Issue 3, 2014

Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies

Abstract

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were carefully examined to understand the band gap reduction of m-TiO2. The visible light-responsive enhanced photocatalytic activity of m-TiO2 was demonstrated by degrading methylene blue and brilliant blue G. The EIS and LSV in the dark and under visible light irradiation further support the visible light-induced photocatalytic activities of the m-TiO2 due to a decrease in electron transfer resistance and an increase in photocurrent. This study confirms that m-TiO2 can be used effectively as a photocatalyst and photoelectrode material owing to its enhanced visible light-induced photocatalytic activity.

Graphical abstract: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies

Supplementary files

Article information

Article type
Paper
Submitted
09 10月 2013
Accepted
29 10月 2013
First published
29 10月 2013

J. Mater. Chem. A, 2014,2, 637-644

Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies

M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. Lee and M. H. Cho, J. Mater. Chem. A, 2014, 2, 637 DOI: 10.1039/C3TA14052K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements