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Born–Kuhn coupled oscillator model for optical
activity in ordered media

Razvigor Ossikovski *a and Oriol Arteaga *b

Considering the phenomenological electromagnetic description

of optical activity, we establish a unified formal framework,

wherein the gyration and permittivity tensors of any ordered

medium (a molecule or a crystal) can be derived using the classic

Born–Kuhn coupled oscillator model. This model allows for

efficient parameterisation of both tensors in terms of configura-

tional and structural parameters (orientations, positions and coup-

ling strengths) of a system of coupled oscillators having the same

symmetries as the medium of interest. Thus, Born–Kuhn molecular

models of all optically active crystal classes are established.

Introduction

Optical activity (OA), also known as circular birefringence, is
most commonly defined as the ability of certain media to
rotate the plane of polarisation of linearly polarised light upon
transmission.1,2 The presence of OA in a given substance is
commonly considered to be due to enantiomorphism (or chir-
ality), i.e., the existence of two non-superimposable forms of a
substance that are mirror images of each other. However,
detailed analysis shows that enantiomorphism is sufficient but
not necessary for OA.1 Similarly, the rotation of the plane of
polarisation upon transmission, or rotatory power, is the most
common manifestation of OA; however, certain media, despite
being optically active, do not exhibit it.2 Although experi-
mentally discovered and phenomenologically explained in the
very beginning of the nineteenth century by Biot3 and
Fresnel,4 OA was formally described almost a hundred years
later. Drude5 and Voigt6 were the first to realise that the
common homogeneous constitutive relations (or material
equations) complementing Maxwell’s equations in matter
need to be extended to account for OA, as well as to formulate
such extensions. Drude likewise proposed a qualitative micro-

scopic picture to support extended constitutive relations. Some
years later, Born7 and Kuhn8 analysed Drude’s qualitative
picture on a quantitative basis by considering a system of
coupled electronic oscillators whose spatial extent is smaller
than the wavelength of the probing light. Born considered the
general case of a system of coupled oscillators, whereas Kuhn
focused on the most elementary structure exhibiting OA,
namely, the system of two coupled oscillators in a chiral
arrangement. Born was further able to derive Drude’s extended
constitutive relations using his microscopic model for isotro-
pic optically active media. However, none of them applied the
oscillator model (referred to as the Born–Kuhn model from
now on) to ordered structures such as crystals. A first step in
this yet unexplored direction was taken by Chandrasekhar,9

who successfully used the Born–Kuhn model to describe the
OA of quartz at the molecular level. Chandrasekhar’s approach
was later refined and extended by V. Vyšín10 and, particularly,
I. Vyšín and coworkers.11

The advent of nonlinear optics and, more recently, nano-
plasmonics and metamaterials has significantly revived inter-
est in the classic Born–Kuhn oscillator model. Svirko and
Zheludev12 applied the model in its general (Born’s) version to
derive the gyration and permittivity tensors of an infinite opti-
cally active medium. In recent years, the simplest two-oscil-
lator (Kuhn’s) version of the model has been successfully used
by several authors13 to phenomenologically describe the
optical response of chiral nanostructures.

Developments in nanoplasmonics have been particularly
relevant for resurged interest in the Born–Kuhn model.
Plasmonic nanostructures, which exhibit strong interactions
with light at the nanoscale, are conceptually analogous to plas-
monic systems, where metallic nanoparticles act as oscillators
coupled through near-field interactions.14 The model provides
insights into the tunability of optical activity through geo-
metric parameters, inter-particle coupling, and material com-
position, facilitating the design of plasmonic metamaterials
with tailored chiroptical properties for applications in sensing,
polarization control, and photonic devices. However, very few
studies15 have explored scenarios beyond the two-oscillator
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model, particularly in complex three-dimensional arrange-
ments that essentially reproduce crystal structures. These con-
figurations are increasingly relevant owing to advancements in
modern design and nanofabrication tools, which allow for
precise engineering of intricate geometries. Investigating such
multi-oscillator systems could unveil new regimes of optical
activity, enabling unprecedented control over light–matter
interactions and expanding the functional capabilities of
photonic materials.

The purpose of the present paper is twofold. Firstly, it
revisits the phenomenological description of OA, creating a
formal unified framework within which it derives the gyration
and permittivity tensors from the Born–Kuhn coupled oscil-
lator model for finite and infinite ordered media. Secondly, it
establishes, as an illustrative application, parametric forms of
gyration tensors for all optically active crystal classes. The
framework bridges the gap between microscopic descriptions
of optical activity based on coupled oscillator models and
macroscopic electromagnetic theory of matter based on the
gyration and permittivity tensors, both of which can be experi-
mentally probed through polarised light measurements. Since
the approach is general, it allows for efficient geometric repre-
sentation and analytic parameterisation of any natural or artifi-
cial optically active structure as a function of its symmetries.

Constitutive relations for optically
active media

Herein, we assume plane monochromatic wave dependence,
exp(ikr − iωt ), for all electromagnetic vectors (k is the wavevec-
tor, r is the position and ω is the cyclic frequency of the wave).
The usual linear homogeneous constitutive relations for aniso-
tropic nonmagnetic media:16

D ¼ ε0εE ð1aÞ
B ¼ μ0H ð1bÞ

relate the electric (magnetic) induction (D (B)) to the electric
(magnetic) field (E (H)) through the vacuum permittivity (per-
meability) (ε0 (μ0)) and the permittivity tensor (ε) of a generally
anisotropic medium. From an optical viewpoint, these
relations describe only linear polarisation effects such as
linear birefringence and dichroism, i.e., the difference in
phase velocities and extinction coefficients for polarised light
waves with orthogonal linear (e.g. horizontal and vertical)
polarisations. To formally describe circular polarisation
effects, namely, circular birefringence (or OA) and dichroism,
originating from different phase velocities and extinction
coefficients of circularly polarised light waves, respectively,
with orthogonal (left-handed and right-handed) polarisations,
a more general, inhomogeneous form of linear constitutive
relations must be used:

D ¼ ε0εEþ POA ð2aÞ
B ¼ μ0ðHþMOAÞ; ð2bÞ

where POA and MOA are additional polarisation and magnetiza-
tion terms arising from OA, respectively. As shown phenomen-
ologically by Drude5 and Voigt,6 as well as formally by Boys17

and Condon,18 the OA polarisation and magnetization terms
entering the electric and magnetic constitutive relation,
respectively, depend on quantities of an opposite physical
(magnetic or electric) nature, i.e. POA = POA(B) and MOA =
MOA(E).

By performing Fedorov’s transformation,19

D′ ¼ D� ω�1k �MOA ð3aÞ

H′ ¼ HþMOA ð3bÞ
leaving invariant Ampère’s law,

k �H ¼ �ωD ð4aÞ
and not affecting Faraday’s law,

k � E ¼ ωB ð4bÞ
the general magnetic constitutive relation (2b) can be made
homogeneous, such as eqn (1b), but at the cost of redefining
electric induction from D to D′ and magnetic field from H to
H′. Indeed, the elimination of D and H from eqn (2) with the
help of eqn (3) transforms the former set of constitutive
relations as follows.

D′ ¼ ε0εEþ POA � ω�1k �MOA ð5aÞ

B ¼ μ0H′ ð5bÞ
Contrarily, by expanding the permittivity tensor in powers

of the wavevector within the framework of the spatial dis-
persion picture, Landau and Lifshitz16 obtained the following
set of constitutive relations for optically active media:

D′ ¼ ε0εEþ iε0cω�1ðgkÞ � E ð6aÞ

B ¼ μ0H′ ð6bÞ
where g is the gyration tensor describing OA and c is the speed
of light in vacuum. Comparison of the electric constitutive
relations from the two sets (5) and (6) gives the following
relation.

POA � ω�1k �MOA ¼ iε0cω�1ðgkÞ � E ð7Þ
Eqn (7), first established by Pauli20 in the special case of

isotropic media, allows the determination of the gyration
tensor when OA-induced polarisation and magnetization of
the medium are known. As given in the following section, the
latter can be derived from the microscopic description of the
medium. Thus, Pauli’s eqn (7) provides the link between
microscopic and macroscopic cases on the formal basis of the
Born–Kuhn approach.

Before ending this section, it should be emphasized that
the constitutive relations (6) featuring a homogeneous mag-
netic relation are valid for infinite media only, as noted by
Landau and Lifshitz.16 When dealing with layered optically
active media instead (as is commonly the case in optical
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characterisation), the following Fedorov’s transformation must
be performed,

D′ ¼ Dþ iε0cω�1k � f TE ð8aÞ

H′ ¼ H� iε0cf TE ð8bÞ
bringing eqn (6) into the inhomogeneous set,

D ¼ ε0εE þ iε0cfB ð9aÞ

B ¼ μ0ðH� iε0cf TEÞ ð9bÞ
where f is the OA tensor and is related to the gyration tensor
(g) as follows:21

f ¼ 1
2
trgI� gT ; ð9cÞ

(the notation ‘tr’ stands for the trace, whereas I denotes the
identity matrix). Set (9) was established first by Drude5 and
Boys17 in the case of isotropic optically active media. It
satisfies the common boundary conditions at interfaces (conti-
nuity of the tangential components of the fields and the
normal components of the inductions), as demonstrated
theoretically22 and experimentally.23 Note that set (9) is similar
to generic set (2), its OA-induced polarisation and magnetiza-
tion terms being dependent on quantities of an opposite
physical nature, i.e. POA = POA(B) and MOA = MOA(E).

Coupled oscillator model for optically
active media

The Born–Kuhn model for OA, largely inspired by the classic
Lorentz microscopic model of electromagnetism,24 considers a
system of electrons constrained to oscillate about spatially-sep-
arated equilibrium positions under the action of an externally
applied electric field. The spatial extent (a) of the system of
electrons is sufficiently smaller with respect to the wavelength
(λ) of the electric field; therefore, only linear expansions in the
a/λ ratio can be considered.

The approach is as follows: First, the “mechanical” part of
the model, the oscillation amplitudes of all electrons, is deter-
mined from the equations of motion. Electrons are assumed
to oscillate along straight lines under the influence of the
time-varying electric field of probing light. The second “elec-
tromagnetic” part of the model consists of the evaluation of
the polarisation and magnetization of the medium to various
multipole degrees of approximation, in either finite medium
(molecule) or infinite medium (crystal) cases. For simplicity,
the induced electric and magnetic multipole densities consti-
tuting polarisation and magnetization are evaluated classically;
although a quantum-mechanical approach exists,25 it has been
shown to yield similar results.26 Finally, eqn (7) is applied to
retrieve the gyration tensor from OA-induced contributions to
polarisation and magnetization, while the permittivity tensor
is obtained with the help of the electric constitutive relation
(5a).

Equations of the motion of a system of coupled oscillators

For simplicity and following Kuhn’s original derivation,8 we
shall start with a system of only two coupled oscillators, whose
results are readily generalizable to an arbitrary number.
Consider two electrons oscillating along straight lines with
respective unit vectors u1 and u2. The equilibrium positions r1
and r2 of the electrons are measured with respect to the centre
(r0) of the system. The time evolutions of the displacements
a1(t ) and a2(t ) of the electrons with respect to r1 and r2 are
given by the following simultaneous coupled equations of
motion:

me
d2a1ðtÞ
dt2

þmeω1
2a1ðtÞ þmek12a2ðtÞ ¼ eu1E1ðtÞ ð10aÞ

me
d2a2ðtÞ
dt2

þmeω2
2a2ðtÞ þmek21a1ðtÞ ¼ eu2E2ðtÞ; ð10bÞ

where k12 = k21 = k is the coupling between two electrons
with charge e and mass me. Physically, the coupling orig-
inates from the multipole–multipole (typically, dipole–
dipole) electromagnetic interaction between the oscillating
electrons.27 In eqn (10), En(t ) = E(t, r0 + rn), n = 1, 2, is the
probing light electric field acting upon the nth oscillator at
the equilibrium position; its projection upon the oscillation
direction (un), multiplied by the charge, equals the driving
force. Finally, ω1 and ω2 are the frequencies of free oscil-
lations of the two electrons considered uncoupled, i.e. if
En(t ) = 0 and k = 0.

For a monochromatic electric field (∝exp(−ωt )), eqn (10)
can be represented in the matrix form,

ω1
2 � ω2 k
k ω2

2 � ω2

� �
a1
a2

� �
¼ e

me

u1E1

u2E2

� �
ð11Þ

which is readily solvable for the two oscillation amplitudes a1
and a2,

a1
a2

� �
¼ e

me

1
DðωÞ

ω2
2 � ω2 �k
�k ω1

2 � ω2

� �
u1E1

u2E2

� �
ð12aÞ

where

DðωÞ ¼ ðω1
2 � ω 2Þðω2

2 � ω 2Þ � k 2; ð12bÞ
Eqn (11) and (12) express the linear relationships existing

between the amplitudes of the two oscillating electrons and
the magnitude of the electric field driving them out of their
respective equilibrium positions. The generalization of these
equations in the case of N > 2 oscillators whose oscillation
amplitudes are grouped in the vector a is immediate. Eqn (11)
then takes the following form:

Da ¼ e′; ð13Þ
where D is the N × N “dynamic” matrix with elements Dnm =
Dmn = mekmn/e for m ≠ n and Dnn = me(ωn

2 − ω2)/e, whereas e′ is
the “electric” vector with components e′n ¼ unEn, n = 1, 2, …, N.
Note that the matrix D is symmetric by virtue of the reciprocity
of the coupling within the pairs of oscillators.
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The solution of eqn (13) is obviously:

a ¼ D�1e′ ð14Þ
or, in component form (summation over repeated indices
being understood, unless otherwise stated),

am ¼ Dmn
�1e′n ¼ Dmn

�1unEn: ð15Þ
(Note that Dmn

−1 designates the mnth element of the
inverse matrix D−1 rather than the reciprocal of Dmn.)

Born–Kuhn model for a finite structure (molecule)

As mentioned in the previous section, the second step in the
Born–Kuhn approach consists of evaluating the polarisation
and magnetization of the optically active structure (molecule
or crystal) by calculating the microscopic electric and magnetic
multipole moments to different orders of approximation using
the oscillation amplitudes of the system of electronic oscil-
lators. Raab and De Lange28 showed that the first, electric
dipole order of approximation is insufficient to account for
OA; for a complete description of the phenomenon, calcu-
lations should be performed to the second-order electric quad-
rupole–magnetic dipole. In our calculations, we shall consider
both orders consecutively, the first being an essential inter-
mediate step for the second, and critically compare the results
obtained.

Electric dipole approximation. Within this first-order
approximation of multipole theory, the polarisation P of the
molecule is identified with the induced electric
dipole moment density p of the system of electronic
oscillators,

P ¼ p ¼ 1
v
eðrm þ amumÞ � 1

v
erm ¼ 1

v
eamum ð16Þ

where v ∼ a3 is the volume occupied by a molecule of size a.
Substituting eqn (15) for the oscillation amplitudes am yields
the polarisation.

P ¼ p ¼ 1
v
eDmn

�1umðunEnÞ ¼ AmnumuT
nEn

� ε0Amnð1þ ikrnÞumuT
nE

ð17Þ

We have put Amn = ε0
−1eDmn

−1/v and have expressed the elec-
tric field En applied on the nth oscillator through the field E =
E(0) at the molecular centre r0 = 0 by means of linear expan-
sion, i.e., En = E(rn) ≈ (1 + ikrn)E.

Again, within the first-order approximation, the magnetiza-
tion M, identified by the induced magnetic dipole moment
density m of the system of oscillators, is neglected since it is of
a higher order with respect to the electric dipole
moment density, i.e., M = m = 0. Next, we evaluate the
expression P − ω−1k × M = p with the help of eqn (17).

P� ω�1k �M ¼ p

¼ ε0AmnumuT
nEþ i

1
2
ε0Amnkrn umuT

n þ unuT
m

� �
E

þ i
1
2
ε0Amnrnkðun � umÞ � E

ð18Þ

The above expression contains both OA- and non-OA contri-
butions. Comparison of eqn (18) and (7) allows to isolate the
OA contribution as the last term:

POA � ω�1k �MOA ¼ i½1
2
ε0Amnðun � umÞrTn �k � E ð19Þ

and consequently, to identify the gyration tensor of the
molecule:

g′ ¼ 1
2
c�1ωAmnðun � umÞrTn ð20Þ

(We have used a primed notation for the tensor to empha-
size the first order of the approximation.) To give meaning to
the first non-OA term in eqn (18), the redefined electric consti-
tutive relation (5a) can be written in the general inhomo-
geneous form:

D′ ¼ ε0Eþ P′ ð21Þ
where polarisation P′ is redefined as follows.

P′ ¼ ε0ðε′� IÞEþ POA � ω�1k �MOA ð22Þ
The last two terms in eqn (22) represent the OA-contri-

bution already identified in eqn (18). Consequently, the first
term corresponds to the non-OA contribution; when put in cor-
respondence with the first term from eqn (18), it provides the
permittivity tensor of the molecule.

ε′ ¼ Iþ AmnumuT
n þ i

1
2
AmnkrnðumuT

n þ unuT
mÞ ð23Þ

This result is unphysical since the last term explicitly
depends on the wavevector. Furthermore, the presence of the
last term breaks the essential symmetry property of the permit-
tivity tensor, εT = ε, following from the conservation of
energy.16,20 In fact, the Lorentz classic electron theory of the
permittivity in the absence of OA yields only the first two
physical terms in eqn (23).12 This points out the deficiency of
the first-order electric dipole approximation. To obtain the
correct forms of permittivity and gyration tensors, second-
order electric quadrupole–magnetic dipole approximation
must be considered.

Electric quadrupole–magnetic dipole approximation. In this
order of multipole approximation, polarisation (P) of the mole-
cule comprises the induced electric dipole moment density (p)
and the induced electric quadrupole moment density (q)
contributions.28,29

P ¼ p� i
1
2
kq ð24Þ

Dipole moment density (p) is given by eqn (16), whereas
the induced electric quadrupole moment density of the system
of electronic oscillators is:

q ¼ 1
v
e rm þ amumð Þ rTm þ amuT

m

� �� 1
v
ermrTm

� 1
v
eam umrTm þ rmuT

m

� � � ε0Amn umrTm þ rmuT
m

� �
unEð Þ

ð25Þ
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at the first order in the oscillation amplitude (am), substituted
for from eqn (15). At this order of approximation, magnetiza-
tion (M) of the molecule is given by the induced magnetic
dipole moment density (m) of the system of oscillators,

M ¼ m ¼ 1
2v

rm � ð�iωÞeamum � �i
1
2
ωε0Amnrm � umuT

nE ð26Þ

into which expression (15) for am has been substituted, as pre-
viously mentioned. Note that magnetization depends on the
electric field and not on the magnetic field, i.e., M = M(E).
This observation implies that the magnetization of a molecule
is entirely due to OA, M = MOA, in accordance with the discus-
sion following the constitutive relations (5). Generally, the
Born–Kuhn model based on electrons oscillating along
straight lines can model only non-magnetic media, i.e. it for-
mally yields μ = I for the permeability tensor.

The expression from eqn (18) involving polarisation and
magnetization is therefore as follows.

P� ω�1k �M ¼ p� i
1
2
kq� ω�1k �m ð27Þ

The first term on the right-hand side of eqn (27) is the elec-
tric dipole contribution already calculated in eqn (17). The
quadrupole contribution due to the last two terms is evaluated
using eqn (25) and (26).

�i
1
2
kq� ω�1k �m ¼ �iε0AmnkrmumuT

nE ð28Þ

The addition of eqn (17) and (28) finally yields the right-
hand side of eqn (27).

p� i
1
2
kq� ω�1k �m ¼ ε0Amnð1þ ikrn�ikrmÞumuT

nE

¼ε0AmnumuT
nEþ iε0Amnkrnðun � umÞ � E

ð29Þ

As mentioned in the previous section, identification of the
above expression with eqn (19) and (22) yields:

g ¼ c�1ωAmnðun � umÞrTn ð30Þ

for the gyration tensor and

ε ¼ Iþ AmnumuT
n ð31Þ

for the permittivity tensor of the molecule, respectively.
Comparison of the two expressions for the gyration tensor

obtained at different degrees of multipole approximations, as
given by eqn (20) and (30), shows that the electric quadrupole–
magnetic dipole contribution is equal in magnitude and of the
same structure as the electric dipole contribution alone since
g = 2g′. This observation confirms the general result from mul-
tipole theory28 that taking the multipole order next to the elec-
tric dipole order into account is essential for the complete
quantitative description of the OA phenomenon. Furthermore,
addition of the electric quadrupole–magnetic dipole contri-
bution effectively removes the unphysical dependence of the
permittivity tensor on the directional derivatives (compare ε′
from eqn (23) with ε from eqn (31)).

It should be noted that the electric quadrupole contribution
(q) can be neglected with respect to the magnetic dipole con-
tribution (m) if an ensemble of randomly oriented molecules,
representing an isotropic optically active substance, is con-
sidered. It can be easily observed from eqn (28) that if q = 0,
then the correct expression (30) for the gyration tensor is still
obtained; however, the expression for the permittivity tensor
contains extra unphysical directional derivative terms, such as
those in eqn (23). These spurious terms vanish upon the orien-
tational averaging of the molecule, as shown by Caldwell
and Eyring,27 as well as in the original works of Born7 and
Kuhn.8 Nevertheless, as already discussed, the electric
quadrupole contribution is essential for obtaining the correct
results for both tensors in case of an oriented (i.e., an orienta-
tionally non-averaged) molecule. In ordered systems, where
the molecular orientation is not random, the electric quadru-
pole–magnetic dipole contribution ensures that the
model effectively predicts the optical response of the material
in practice, irrespective of the propagation direction of the
probing light.

Born–Kuhn model for an infinite structure (crystal)

The case of an infinite structure is computationally simpler
since it is sufficient to work to the first-order, electric dipole,
of multipole theory. In fact, as shown by Robinson29 and
Rosenfeld,30 the consideration of the second-order, electric
quadrupole–magnetic dipole, is necessary only when the struc-
ture is inhomogeneous or, in particular, discontinuous, such
as in the case of finite (molecular) structures.

Following Svirko and Zheludev,12 we modelled the crystal as
a three-dimensional regular lattice of N unit cells (N ≫ 1) of
volume v. Thus, the induced electric dipole moment density of
the unit cell whose centre is located at r0 is as follows.

pðr0Þ ¼ eumamδðr� r0 � rmÞ ¼ eDmn
�1umuT

nEnδðr� r0 � rmÞ
ð32Þ

In accordance with the electric dipole approximation, polar-
isation (P) of the crystal equals the induced electric dipole
moment density averaged over the lattice:

P ¼ p ¼ 1
Nv

ð
pðr0Þd3r0

¼ 1
v
eDmn

�1umuT
nEn�m ¼ ε0AmnumuT

nEn�m;

ð33Þ

where E(r + rn − rm) has been replaced with En−m to simplify
the notations. Since M = 0 at this order of approximation, the
expression P − ω−1k × M appearing in eqn (18) is transformed
to the following one:

P� ω�1k �M ¼ p ¼ ε0Amnð1þ ikrn�ikrmÞumuT
nE

¼ ε0AmnumuT
nEþ iε0Amnkrnðun � umÞ � E:

ð34Þ

In eqn (34), electric field (En−m) has been linearly expanded
about its value E = E(r) at an arbitrary position (r) in the
crystal, i.e. En−m = E(r + rn − rm) ≈ (1 + ikrn − ikrm)E.
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Identification of eqn (34) with eqn (7) and (22) yields the
gyration tensor,

g ¼ c�1ωAmnðun � umÞrTn ð35Þ
as well as the permittivity tensor,

ε ¼ Iþ AmnumuT
n ð36Þ

of the crystal.
The Born–Kuhn model provides identical results for finite

and infinite optically active media. Indeed, the expressions for
the gyration tensors, as well as those for the permittivity
tensors, coincide; compare eqn (30) and (31) with eqn (35) and
(36), respectively. In the framework of the Born–Kuhn model,
the properties of the crystal are entirely determined by the pro-
perties of its unit cell, i.e. the crystal is equivalent to an
oriented molecule.

Another prominent feature of the Born–Kuhn model is that
it provides not only the gyration tensor of the optically active
medium but also the permittivity tensor, both tensors being
closely related physically. An important practical consequence
of this fact is that the same model should be used to describe
both tensors when fitting the simulated optical response of
the medium or structure under study to experimental data.

Eventually, it should be noted that both gyration and per-
mittivity tensors depend on the cyclic frequency (ω) of the
probing light either explicitly or implicitly through the matrix
element Amn. This phenomenon, called time or frequency dis-
persion,16 which results in the spectral dependence of both
tensors, has been addressed in detail by many authors over
the years9–11 and is still an active topic;31 thus, it will not be
dealt with here. Indeed, spatial and time (or frequency) disper-
sions are treated independently in theoretical models consid-
ering their distinct physical origins.16 Alternatively, spatial dis-
persion results from the non-local response of the medium,
while time dispersion arises from the finite-time response of
the medium.

Properties of the gyration tensor

The gyration tensor of the molecule (or the crystal) given by
eqn (30) (or by eqn (35)) can be readily represented as

g ¼ cmnðun � umÞvTn ð37Þ
by substituting rn = dnvn and cmn = dnc

−1ωAmn (no summation
over repeated indices being assumed), where dn is the distance
of the nth oscillator from the centre of the molecule (or of the
unit cell) and vn is the unit vector along rn. It should be noted
that while Amn satisfies Amn = Anm, the matrix formed by the
coupling coefficients cmn is not symmetric, i.e., cmn ≠ cnm,
because dn ≠ dm, in general. Note that eqn (30), (35) and (37)
present the gyration tensor in the form of a dyadic, i.e., a
linear combination of dyads (or outer products of vectors).

In the case of only two coupled oscillators i and j forming
Kuhn’s pair, eqn (37) reduces to:

g ij ¼ ðui � ujÞðcjivTi � cijvTj Þ ð38Þ

(no summation over repeated indices), where ui and uj are the
oscillation directions of the two oscillators forming the pair,
while vi and vj are the unit vectors pointing at their positions.

In isotropic disordered optically active media, the gyration
tensor must be averaged over all possible orientations. Tensor
(37) then becomes a scalar equal to its trace, i.e., g = trgI, where

trg ¼ cmnðun � umÞvn ¼ cmnðunumvnÞ ð39Þ
in which (unumvn) = (un × um)vn is the scalar triple product of
vectors.

Before proceeding with the identification of the properties
of gyration tensor g, it should be recalled that strictly speaking,
the second-rank tensor g is not a true (or a polar) tensor but
rather a pseudo-tensor (or an axial tensor), as shown by
Landau and Lifshitz.16 In fact, when written in component
form in the general (non-plane-wave) case, the redefined elec-
tric constitutive relation (6a) becomes:

D′i ¼ ε0εikEk þ ε0cω�1eijkgjn∇nEk
¼ ε0εikEk þ ε0γikn∇nEk

ð40Þ

where

γikn ¼ cω�1eijkgjn ð41Þ

is the true (or polar) third-rank gyration tensor obeying the
anti-symmetry relation γikn = −γkin by virtue of Onsager’s prin-
ciple (eijk is the Levi–Civita symbol, i.e., the fully antisymmetric
third-rank pseudo-tensor). Note that eqn (40) is the first-order
expansion of the redefined electric induction D′ in the position
and ∇ is the gradient operator, in agreement with the spatial
dispersion picture of OA.16 Eqn (41) defines g as a second-rank
axial tensor (or pseudo-tensor), unlike the third-rank polar (or
true) tensor (γ). Consequently, gyration tensor g transforms
similar to a pseudo-tensor––it behaves similar to a polar
tensor under rotation transformations; however, unlike a polar
tensor, it changes its sign upon reflection transformations.16

We can now draw a list of properties satisfied by the gyra-
tion tensor that follow directly from eqn (37).

1. If un → −un, then g → g. Time reversal, i.e., inversion of
the oscillation directions of all oscillators, does not alter the
tensor.

2. If vn → −vn, then g → −g. Space inversion, i.e., inversion
of the system of oscillators to its centrosymmetric image,
reverses the sign of the tensor, in agreement with g being a
pseudo-tensor. Therefore, if the system itself is centro-
symmetric, then g = 0 (centrosymmetric media do not exhibit
OA, as is well known).16

3. If un → −un and vn → −vn, then g → −g. Simultaneous time
reversal and space inversion reverse the sign of the tensor.

4. If R is a rotation transformation leaving the system of
oscillators invariant, i.e., if Rum = un and Rvm = vn, then RgRT =
g, i.e., the tensor is unaltered. This property is in agreement
with g being a pseudo-tensor behaving as a true (polar) tensor
with respect to rotations.

5. If S is an inversion (e.g., mirror reflection) operation
leaving the system of oscillators invariant, i.e., if Sum = un and
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Svm = vn, then SgST = −g, i.e., the tensor reverses its sign.
Similar to the previous property, this is in agreement with g
being a pseudo-tensor and changing its sign upon inversion.

6. If the system of oscillators decomposes into two subsys-
tems that are uncoupled from one another with respective
tensors g1 and g2, then g = g1 + g2. This is an obvious conse-
quence from g being a dyadic, i.e., a sum of dyads. In particu-
lar, if every oscillator from the system is coupled to another
one only, i.e., if the coupling is pairwise, then gyration tensor
g of the whole system is made up of Kuhn’s pair contributions
of the form given by eqn (38).

7. The gyration tensor vanishes when
(a) cmn = 0 for m ≠ n, i.e., all oscillators are uncoupled.

Coupling is essential for OA.
(b) vn = 0: a system of centred oscillators, i.e., oscillators

whose equilibrium positions coincide with the centre of the
molecule (or of the unit cell) exhibit no OA. Spatial dispersion
is essential for OA.16

8. The trace of the gyration tensor given by eqn (39)
vanishes when

(a) um, un and cmnvn − cnmvm are coplanar, i.e., all oscillators
lie in a plane.

(b) um||vm, i.e., all oscillators are radial, i.e., oscillations
take place along the radius vectors joining the oscillators to
the centre of the molecule (the unit cell). Note that this con-
dition is equivalent to pairwise coplanar oscillators, i.e., copla-
nar Kuhn’s pairs. Since the gyration tensor of each coplanar
Kuhn’s pair is traceless, thus, the tensor of the whole system
will also be traceless (being a sum of Kuhn’s pair contributions
by virtue of property 6.)

Consequently, a system of coplanar or radial (i.e., pairwise
coplanar) oscillators exhibits no molecular enantiomorphism.

Coupled oscillator models for optically
active crystal classes

The formal coincidence of the expressions for the gyration
tensor of a molecule and a crystal, given by eqn (30) and eqn
(35), respectively, suggests the possibility of constructing mole-
cular models for all optically active crystal classes. The mole-
cular model of a given crystal class consists of a system of
coupled oscillators whose spatial configuration obeys the sym-
metries of the class. While constructing the model, the total
number of oscillators and the coupling between them can be
minimised. As a result, all optically active crystal classes can
be modelled by systems of coupled oscillators containing a
certain number of Kuhn’s pairs. Consequently, we shall estab-
lish the molecular models of all optically active crystal classes.
The configurations are shown in figures in which oscillators
are represented by red rods. Coupled oscillators are connected
by straight lines. Equal symmetric coupling between oscillators
within different pairs (i.e. Aij = Amn, cij = cji and cmn = cnm for
pairs ij and mn) is represented by connecting lines of the same
colour, while distinct colours indicate unequal (Amn ≠ Anm) or
asymmetric (cij ≠ cji, cmn ≠ cnm) coupling.

Biaxial crystals

Class 1. This triclinic class exhibits no symmetries, and there-
fore, all nine tensor elements are generally non-zero. To model
it, three arbitrarily oriented oscillators are considered:

uk ¼ ½sin θkcos φk sin θksin φk cos θk�T ; ð42Þ
which are located along the coordinate axes v1 = [1 0 0]T, v2 =
[0 1 0]T and v3 = [0 0 1]T, respectively, as shown in Fig. 1. In
eqn (42), φk and θk are the azimuth and the polar angle of the
kth oscillator, respectively (k = 1, 2, and 3). The gyration tensor
results from the pairwise coupling of the triplet of oscillators:

g12 þ g23 þ g31 ð43Þ
and is obtained using eqn (38) for gij. The model has twelve
parameters, nine of which can be considered independent,
while the remaining three can be assigned predefined values
to match the number of non-zero tensor elements. The nine
independent model parameters uniquely determining the
non-zero tensor elements are the three polar angles θ1, θ2 and
θ3 together with the six coupling coefficients c12, c21, c23, c32,
c13 and c31, whereas the remaining three azimuths φ1, φ2 and
φ3 may be ascribed (non-uniquely) to φ1 = 0, φ2 = π/4 and φ3 =
π/2.

Class m. This monoclinic class features a single mirror
plane coinciding (by convention) with the xy-plane. Its gyration
tensor is traceless, does not exhibit any symmetries, and has
four non-zero elements.

0 0 τ13
0 0 τ23
τ31 τ32 0

2
4

3
5 ð44Þ

To model it, an arbitrarily oriented oscillator is considered:

u1 ¼ ½sin θ1cos φ1 sin θ1sin φ1 cos θ1�T ð45aÞ
coupled with a second one that is its mirror image with
respect to the xy-plane.

u2 ¼ ½sin θ1cos φ1 sin θ1sin φ1 � cos θ1�T ð45bÞ

Fig. 1 Molecular model for crystal class 1.
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Both oscillators are located along the z-axis symmetrically
with respect to the origin so that v1 = −v2 = [0 0 1]T and d1 = d2.
A third oscillator lies entirely in the xy-plane, i.e.,

u3 ¼ ½cos φ2 sin φ2 0�T ð46aÞ
and

v3 ¼ ½cos φ3 sin φ3 0�T ð46bÞ
and is coupled with the first two. This configuration is shown
in Fig. 2. The tensor is given by eqn (43) and (38), with c12 = c21
= c1, c13 = c23 = c2 and c32 = c31 = c3 (because d1 = d2 and A13 =
A23). The model has seven parameters, four of which can be
considered as independent. The four independent parameters
are the azimuth φ3 and the three coupling coefficients c1, c2
and c3, whereas the remaining three parameters may be fixed
to φ1 = θ1 = π/4 and φ2 = −φ1.

Class 2. This monoclinic class has a single 2-fold axis taken
(conventionally) along the z-axis. Its gyration tensor does not
exhibit any symmetry and has five non-zero elements.

τ11 τ12 0
τ21 τ22 0
0 0 τ33

2
4

3
5 ð47Þ

It can be modelled with two Kuhn’s pairs. The first pair
consists of two arbitrarily oriented oscillators:

u1 ¼ ½sin θ1cos φ1 sin θ1sin φ1 cos θ1�T ð48aÞ

u2 ¼ ½sin θ2cos φ2 sin θ2sin φ2 cos θ2�T ð48bÞ
whose position directions are considered symmetric with
respect to the x-axis.

v1 ¼ ½sin θpcos φp sin θpsin φp cos θp�T ð49aÞ

v2 ¼ ½sin θpcos φp � sin θpsin φp � cos θp�T ð49bÞ
The pair is rotated through π about the z-axis to produce

the opposite, z-axis-symmetric second pair,

u3 ¼ ½�sin θ1cos φ1 � sin θ1sin φ1 cos θ1�T ð50aÞ

u4 ¼ ½�sin θ2cos φ2 � sin θ2sin φ2 cos θ2�T ð50bÞ
and

v3 ¼ ½�sin θpcos φp � sin θpsin φp cos θp�T ð51aÞ

v4 ¼ ½�sin θpcos φp sin θpsin φp � cos θp�T ð51bÞ
The oscillators within each pair and the first and second

oscillators from the opposite pairs are coupled so that all oscil-
lators are coupled “peripherally”; see Fig. 3. The tensor is
given by the sum of the pairwise contributions,

g12 þ g34 þ g23 þ g41 ð52Þ
and eqn (38) with c12 = c34 = c1, c21 = c43 = c2, c23 = c41 = c3 and
c32 = c14 = c4 (because d1 = d3 and d2 = d4, as well as A12 = A34
and A23 = A14). The model has ten parameters, five of which
can be fixed. The independent model parameters are the polar
angle θ1 and the four coupling coefficients c1, c2, c3 and c4,
whereas the fixed parameters are φ1 = π/4, φ2 = −φ1, θ2 = −θ1,
φp = π/4 and θp = π/2.

Note that assuming coupling between all oscillators, i.e.,
adding g13 + g24 with c13 = c31 = c5 and c24 = c42 = c6 to eqn (52),
would yield a tensor of the same form as eqn (47), resulting in
an over-parameterised model.

Class 222. This orthorhombic class has three mutually
orthogonal 2-fold axes coinciding with the three coordinate
axes. Its tensor is diagonal and has three non-zero elements.

τ11 0 0
0 τ22 0
0 0 τ33

2
4

3
5 ð53Þ

To obtain it, two Kuhn’s pairs, eqn (48)–(51) from the class-
2 model, can be used by adding extra symmetries. The second
oscillator within each pair is oriented symmetrically to the
first with respect to the x-axis, i.e. φ2 = −φ1 and θ2 = π − θ1 are
used in eqn (48b) and (50b). Similar to that in the class
2 model, the oscillators within each pair and the first and
second oscillators from the opposite pairs are coupled (so that
all oscillators are coupled “peripherally”). Fig. 4 exemplifies
the configuration. The tensor is represented by eqn (52) and
(38) with c12 = c21 = c34 = c43 = c1 and c14 = c41 = c23 = c32 = c2
(because d1 = d2 = d3 = d4, A12 = A34 and A23 = A14). By fixing

Fig. 2 Molecular model for crystal class m. Fig. 3 Molecular model for crystal class 2.
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three of the six model parameters, the number of non-zero
tensor elements is matched. The polar angle θ1 and two coup-
ling coefficients c1 and c2 are independent whereas φ1 = φp = θp
= π/4 are fixed.

Class mm2. This orthorhombic class features a single 2-fold
axis along the z-axis and two mirror planes coinciding with xz-
and yz-planes, respectively. Its tensor is off-diagonal, exhibits
no definite symmetry and has only two non-zero elements.

0 τ12 0
τ21 0 0
0 0 0

2
4

3
5 ð54Þ

Similar to that in orthorhombic class 222, additional sym-
metries can be imposed on the two Kuhn’s pairs from class 2,
given by eqn (48)–(51), to model the tensor. The second oscil-
lator from the pair is the mirror image of the first with respect
to the xz-plane, as shown in Fig. 5, i.e. θ2 = θ1 and φ2 = −φ1 are
used in eqn (48b) and (50b). Furthermore, the centres of all
four oscillators lie in the xy-plane, and therefore, θp = π/2 is
substituted into eqn (49) and (51). The tensor is obtained from
eqn (52) and (38) when all coupling coefficients equal cc
(because the oscillators are equidistant from the origin). Two
model parameters can be fixed, θ1 = φp = π/4, while the two
independent ones are the azimuth φ1 and the common coup-
ling coefficient cc.

Uniaxial crystals

Class 4̄. This tetragonal class has a single inversion 4-fold axis
along the z-axis. Its tensor is traceless symmetric:

τ11 τ12 0
τ12 �τ11 0
0 0 0

2
4

3
5 ð55Þ

and depends on two parameters. Similar to that in the two
orthorhombic classes 222 and mm2, the above tensor can be
modelled by imposing additional symmetries on the two
Kuhn’s pairs from class 2, described by eqn (48)–(51). The
second oscillators from each pair are oriented and located so
as to satisfy both π/2-rotation and inversion, as shown in
Fig. 6, i.e., φ2 = φ1 − π/2 and θ2 = π − θ1 are substituted into
eqn (49b) and (51b). Their position directions are taken to be:

v2 ¼ ½sin θpsin φp � sin θpcos φp � cos θp�T ð56aÞ

in the first pair and

v4 ¼ ½�sin θpsin φp sin θpcos φp � cos θp�T ð56bÞ

in the second one. The tensor is given by eqn (52), with all
coupling coefficients, equal to cc as they are equidistant from
the origin, substituted in eqn (38). The independent model
parameters are the azimuth φ1 and the common coupling
coefficient cc, while the fixed ones are θ1 = π/4, φp = 0 and θp =
π/2.

Class 4̄2m. Besides the single inversion 4-fold axis along
the z-axis, this class has two orthogonal 2-fold axes perpen-
dicular to the 4-fold axis and two mirror planes containing the
4-fold axis and bisecting the two 2-fold axes. Its tensor is trace-
less diagonal:

τ11 0 0
0 �τ11 0
0 0 0

2
4

3
5 ð57aÞ

and depends only on a single parameter. This class can be
treated as a higher-symmetry special case of class 4̄. It is there-
fore sufficient to use φ1 = 0, θ1 = π/4 and φp = θp = π/2 in the
model equations for class 4̄ from the previous subsection. The

Fig. 4 Molecular model for crystal class 222.

Fig. 5 Molecular model for crystal class mm2. Fig. 6 Molecular model for crystal class 4̄.
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configuration is shown in Fig. 7. The only model parameter is
the common coupling coefficient cc.

It should be noted that one may also use φp = 0 instead of
φp = π/2. This would yield the alternative traceless symmetric
form of the tensor.16

0 τ12 0
τ12 0 0
0 0 0

2
4

3
5 ð57bÞ

It is straightforward to show that the two tensors given by
eqn (57a) and (57b) transform into one another via a π/4-angle
rotation about the z-axis.

Classes 3, 4 and 6. These classes have a single n-fold axis
along the z-axis. Their tensors are of the following form:

τ11 τ12 0
�τ12 τ11 0
0 0 τ33

2
4

3
5; ð58Þ

and therefore, they depend on three parameters. These classes
can be modelled by sets of n uncoupled Kuhn’s pairs. We shall
consider the case n = 3, with the other two being analogous.
Two arbitrarily oriented oscillators forming a Kuhn’s pair,
given by eqn (48), with positions directed symmetrically with
respect to the x-axis, given by eqn (49), are consecutively
rotated twice about the z-axis through 2π/3 by the rotation
matrix,

R3 ¼
cosð2π=3Þ sinð2π=3Þ 0
� sinð2π=3Þ cosð2π=3Þ 0

0 0 1

2
4

3
5 ð59Þ

yielding two more pairs, u3 = R3u1, u4 = R3u2, and v3 = R3v1, v4
= R3v2 as well as u5 = R3u3, u6 = R3u4, v5 = R3v3, and v6 = R3v4.
The configuration is represented in Fig. 8. The tensor is given
by the contributions of the initial and rotated pairs,

g12 þ g34 þ g56 ð60Þ
with c12 = c34 = c56 = c1 and c21 = c43 = c65 = c2 (because d1 = d3 =
d5, d2 = d4 = d6 and A23 = A34 = A56) substituted into eqn (38).
The independent model parameters are the two polar angles
θ1 and θ2 together with the coupling coefficient c1, whereas the

fixed ones are φ1 = θp = π/4, φp = π/2, φ2 = −φ1 and c2 = c1
(because all six oscillators can be assumed to be equidistant
from the origin).

Similar to class 2, assuming additional couplings between
oscillators, does not change the form of the tensor but only
over-parameterises it.

Classes 32, 422 and 622. Besides the single n-fold axis
along the z-axis, these classes have n evenly spaced coplanar

Fig. 8 Molecular model for crystal class 3.

Fig. 9 Molecular model for crystal class 32.

Fig. 7 Molecular model for crystal class 4̄2m.

Fig. 10 Molecular model for crystal class 3m.
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2-fold axes normal to the n-fold axis. Their tensors are
diagonal:

τ11 0 0
0 τ11 0
0 0 τ33

2
4

3
5 ð61Þ

and depend on two parameters. They can be modelled as
higher-symmetry special cases of the n-classes by adding extra
symmetries. In the case n = 3, the second oscillator from the
initial Kuhn’s pair is considered symmetric to the first with
respect to the x-axis (see Fig. 9) so that φ2 = −φ1 and θ2 = π − θ1
are put into eqn (48b) and (50b). The tensor is obtained from
eqn (60) and (38) with all coupling coefficients put equal to cc
(because all oscillators are equidistant from the origin). The
independent model parameters are the polar angle θ1 and the
common coupling coefficient cc, while the fixed ones are φ1 =
θp = π/4 and φp = π/2.

Classes 3m, 4mm and 6mm. Besides the single n-fold axis
along the z-axis, these classes have n evenly spaced mirror
planes containing the n-fold axis. Their tensors are
antisymmetric:

0 τ12 0
�τ12 0 0
0 0 0

2
4

3
5 ð62Þ

and depend only on a single parameter. In the case n = 3, an
oscillator lying on the xz-plane:

u1 ¼ ½sin θ1 0 cos θ1�T ð63Þ
and located along the x-axis, v1 = [1 0 0]T, is consecutively
rotated twice about the z-axis through 2π/3 by the rotation
matrix R3 given by eqn (59), yielding two more oscillators, u2 =Fig. 12 Molecular model for crystal class 432.

Fig. 11 Molecular model for crystal class 23.

Table 1 Optically active crystal classes in international (and in Schönflies) notations and their associated OA tensors

Crystal system
Crystal class
point symmetry OA tensor Crystal system

Crystal class
point symmetry OA tensor

Triclinic (biaxial) 1 (C1)
τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

2
4

3
5 Trigonal, tetragonal,

hexagonal (uniaxial)
3, 4, 6 (C3, C4, C6)

τ11 τ12 0
�τ12 τ11 0
0 0 τ33

2
4

3
5

Monoclinic (biaxial) 2 (C2)
τ11 τ12 0
τ21 τ22 0
0 0 τ33

2
4

3
5 32, 422, 622 (D3, D4, D6)

τ11 0 0
0 τ11 0
0 0 τ33

2
4

3
5

m (CsuC1h)
0 0 τ13
0 0 τ23
τ31 τ32 0

2
4

3
5 3m, 4mm, 6mm (C3v, C4v, C6v)

0 τ12 0
�τ12 0 0
0 0 0

2
4

3
5

Orthorhombic (biaxial) 222 (D2uV)
τ11 0 0
0 τ22 0
0 0 τ33

2
4

3
5 4̄ (S4)

τ11 τ12 0
τ12 �τ11 0
0 0 0

2
4

3
5

mm2 (C2v)
0 τ12 0
τ21 0 0
0 0 0

2
4

3
5 4̄2m (D2duVd)

τ11 0 0
0 �τ11 0
0 0 0

2
4

3
5

Cubic (isotropic) 23, 432 (T, O)
τ 0 0
0 τ 0
0 0 τ

2
4

3
5
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R3u1, v2 = R3v1 and u3 = R3u2, v3 = R3v2, as shown in Fig. 10.
The tensor of the triplet is given by eqn (43) and (38), all three
coupling coefficients being equal to a common value cc
(because d1 = d2 = d3). The only model parameter is the coup-
ling coefficient cc, and θ1 = π/4 is fixed.

Isotropic crystals

Class 23. This isotropic class presents tetrahedral symmetry:
three 2-fold axes along the three coordinate axes together with
four 3-fold axes. Six oscillators are oriented along the edges of
a regular tetrahedron, u1 = a[0 1 1]T, u2 = a[0 −1 1]T, u3 = a[−1 0
1]T, u4 = a[1 0 1]T, u5 = a[1 −1 0]T and u6 = a[−1 −1 0]T, where
a ¼ 1=

ffiffiffi
2

p
, and are located at mid-points between the summits

so that v1 = [1 0 0]T, v2 = [−1 0 0]T, v3 = [0 1 0]T, v4 = [0 −1 0]T, v5
= [0 0 1]T and v6 = [0 0 −1]T, as shown in Fig. 11. The tensor is
given by the contributions of the three Kuhn’s pairs consisting
of opposite coupled oscillators with equal pairwise coupling
coefficients, i.e. eqn (60) is applied with all cij equalling cc
(because all oscillators are equidistant from the origin). It
reduces to a scalar proportional to the coupling coefficient cc,
and only molecular enantiomorphism occurs.1

Class 432. The octahedral (or cubic) symmetry of this isotro-
pic class presents three 4-fold axes along the three coordinate
axes, four 3-fold axes and six 2-fold axes. This class requires
three couples of Kuhn’s pairs, i.e. a total of twelve oscillators.
The couples are located at the centres of the opposite faces of
a cube. The respective oscillators from the two pairs in a
couple are perpendicular in orientations (“cross” structure);
the two triplets of pairs thus formed have 222-symmetry (“2 ×
3 tilted crosses”). This configuration is represented in Fig. 12.
The tensor, evaluated using eqn (37), reduces to a scalar pro-
portional to the common coupling coefficient cc. Similar to the
other optically active class 23, only molecular enantiomorph-
ism occurs.1

Table 1 summarizes the derived tensors for the molecular
models discussed. Note that it coincides with the complete
table of optical activity tensors in crystallography.1

Conclusions

By combining the phenomenological description of OA with
the inhomogeneous forms of electromagnetic constitutive
relations, it was possible to construct microscopic models
based on systems of coupled oscillators for optically active
media and structures. Specifically, the evaluation of the OA-
induced polarisation and magnetization of a system of
coupled oscillators obeying the symmetries of an ordered
medium of interest allowed to derive parameterised forms of
the gyration and permittivity tensors of the medium. In par-
ticular, the coupled oscillator model of the gyration tensor
enabled to establish a convenient list of properties common to
all optically active media. The proposed approach is very
general: the only condition for its applicability is knowing the
symmetries of the ordered medium. To illustrate it, parame-
terised models of all optically active crystal classes were con-

structed. We believe that this contribution is of interest to
modelling theoreticians as it provides them with microscopic
models for arbitrary ordered structures and to experimentalists
willing to describe the optical responses of optically active
media through their gyration and permittivity tensors in terms
of a minimal set of meaningful microscopic parameters.
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