Issue 33, 2023

Boron-rich enhanced ambient CO2 capture and storage of boron–carbon–nitride hybrid nanotubes

Abstract

Increasing carbon dioxide (CO2) emissions as the most challenging greenhouse gas is considered as a major cause of global warming and ocean acidification. Different strategies against anthropogenic emissions of CO2 have been applied to capture and reduce the CO2 effect on the atmosphere. To this end, we study the adsorption of CO2 on boron-rich structures of boron–carbon–nitride (BCN) hybrid nanotubes by the implementation of an ab initio approach based on density functional theory (DFT). Three different boron-rich BC2N, BC4N, and parallel BCN (p-BCN) nanotubes are investigated as hosts for the capture and sequestration of CO2. The analysis of calculations shows that the boron-rich BC4N nanotube adsorbs CO2 physically, while in the boron-rich BC2N and p-BCN nanotubes, both chemisorption and physisorption occurred. In the chemisorption process, a linear CO2 molecule is bent over, and a new bond is formed between oxygen and boron antisite (BN) in boron-rich nanotubes due to electron back donation between CO2 and nanotubes as a result of orbital mixing of oxygen and boron atoms. Moreover, our findings show that the sensitivity factor (SF) and adsorption energy for boron-rich BC2N nanotubes are higher than those of other hybrid nanotubes and CO2 free energy at room temperature. Elaborating on the stability and recycling of host material challenges suggests that the boron-rich hybrid nanotubes could be a good candidate for capturing CO2 under ambient conditions.

Graphical abstract: Boron-rich enhanced ambient CO2 capture and storage of boron–carbon–nitride hybrid nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
27 3月 2023
Accepted
07 7月 2023
First published
10 7月 2023

J. Mater. Chem. A, 2023,11, 17594-17608

Boron-rich enhanced ambient CO2 capture and storage of boron–carbon–nitride hybrid nanotubes

F. E. Moghaddam, F. Shayeganfar and A. Ramazani, J. Mater. Chem. A, 2023, 11, 17594 DOI: 10.1039/D3TA01800H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements