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 GANN was utilized to calculate (a) the plasmon positions, (b) the quantum efficiencies, and (c) the reciprocals of FWHMs of the Au-coated

ZnO nanoflowers.
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1600 pL, and the UV treatment was roughly 4 min. We further-
more performed the FWHM prediction in Fig. 4c, providing
information on the morphological peaks. We can thereby find
a sharp peak for the UV treatment of roughly 32 min.
Moreover, we can smoothen the absorption peak by decreasing
the treatment time. This information is very beneficial in
designing a material with the anticipated surface plasmon
resonance.

Model validation

In order to validate the model trained by GANN, we cross-
checked the data projected by the model, regarding the posi-
tions of the surface plasmon resonances, the QEs, and the reci-
procals of FWHMs (1/FWHM) (Fig. 5-7). In this regard, the
concentration and the volume of the chloroauric acid solution
were fixed at 10™* M and 10 mL. We subsequently varied the
treatment times of UV from 5 to 32 min, and the hydro-
quinone amounts from 1000 to 3000 pL. We observed a good
correlation between the experimental data (Fig. 5) and the pro-
jected data (Fig. 4a): the high wavelength of the surface
plasmon resonance appeared with the hydroquinone amount
in the range of 2200 to 2600 pL; the low wavelength appears at

View Article Online
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the hydroquinone amount of 1000 pL and the UV treatment
over 25 min. We thereby extracted the conditions to synthesize
five samples of different wavelengths for the surface plasmon
resonance. Additionally, we analyzed the sizes and the mor-
phologies of the synthesized gold nanoparticles, suggesting
that the bigger particles appeared at the surface plasmon reso-
nance of a larger wavelength (Fig. 5). We furthermore observed
that the thorns became shorter and more difficult to find
when the surface plasmon resonance wavelength reached over
554 nm. Moreover, such particles became spherical when the
wavelength was larger than 572 nm. Moreover, we noticed that
the morphology of gold nanoparticles became random and
began to aggregate, with a respective QE of 42% (Fig. 5e).
Therefore, we selected 10™* M chloroauric for further vali-
dation concerning QEs and 1/FWHMs (Fig. 6 and 7).

We performed an FDTD simulation to study the generated
electromagnetic field on the surfaces of the gold nanoparticles
(Fig. 6). The strength of the electromagnetic field on the gold
nanoparticles can consequently impact the resonant reaction
of the surfaces.””® Subsequently, we utilized the FDTD
models to simulate the particles with similar morphologies to
those observed by SEM (Fig. 5a-e). The advantage of FDTD
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Fig. 5 Configuration between the morphologies and the plasmon positions of the Au-coated ZnO nanoflowers. Size-dependent Au particles were
coated on the ZnO nanoflowers under different conditions, displayed from (a) to (e).
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models considers the number of thorns, the size of particles,
and the thickness of the ZnO. In our modeling, we fixed the
thickness of the ZnO thin films to 30 nm and the incident
light perpendicular to the ITO thin film. However, in the mod-
eling, we introduced the incident light of two different wave-
lengths (400 nm and 800 nm) to the Au/ZnO system. Once the
incident light of a specific wavelength induces an electron sea
on the gold nanoparticle, a surface plasmon resonance can
consequently occur (Fig. 6). Thereby, the strongest oscillation
can subsequently take place on the surfaces of the gold nano-
particles, attributed to several factors. One of these factors is
the interaction between the incident light and the electron
sea, leading to the fluctuation in the system of the activated
electromagnetic field.*>*' The fluctuation can further influ-
ence the electron coupling with the polar by the surface
plasmon polariton. Another factor is the tip-enhancement due
to the varying morphologies of the gold nanoparticles.’?

View Article Online
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Therefore, we used a second-growth method to synthesize the
urchin-like gold nanoparticles on the ZnO nanoflower sur-
faces, yielding many thorns.”® These thorns of small tip radii
manifest strong electric fields, inducing the electron polariz-
ation and thus leading to tip-enhancement. Therefore, it is
probable to transfer electrons from gold nanoparticles to ZnO
semiconductors.

We moreover found the variation of the UV treatment times
and the hydroquinone amounts can impact the absorption
peaks as well as the reciprocals of FWHMs (Fig. 7). In the con-
figuration diagram, the morphology of the absorption peaks
varied slightly, so it was necessary to apply a numerical ana-
lysis to investigate the trifling changes. However, the reciprocal
FWHMs can directly inspect such variations. Thereby, 1/
FWHMs of the Au/ZnO absorption system showed a resonant
coherence due to the two influential factors. The first was the
size, the morphology, the distribution, and the stacking of
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Fig. 6 Configuration between the resonance simulation and the plasmon positions of the Au-coated ZnO nanoflowers. The FDTD simulation
results are displayed from (a) to (e) concerning the urchin-like gold nanoparticles coated on the ZnO nanoflower surfaces of different sizes and mor-
phologies by varying wavelengths of the incident light. The quantum efficiency (QE) indicates the conversion ratio of the photons of the incident
light to the surface plasmon resonance. In order to calculate QE, we collected the scattering light of surface plasmon resonance by integrating the
sphere, measured the energy of the scattering light, and then converted the scattering light energy into the quasi-particle number according to the
Plank equation (E = nhv). The quasi-particle number is the surface plasmon resonance number, which serves as a numerator. The power of incident
light is also converted into the number of the incident photon by the Plank equation, which acts as a denominator. Thereby, the QE of light-to-
plasmon is calculated.
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gold nanoparticles on ZnO nanoflowers. The second was
whether the incident light could induce the electron sea on
the gold nanoparticles or the tip-enhancement, dependent on
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Fig. 8 Flow chart of the empirical parameters in the artificial neural
network coupling with the genetic algorithm of the Au-coated ZnO
nanoflowers. The framework consists of two sections: the blue section
(the structure of the artificial neural network) and the green section (the
genetic algorithm process).
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the profile of the gold nanoparticles, the shape of thorns, the
density of thorns, and the distribution of thorns.>* Overall,
most of the above effects were directly related to the charge
distribution and indirectly associated with the structure of the
gold nanoparticles. A combination of material development
and machine learning coupled with a genetic algorithm neural
network can precisely project the material characteristics and
optimize the fabrication process of the material composite.
Moreover, the developed projection model can effectively and
accurately simulate the empirical results.

Conclusion

In this work, we coated the urchin-like gold nanoparticles onto
ZnO nanoflower surfaces and successfully established a
precise prediction model trained by GANN. There were four
factors significantly impacting the precision of the trained
model. Moreover, these four factors can be observed from the
decrease of RMSE and the convergence of the tested and
trained data. The first was the amount of the hidden layer, sep-
arating data into different districts in order to clarify the whole
database. The second was the neural number in the hidden
layer. An increased number of neurons can enlarge the com-
plexity of the training process. Furthermore, the number of
neurons was double the number of the independent variables.
The third was the mating ratio, the adjustment of which was
crucial to establishing a well-training model. Moreover, an
appropriate mating ratio can optimize the solution. The last
was the learning cycle, whose prolongation can reduce the
RMSE and yield a better projection. Consequently, the utiliz-

This journal is © The Royal Society of Chemistry 2022
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ation of the model obtained by machine learning can finally
generate predictable results in line with an empirical fabrica-
tion, facilitating a tuning of the wavelength of the surface
plasmon resonance and the quantum efficiencies. We can
thereby produce gold nanoparticles of the desired light-to-
plasmon resonance, guiding the design of high-performance
water-splitting cells.

Materials and methods

Materials

Zinc acetate (Zn(CH;3;COO),-2H,0), chloroauric acid (HAuCly),
sodium citrate (NazCeH;0,-2H,0), and hydroquinone
(C6H4(OH),) were purchased from Sigma Aldrich. The applied
chemical reagents were of analytical grade. Deionized water
(DI) was used throughout the experiment.

Preparation of pure ZnO

The ITO substrate was cleaned with ethanol and acetone by
ultrasonication for 10 minutes, rinsed with DI water, and
dried with N,. The precursors of the ZnO seed layer were 0.05
M zinc acetate in 0.02 M hexamethylenetetramine (HMTA).
After coating the precursors on the ITO substrates, samples
were then annealed at 350 °C for 10 minutes. Subsequently,
the samples were immersed in the precursor solution of ZnO
nanorods at 95 °C for 3 hours, which were prepared by dissol-
ving the 0.02M zinc acetate solution in HMTA (0.02 M, 0.01 M,
and 0.005 M). Afterward, the samples were annealed again at
350 °C for 30 minutes. The annealed samples were then
immersed into the precursors of ZnO nanoflowers containing
0.15 M zinc acetate in methanol at 60 °C for a given time (16,
18, 20, 22, and 24 hours).

Preparation of Au-modified ZnO

ZnO nanoflower substrates were immersed in a 10~* M HAuCl,
solution, and then an ultraviolet (UV) light was applied for an
appropriate time (4 min, 8 min, 16 min, and 32 min) to obtain
the reduced Au™ on the ZnO nanoflower surfaces for the gene-
ration of spherical gold nanoparticles. The samples were after-
ward rinsed twice with DI water. The 0.2 wt% sodium citrate
solution in 3 mL of hydroquinone was subsequently added to
the samples, and HAuCl, was then added.

Characterization

The surface morphology of the gold sea-urchin-like nano-
particles was determined by field emission scanning electron
microscopy (FESEM, Hitachi). The transmission electron
microscopy (TEM) images were recorded with a JEOL 3010
TEM (Netherlands, Philips).>>>® The X-ray powder diffraction
(XRD) patterns were obtained from a D8 Advance diffract-
ometer with Cu K alpha radiation (wavelength = 0.111 nm).
The absorption spectra of the samples were measured using a
Lambda 950 UV-vis spectrophotometer (PerkinElmer,
New York, US).

This journal is © The Royal Society of Chemistry 2022
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Machine learning

Predictable results in materials science are the sought-after
research goals that can guide controllable properties, charac-
teristics, and functions of the fabricated materials. Artificial
neural networks are well-known predictive models containing
functional algorithms for different situations and complicated
problems. In addition, a genetic algorithm neural network
(GANN) has been successfully applied to model and tune the
ample variables for practical processes. Such machine-learning
studies were conducted with a commercial software “Super
PCNeueron”.

A genetic algorithm neural network (GANN) consists of two
main calculation parts: a genetic algorithm for optimal
process and an artificial neural network for establishing a non-
linear model. The genetic algorithm contains selection, cross-
over, and mutation, each based on the natural reproduction
rule. An artificial neural network is based on the operation of
the human brain containing neurons and synapses. Thereby
data can be better classified and evaluated.

The network contains a single hidden layer and 6 neurons
as shown in Fig. 8. The input data comprise experiment para-
meters: various UV treatment times and hydroquinone
amounts. After a matrix calculation, the accuracy of the trained
model is inspected. If the trained model shows a low accuracy
or does not fit, the model will be refined until the GA process
is optimized.
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