Issue 9, 2018

Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal

Abstract

Adjusting the electronic structure of the active center is a highly effective strategy for improving the performance of catalysts. Herein, we report an atomically dispersed catalyst (FeCl1N4/CNS), which realized for the first time a great improvement of the ORR by controlling the electronic structure of the central metal with a coordinated chlorine. The half-wave potential of FeCl1N4/CNS is E1/2 = 0.921 V, which is the highest among the reported values for non-precious metal electrocatalysts and far exceeds that of FeN4/CN and commercial Pt/C in alkaline solution. Besides an exceptionally high kinetic current density (Jk) of 41.11 mA cm−2 at 0.85 V, it also has a good methanol tolerance and outstanding stability. Experiments and DFT demonstrated that the near-range interaction with chlorine and the long-range interaction with sulfur of Fe modulated the electronic structure of the active site, thus resulting in a great improvement of the ORR in alkaline media. The present findings could open new avenues for the design of superior electrocatalysts.

Graphical abstract: Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal

Supplementary files

Article information

Article type
Communication
Submitted
21 5月 2018
Accepted
15 6月 2018
First published
27 6月 2018

Energy Environ. Sci., 2018,11, 2348-2352

Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal

Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng, A. Han, Y. Zhu, J. Zhang, H. Zhang, J. Luo, C. Chen, Q. Peng, D. Wang and Y. Li, Energy Environ. Sci., 2018, 11, 2348 DOI: 10.1039/C8EE01481G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements