Issue 19, 2018

Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating

Abstract

Surface modification is of significant interest in biomaterials, biosensors, and device biocompatibility. Immobilization of bioactive or biomimetic molecules is a common method of disguising a foreign body as host tissue to decrease the foreign body response (FBR) and/or increase device–tissue integration. For example, in neural interfacing devices, immobilization of L1, a neuron-specific adhesion molecule, has been shown to increase neuron adhesion and reduce inflammatory gliosis on and around the implants. However, the activity of modified surfaces is limited by the relatively low concentration of the immobilized component, in part due to the low surface area of flat surfaces available for modification. In this work, we demonstrate a novel method for increasing the device surface area by attaching a layer of thiolated silica nanoparticles (TNPs). This coating method results in an almost two-fold increase in the immobilized L1 protein. L1 immobilized nanotextured surfaces showed a 100% increase in neurite outgrowth than smooth L1 immobilized surfaces without increasing the adhesion of astrocytes in vitro. The increased bioactivity observed in the cell assay was determined to be mainly due to the higher protein surface density, not the increase in surface roughness. In addition, we tested immobilization of a superoxide dismutase mimic (SODm) on smooth and roughened substrates. The SODm immobilized rough surfaces demonstrated an increase of 145% in superoxide scavenging activity compared to chemically matched smooth surfaces. These results not only show promise in improving biomimetic coating for neural implants, but may also improve surface immobilization efficacy in other fields such as catalysts, protein purification, sensors, and tissue engineering devices.

Graphical abstract: Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating

Supplementary files

Article information

Article type
Paper
Submitted
09 2月 2018
Accepted
03 4月 2018
First published
06 4月 2018

J. Mater. Chem. B, 2018,6, 3058-3067

Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating

K. M. Woeppel, X. S. Zheng and X. T. Cui, J. Mater. Chem. B, 2018, 6, 3058 DOI: 10.1039/C8TB00408K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements