Inorganic solid electrolytes for all-solid-state sodium/lithium-ion batteries: recent development and applications
Abstract
The development of fast synthesis methods and accurate engineering of the shapes and characteristics of inorganic solid electrolytes has been substantially aided by the advancement of science and technology in electrolyte engineering. The goal of this development is to meet the strict requirements for high-performance ASSBs, or all-solid-state batteries. The synthesis methods and electrochemical characteristics of inorganic solid electrolytes (ISEs), such as NASICON-based oxide, sulfide, hydroborate, anti-perovskite, and halide, as well as their uses in ASSBs, are covered in this review along with recent discoveries. ASSB problems, such as poor ISE-electrode compatibility and the potential for adverse reactions at the electrode interface, may be resolved by using ISEs in composite cathodes and solid interface layers. This illustrates the variety of applications for the ISEs class in the creation of complex ASSB models. In conclusion, we showcase existing ASSB models and forthcoming tactics to advance the advancement of ASSB development for the next generation.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles