
Environmental Science:
Atmospheres

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

02
5/

11
/3

 7
:1

3:
19

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Ozone uptake by
aDepartment of Chemistry & Chemical Biolo

4M1, Canada. E-mail: stylers@mcmaster.ca
bDepartment of Chemistry, University of

Canada
cDepartment of Chemistry, Memorial Un

Newfoundland and Labrador, A1C 5S7, Can

† Electronic supplementary information
coated-wall ow tube setup; brake pad
chemical information; tube preparation
experimental protocol and uptake coeffic
further result discussion on characteriz
ICP-MS, combustion analysis, TGA, an
discussion; representative reaction prol
brake pad part information (Table S1);
characterization results (Tables S3–S7); ta
and S9); diffusion correction values (Ta
steady-state uptake coefficients (Table S1
brake pad samples (PDF). See DOI: 10.103

Cite this: Environ. Sci.: Atmos., 2022, 2,
539

Received 3rd September 2021
Accepted 16th February 2022

DOI: 10.1039/d1ea00070e

rsc.li/esatmospheres

© 2022 The Author(s). Published by
commercial brake pads and brake
pad components: assessing the potential indirect
air quality impacts of non-exhaust emissions†

Laura C. Matchett, ab Maya Abou-Ghanem, b Kristyna A. R. Stix,b

Devon T. McGrath c and Sarah A. Styler *ab

Non-exhaust emissions have surpassed exhaust emissions in their contribution to traffic particulate matter

(PM). One major type is brake wear and, although its physical and toxicological properties have been

studied, its atmospheric reactivity is unknown. In a first step toward addressing this knowledge gap, we

explored the reactivity of ground brake pads (ceramic, semi-metallic, organic) and common brake pad

components (phenolic resin, graphite, Fe2O3, Fe3O4, Fe and Cu powders) with ozone, an important

urban pollutant. The steady-state surface area-normalized ozone uptake coefficients (gBET,SS) for the

brake pads were (1–3) � 10�6 under dark conditions and increased to (2–5) � 10�6 upon illumination.

Interestingly, whereas gBET,SS values were similar for all sample types, gBET values at shorter ozone

exposure times were larger and exhibited greater sample-to-sample variability (gBET,30min ¼ (0.7–9) �
10�5). As all brake pad components tested were reactive toward ozone, we conclude that multiple

mechanisms likely underlie the observed sample reactivity. Our gBET values suggest that ozone loss to

“real-world” brake material may be larger than to organic PM during high-traffic periods. As this loss

pathway is still small compared to ozone dry deposition, we suggest that future studies of brake wear–

ozone interactions focus on their potential to change brake wear properties (e.g., hygroscopicity,

toxicity) relevant in an air quality context.
Environmental signicance

A large fraction of particulate matter (PM) in cities comes from non-exhaust traffic emissions (e.g., brake and tire wear). Our ability to predict the air quality
impacts of this PM class is currently limited by a lack of knowledge regarding its atmospheric reactivity. Here, we investigate the reactivity of ground commercial
brake pads and brake pad components with ozone, a model gas-phase pollutant. Although all brake pads studied display a large ozone reactivity, atmospheric
brake wear mass loadings are too small for this to represent a signicant ozone loss pathway. However, as the oxidation of brake wear and other non-exhaust PM
types could potentially lead to changes in their properties, further interdisciplinary studies of this emerging class of urban PM are warranted.
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1. Introduction

Ambient particulate matter (PM) exposure is a leading global
risk factor for premature death.1 In cities, traffic emissions are
responsible for �25% of PM loadings.2 Although air quality
regulations have precipitated dramatic decreases in PM emis-
sions from vehicle exhaust, the same is not true for PM emis-
sions associated with brake, tire and road surface abrasion;3–5 as
a result, these non-exhaust PM sources currently contribute
more than half of traffic-associated PM.4–7 In future, widespread
adoption of electric vehicles has the potential to offset air
quality gains associated with the move away from internal
combustion engine vehicles, as their higher mass confers
higher brake, tire, and road abrasion rates and correspondingly
higher non-exhaust PM emissions.8

According to source apportionment studies, brake wear
contributes 16–55% of non-exhaust PM10 (PM with diameter <
Environ. Sci.: Atmos., 2022, 2, 539–546 | 539
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10 mm) loadings in urban environments.9 Although its emis-
sion rates,10–12 size distribution,13–15 chemical composi-
tion,10,14,16 and toxicological properties17–20 have been studied,
its atmospheric reactivity has not. Since many individual
components of brake pads (e.g., metal oxides and unsaturated
organic compounds)21 are reactive with atmospheric trace
gases,22–27 this knowledge gap limits our ability to predict the
potential impacts of brake wear–trace gas interactions on the
composition of the urban troposphere and the properties of
brake wear PM itself.22

Here, using ozone as a model gas-phase pollutant and
ground brake pad particles as a simplied proxy for brake wear
PM generated under mild braking conditions, we investigate for
the rst time the atmospheric reactivity of material relevant to
vehicle non-exhaust PM. To understand the relationship
between brake material composition and reactivity, we studied
three brake pad types from two manufacturers, as well as six
common components of brake pads. This study provides new
insight into the potential indirect air quality impacts of non-
exhaust PM emissions.
Fig. 1 Reaction profile for the uptake of ozone by semi-metallic NAPA
brake pad material at 25% RH. The blue and yellow underlays indicate
periods of exposure to ozone in the dark and the light, respectively.
The black line is smoothed data (3 min moving average), and the pink
line is the original unsmoothed data.
2. Methods
2.1 Sample selection and characterization

To capture the breadth of passenger vehicle brake pad compo-
sitions, which confer different benets in terms of braking
efficiencies, noise properties, and lifetimes,9 we studied three
different commercial types (ceramic, semi-metallic, and
organic) from two different manufacturers (NAPA and PBR,
both purchased from http://www.napacanada.com; see Table
S1† for part numbers and compatible vehicles). For a given
vehicle, the front and rear brake pads may have different
compositions;28 here, we studied the reactivity of front brake
pads, as they are responsible for the majority of vehicle braking
power.9

We characterized samples via inductively coupled plasma
mass spectrometry (ICP-MS; elemental composition, 58
elements; Fig. 2), combustion analysis (total C/total N; Fig. 2),
X-ray diffraction (XRD; crystalline phase identication;
Table S5†), thermogravimetric analysis (TGA; organic/elemental
C; Fig. S3†), and nitrogen adsorption analysis (specic Bru-
nauer–Emmett–Teller (BET) surface area determination; Table
S3†); detailed procedures for each technique are presented in
the ESI.†

To better understand which materials contribute to brake
pad reactivity, we investigated six common brake pad compo-
nents, which we selected based on the compositional analyses
described above. We chose phenolic resin, a common binder,21

and graphite, a common lubricant,21 to represent the organic
and elemental carbon fractions of the samples, respectively.
Iron, present in large quantities in all brake pads except the
organic PBR sample (Fig. 2), can occur in different forms in
brake pads;21 thus, we investigated the reactivity of Fe powder
(Fe), hematite (Fe2O3), and magnetite (Fe3O4). Finally, as two of
the PBR samples contain large amounts of Cu (Fig. 2), we
investigated the reactivity of Cu powder.
540 | Environ. Sci.: Atmos., 2022, 2, 539–546
2.2 Experimental procedure

All brake pad experiments were conducted using freshly ground
samples, which were produced by grinding commercial brake
pads (30 s, 3800 rpm) in a Wig-L-Bug grinder mixer equipped
with a stainless steel vial (1.3 cm id, 2.5 cm length; 3.3 cm3

volume) and a single stainless steel ball pestle (0.6 cm diam-
eter). Hereaer, we use the term “brake pads” to designate this
material. We used ground brake pads rather than brake wear
generated from a vehicle or brake dynamometer for two
reasons: rst, mechanical abrasion is an important process in
brake wear generation;9 second, brake dynamometers produce
only small amounts of sample, are expensive and time-
consuming to run, and introduce multiple variables to the
brake wear generation process (e.g., initial speed, deceleration
rate), all of which would have limited the range of samples
investigated here. Importantly, studies have shown that the
composition of emitted brake wear PM differs from that of the
parent material; we discuss the potential reactivity impacts of
these compositional differences in Section 3.4. The brake pad
components were used as received.

We quantied ozone uptake by our brake material sample
set using an atmospheric pressure coated-wall ow tube pho-
toreactor, which our group has previously used to investigate
the photochemical reactivity of titanium-containing minerals
relevant to desert dust.23 The reactor consists of a sample-coated
Pyrex tube inside a water-chilled jacket and surrounded by four
UV-A lamps (300–410 nm, lmax: 356 nm); the exposure of coat-
ings to ozone is controlled using a movable injector. Experi-
ments were performed under environmentally relevant
conditions (295 K, 25% relative humidity [RH]) and at an ozone
mixing ratio of �50 ppb, which in Canada is the threshold that
triggers “actions to prevent air quality deterioration”.29 All
experiments were conducted using samples dispersed in a SiO2

matrix; grinding reproducibility and coating uniformity were
assessed using replicate experiments (n ¼ 3 for brake pads; n ¼
2 for brake pad components). Additional information regarding
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the tube coating process, the photoreactor, and experimental
protocols is provided in the ESI.†

An exemplary ozone reaction prole is shown in Fig. 1;
representative reaction proles for all ve brake pads and six
brake pad components are shown in Fig. S1 and S2,† respec-
tively. As described in the ESI,† we quantied the reactivity of
each sample using matrix reactivity-corrected and surface area-
normalized uptake coefficients (gBET), which represent the
fraction of ozone–surface collisions that lead to ozone loss from
the gas phase.22 To better understand the reactivity of brake
material over both short and extended ozone exposure time-
scales, we report both time-dependent (gBET,t; 15, 30, and
60 min ozone exposure) and steady-state (gBET,SS) uptake coef-
cients for all samples.
3. Results and discussion
3.1 Brake pad characterization

The brake pad elemental composition determined by ICP-MS
(Fig. 2) agrees with previous literature.9,10,14,16 Despite contribu-
tions from similar components, including ceramic bers, clays,
metal powders, oxides, suldes, and sulfates (Table S5,† XRD),
the composition of individual brake pads varies with commercial
classication. In the case of the PBR brake pads, for example, the
semi-metallic is mostly composed of Fe, whereas the ceramic
contains a diverse array of elements (in particular more Mg, Cu,
Zn, and Sb) and the organic has a low total metallic content
(Fig. 2b). On the other hand, the NAPA samples (ceramic and
semi-metallic) contain many of the same components (Tables S5
and S6,† XRD and safety data sheets) and have correspondingly
similar elemental compositions (Fig. 2a). In addition, as manu-
facturers employ their own proprietary material blends, brake
pad composition can vary within the same commercial classi-
cation. For example, the ceramic and semi-metallic PBR samples
contain more Fe than their NAPA counterparts (Fig. 2); this Fe is
present in its elemental form in the PBR samples, but as iron
oxides in the NAPA samples (Table S5†). Additionally, the PBR
samples contain more elements associated with metal powders,
oxides, and/or suldes (Cu, Zn, and Sb), whereas the NAPA
samples contain more elements associated with ceramic bers
Fig. 2 Elemental composition of brake pads from (a) NAPA and (b) PBR
data shown here are presented numerically in Table S4.†

© 2022 The Author(s). Published by the Royal Society of Chemistry
(Al, K, Ca, and Ti). Brake pad carbon speciation also displays
manufacturer variability: the NAPA samples contain more
elemental carbon (e.g., graphite, carbon black), while all samples
contain a similar amount of organic carbon (e.g., phenolic resin)
(Fig. S3,† TGA). Additional discussion of the characterization
results is provided in the ESI.†
3.2 Steady-state ozone uptake by brake materials

As shown in Fig. 3a, gBET,SS values for ozone uptake by brake
pads under dark conditions are within a factor of ve, ranging
from (8.9 � 0.4) � 10�7 for semi-metallic NAPA to (3.9 � 0.9) �
10�6 for ceramic PBR. Under illumination, ozone uptake by all
samples increases, with gBET,SS values ranging from (2.0 � 0.5)
� 10�6 for semi-metallic PBR to (6.0 � 0.7) � 10�6 for
ceramic PBR.

Given the differences in brake pad composition described
above, we had expected our samples to span a broader range of
reactivities. Their unexpectedly similar gBET,SS values likely
reect additive contributions from their respective components
(Fig. 3b). For example, gBET,SS values for the ceramic and semi-
metallic PBR samples may have a larger contribution from Fe-
containing components (all with similar gBET,SS values, as
shown in Fig. 3b) than the NAPA samples (Fig. 2), whereas
gBET,SS values for the NAPA samples may have a larger contri-
bution from graphite (Fig. S3†). Additionally, since all brake
pads have a similar organic content (�14%, Fig. S3†), they will
likely have a similar and signicant contribution from the
phenolic resin to gBET,SS.

These multiple reactivity contributions indicate that ozone
uptake by brake pads likely occurs via multiple mechanisms,
such as addition to double bonds (unsaturated organics),25,26

decomposition at active sites (hematite; a-Fe2O3),24 reaction at
unsaturated sites (graphite),30,31 and redox reactions
(metals).32,33 Similarly, multiple plausible mechanisms exist for
photoenhanced ozone uptake by brake pads, including energy
transfer from photoexcited phenolic resin to molecular oxygen,
with subsequent reaction of singlet oxygen with ozone,26,34 and
reduction of ozone by photogenerated electrons produced by
semiconducting iron oxides.27
as determined by ICP-MS and total C/total N combustion analysis. All

Environ. Sci.: Atmos., 2022, 2, 539–546 | 541
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Fig. 3 Steady-state BET uptake coefficients (gBET) for ozone (50 ppb,
25% RH) under dark (blue circles) and light (orange triangles) condi-
tions at the surface of (a) five commercial brake pads and (b) six major
brake pad components. Experiments were conducted in triplicate
(brake pads) or duplicate (brake pad components), with each dark/light
pair representing an individual experiment; error bars represent the
experimental error, which we calculated as described in the ESI.† In
one case, the reactivity of the Cu–SiO2 mixture was indistinguishable
from the SiO2-only trials; data from this trial are not shown here (see
ESI†). All data shown here are also presented numerically in Table S8.†
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One reasonable approach to estimating the reactivity of
compositionally complex PM is to represent it as the mass-
normalized sum of the reactivities of its constituents. Here,
this approach only accounts for 15–35% of brake pad gBET,SS

values. We suggest four possible explanations for this “missing”
reactivity. First, although we included reactivity contributions
from all major components identied for our brake pad sample
set, their overall reactivity may also reect contributions from
minor components identied by XRD (Table S5†). Second, as
phenolic resin composition can differ between manufacturers21

and the reactivity of individual iron oxide phases can differ from
sample to sample because of defects and/or different crystal
structure parameters,35 it is also possible that the reactivities of
the components we purchased and used in this study may differ
from those of the corresponding components in actual brake
pads. Third, direct comparison of the component and brake
pad gBET values is complicated by two factors: rst, the
components, when present in brake pads, likely exist as parti-
cles with specic surface areas different from those of the
542 | Environ. Sci.: Atmos., 2022, 2, 539–546
individual components studied here; second, the entirety of the
component surface area may not be exposed/available for
reaction with ozone when present as part of the overall brake
pad mixture. Finally, we cannot exclude potential interactions
between the different components, which could lead to differ-
ences between the total component reactivity as determined for
the (internally mixed) brake pad and as determined by
summing the reactivity of individual components.

3.3 Time-dependent ozone uptake by brake materials

Since brake wear is emitted directly into a mixture of pre-
existing pollutants, its immediate inuence on urban ozone
mixing ratios (e.g., during a given rush-hour period) is best
captured using its initial uptake coefficient. As diffusion limi-
tations (see ESI†) prevent us from accurately determining this
value for our samples, we instead report gBET as a function of
ozone exposure time (15, 30, and 60 min); as sample illumina-
tion began only aer 150 min, at which point the ozone mixing
ratios had reached a steady-state value, we present this analysis
only for dark conditions.

As shown in Fig. 4a, gBET values for all brake pads are higher
at shorter ozone exposure times; assuming that the time-
dependent reactivity prole of emitted brake wear PM qualita-
tively resembles that of the parent brake material studied here,
these results suggest that freshly emitted brake wear will be
a more reactive surface for ozone uptake than atmospherically
aged brake wear. Time-dependent ozone uptake has been
observed for many atmospheric PM types, and has been
attributed to saturation of reactive surface sites.23,25,26,36,37 Unlike
gBET,SS, which are similar for all brake pads, gBET,t shows large
sample-to-sample variation, with the ceramic and organic PBR
samples having notably larger ratios of gBET,30min to gBET,SS (29�
and 15�) than the other samples (5–8�; see Table S11† for all
ratios). As shown in Fig. 4b, the brake pad components also
display different time dependencies, with the reactivity of some
remaining small and relatively constant over time (Fe oxides)
and others decreasing over time (phenolic resin, graphite, Fe,
and Cu). The strong time dependency calculated for the Cu
powder (gBET,15min 17� larger than gBET,SS) may explain in part
the large time dependence of the ceramic and organic PBR
samples, as they contain 5–13� more Cu than the other
samples.

3.4 Atmospheric signicance

The gBET values for ozone by brake pads that we report are at the
upper end of those determined for atmospheric PM compo-
nents;23–26,36,37 in addition, because the BET approach employed
here may overestimate the accessible surface area of the parti-
cles when present as coatings in the ow tube,37 these gBET

values likely underestimate the ambient reactivity of this PM
class. In the following paragraphs, we note additional experi-
mental choices that may result in differences between the gBET

values reported here and the reactivity of “real-world” brake
wear.

As discussed in the Section 2.2, we used ground brake pads
as model particles of brake friction material. However, “real-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Time-dependent BET uptake coefficients (gBET) for ozone (50
ppb, 25% RH) at the surface of (a) five commercial brake pads (30 and
60 min; steady-state) and (b) six major brake pad components (15, 30,
and 60 min; steady-state). Experiments were conducted in triplicate
(brake pads) or duplicate (brake pad components), with each point at
a given exposure time representing an individual experiment; error
bars represent the experimental error, which we calculated as
described in the ESI.† Due to high diffusion correction factors (see
ESI†), the 15 min uptake coefficients for the brake pads are not shown.
In some cases, the reactivity of the sample–SiO2 mixture was indis-
tinguishable from the SiO2-only trials; data from these trials are not
shown here (see ESI†). All data shown here are also presented
numerically in Table S9.†
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world” brake wear (i.e., particles generated by the wear of actual
automobile brakes) is formed through multiple simultaneous
and complex processes, including abrasion of friction interfaces
(i.e., between the brake pad and brake disc); mechanochemical
reactions occurring due to the shear force, pressure, and heat
generated during braking; and the evaporation and subsequent
condensation of volatile species.9 Consequently, the composi-
tion of brake wear PM can differ from the parent brake material:
for example, the organic components may degrade, and the iron
may become oxidized.38 Based on our results, however, the
effects of these changes on overall reactivity are inconclusive.
For example, the degradation of organic resins may lead to
a decrease in reactivity (Fig. 3b), whereas the oxidation of iron
may or may not affect reactivity, as all forms of iron we tested
(Fe powder, Fe2O3, and Fe3O4) had similar reactivity (Fig. 3b).
Additionally, “real-world” brake wear also includes iron and
© 2022 The Author(s). Published by the Royal Society of Chemistry
iron oxide particles from the brake disc (typically cast-iron),16

which, based on our results (Fig. 3b), may contribute to the
overall reactivity of this PM class.

The ve brake pad samples employed in this study were
selected to enable us to compare the reactivity of multiple
commercial classications from the same manufacturer for the
same car model; as noted in Table S1,† our sample set is
representative of brake pads used in the older segment of the
current vehicle eet.39,40 Brake pad formulations have evolved
over the years, oen as a result of newly identied health
concerns; for example, Sb2S3, Cu, Pb, and asbestos have all been
at least partially phased out by manufacturers.9,41 One compo-
sitional change that may have a signicant impact on overall
brake pad atmospheric reactivity involves Cu, which is currently
being phased out in response to recent studies demonstrating
that Cu contributes to brake pad toxicity.41,42 Based on our
component reactivity results (Fig. 3b and 4b), which showed Cu
to be an important contributor to both time-dependent (dark)
and illuminated brake pad gBET values, this development could
result in a future decrease in brake pad reactivity.

Despite the high brake pad reactivities found in this study,
the atmospheric importance of this ozone loss pathway is
limited by the low absolute concentrations of brake wear PM; in
particular, using typical PM2.5 brake wear loadings (1.5 mg
m�3)43,44 and gBET,30min, gBET,60min, or gBET,SS values for our
brake pads, and assuming that the reactivity of brake wear PM
can be approximated by that of the parent brake material, we
nd that ozone loss to brake wear is always <1% of its loss to the
ground (detailed calculations are presented in the ESI†).
Barring a situation in which ozone reactivity with brake wear
PM is orders of magnitude larger than its reactivity with parent
brake material, we conclude that brake wear chemistry alone
will have minimal impact on urban ozone mixing ratios.

As near-road PM is compositionally complex,43 its interac-
tions with gas-phase pollutants likely reect contributions from
multiple reactive PM classes (e.g., unsaturated organics).25,26

Using estimated PM loadings from a study in Toronto, Can-
ada,43 assigning gBET values based on published reactivity data
for organic PM,25 and using gBET,30min values obtained here for
ceramic and organic PBR brake pads (and again assuming that
parent brake material is a reasonable proxy for atmospheric
brake wear PM), we conclude that freshly emitted brake wear
has the potential to be a more important ozone sink than
organic PM (detailed calculations are presented in the ESI†).
Ozone uptake by organic PM has been shown to alter a wide
variety of PM properties, including hygroscopicity,34,36

viscosity,45,46 and toxicity.47,48 As we show above that the overall
effect of brake wear PM on urban ozone mixing ratios is most
likely small, we suggest that future research in this area focus
on the potential impacts of brake wear–ozone interactions on
brake wear properties, which has received little attention to
date.20

4. Conclusions

The composition of urban PM is both complex and dynamic:4

on a daily and seasonal scale, it reects changes in meteorology
Environ. Sci.: Atmos., 2022, 2, 539–546 | 543
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(e.g., temperature, RH), traffic patterns, and/or industrial
emissions; over longer timescales, it reects changes in source
sector regulations and societal behaviour. For example, as
vehicle exhaust emissions decrease and volatile chemical
products begin to dominate the urban volatile organic
compound (VOC) prole, the composition of secondary PM will
change accordingly;49 in addition, the shi to electric vehicles
will be accompanied by a decrease in exhaust emissions, but an
increase in non-exhaust emissions.8 Currently, brake wear can
contribute over half of non-exhaust PM;9 with the imple-
mentation of regenerative brakes in electric vehicles, this
amount may decrease,8 resulting in road dust and tire wear
becoming the dominant non-exhaust PM classes. These other
classes will contribute to overall non-exhaust PM reactivity: for
example, we have shown that road dust also reacts with ozone;50

tire wear, which contains both inorganic and unsaturated
organic components,51 may be similarly reactive. Additionally,
tire wear oxidation products were recently found to be highly
toxic to salmon.52 Therefore, to capture the full air quality
impacts of non-exhaust PM, we need to understand the conse-
quences of its interactions with other pollutants; this study is an
important rst step in this direction.
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