Issue 1, 2019

Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts

Abstract

SrTiO3 (STO) has favorable opto-electronic properties for overall water splitting. Nevertheless, realizing a higher efficiency is impeded by its band gap which can only harvest UV light. In order to extend the spectral response towards visible light, STO is (co)doped with lanthanum (La) and rhodium (Rh). However, notwithstanding the amount of visible light absorbed, the H2 evolution rates are remarkably governed by the valence state of Rh, La doping level and ruthenium (Ru) cocatalyst loading. Hence, it is essential to unravel the underlying effect of doping on the photophysical processes to gain insight into material design. To this end, charge carrier dynamics was probed over a wide time (sub-picosecond to microsecond) and spectral (visible to IR) region using transient absorption spectroscopy. Depending on the dopant composition, an interplay between the electron trapping and the kinetics of the electron transfer to the Ru cocatalyst was rationalized. For Rh4+:STO, free electrons probed at 3435 nm decayed virtually completely by 20 ps resulting in a kinetic competition between the electron trapping and the electron transfer to Ru cocatalyst. In the case of Rh3+:STO, free electrons decayed by a factor of three by 100 ps, thus demonstrating the effect of Rh valence state on the electron lifetime. The time constant and quantum yield of electron transfer from Rh3+:STO to the Ru cocatalyst were found to be 1.6 ps and 14.7%, respectively. In addition to a longer electron lifetime, enhanced electron transfer to the Ru cocatalyst makes Rh3+:STO one of the promising photocatalysts for H2 generation. Engineering the energetic position of the dopant within the band gap to avoid undesirable carrier trapping is crucial to enhance the efficiency of photocatalytic reactions.

Graphical abstract: Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts

Supplementary files

Article information

Article type
Paper
Submitted
04 10月 2018
Accepted
16 10月 2018
First published
16 10月 2018

Sustainable Energy Fuels, 2019,3, 208-218

Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts

D. H. K. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki, T. Hisatomi, T. Yamada, A. Kudo, K. Domen and A. Furube, Sustainable Energy Fuels, 2019, 3, 208 DOI: 10.1039/C8SE00487K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements