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1 Introduction

Axonal tension contributes to consistent
fold placement

Xincheng Wang, (22 Shuolun Wang® and Maria A. Holland (2 *°

Cortical folding is a critical process during brain development, resulting in morphologies that are both
consistent and distinct between individuals and species. While earlier studies have highlighted important
aspects of cortical folding, most existing computational models, based on the differential growth theory,
fall short of explaining why folds tend to appear in particular locations. The axon tension hypothesis may
provide insight into this conundrum; however, there has been significant controversy about a potential
role of axonal tension during the gyrification. The common opinion in the field is that axonal tension
is inadequate to drive gyrification, but we currently run the risk of discarding this hypothesis
without comprehensively studying the role of axonal tension. Here we propose a novel bi-layered
finite element model incorporating the two theories, including characteristic axonal tension in the
subcortex and differential cortical growth. We show that axon tension can serve as a perturbation
sufficient to trigger buckling in simulations; similarly to other types of perturbations, the natural stability
behavior of the system tends to determine some characteristics of the folding morphology (e.g. the
wavelength) while the perturbation determines the location of folds. Certain geometries, however, can
interact or compete with the natural stability of the system to change the wavelength. When multiple
perturbations are present, they similarly compete with each other. We found that an axon bundle of
reasonable size will overpower up to a 5% thickness perturbation (typical in the literature) and determine
fold placement. Finally, when multiple axon tracts are present, even a slight difference in axon stiffness,
representing the heterogeneity of axonal connections, is enough to significantly change the folding
pattern. While the simulations presented here are a very simple representation of white matter
connectivity, our findings point to urgent future research on the role of axon connectivity in cortical
folding.

the rigid constraint of the skull, regulating the expansion of
the brain tissue to optimize the available space." However, this

Brain development is a protracted procedure, during which the
brain transforms from small and smooth to large and folded."
The resulting ridge-shaped folds are called gyri, while the
fissures are called sulci. During gestational weeks 16-27, deep
primary folds grow outward rapidly in specific locations -
maintaining some consistency not only between individuals
but also across species.” Following the primary folds, the
secondary and tertiary folds emerge during weeks 23-37,* with
more variation in their location, size, and orientation.’
Understanding the role of physical forces during the for-
mation of the brain’s convoluted surface has been of great
interest for decades.®” Early studies of brain development
assumed that the driving force was compressive stress from
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theory was contradicted by experimental studies on sheep.?
Another important hypothesis is the differential growth the-
ory, which suggests that different growth rates in the cortex
and subcortex, or in different layers of the cortex, would lead
to folding as the outer layer reaches critical stress and
becomes unstable.’ Early studies developed simple theoretical
models,'® while later works have performed increasingly
complex simulations of cortical growth and folding.'""?
However, one limitation of these theories is that, by them-
selves, they fail to explain the consistency in the location of
the primary folds.™?

The questions about the conserved locations of primary
folds might be answered with the help of another competing -
and controversial - theory. The axonal tension hypothesis states
that axons pull strongly connected regions close together, forming
a gyrus, while weakly connected areas drift apart, forming sulci.'?
It further suggests that this tension-driven folding leads to
globally compact wiring. A prominent role for axon tension
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makes sense, considering that axons, the primary processes
that extend from each neuron, make up the majority of the
interior white matter of the brain. Groups of hundreds of
parallel axons form axonal bundles or tracts, connecting dif-
ferent regions of the brain, both radially and circumferentially.
The axon tension theory is specifically supported by the evi-
dence that axons exist in a state of tension in vitro,'* with linear
force-displacement response, axial viscosity, stretch-driven
growth,"™'® and active retraction, with axial tension measured
around 30 to 40 pdyne (300 to 400 pN). Additionally, a recent
diffusion tensor imaging (DTI) study found that axon micro-
structure matures prior to the formation of folds, potentially
helping to initialize cortical folding."”

Despite this evidence of axon behavior, experimental results
have challenged the wholesale acceptance of the axonal tension
hypothesis. For example, residual stress cutting experiments in
the brains of adult mice'® and developing ferrets'® show that
sustained tension exists in the subcortex, which may signifi-
cantly impact the folding process. However, three main con-
clusions challenge the tension-based folding hypothesis: (1) the
subcortical axonal tension is far away from the folding region,
(2) the circumferential axonal tension around the gyri is too
weak to pull the tissue directly, and (3) the observed orientation
of residual stress in gyri does not match the model’s
predictions.'® Their experiments and simulations suggest that
differential growth primarily drives folding, while allowing that
axonal tension may still be a constraint that affects cortical
folding.

In other studies, axon connection has been found to scale
with cortical folding across species,**" leading researchers to
extend the original axon-tension theory to propose that axonal
tension causes white matter folding, influencing gray matter
folding in turn. Recently, Van Essen has reformulated the
original tension-based morphogenesis theory, incorporating
more forces at both cellular and tissue scales that promote
folding.?* Pushing back on critiques of his theory,'® he noted
that ex vivo experiments might not capture in vivo tension,
which could be affected by slicing or tissue edema. He also calls
for a simulation framework capable of modeling key neurobio-
logical features in the cortical tissue, such as axons that are
orientated at different angles and even cross.>* Currently, there
is still a gap in understanding how axonal tension is involved
during gyrification. For example, what level of axonal tension
exists in vivo? Is this level of tension capable of triggering
cortical folding? How does the axon network wire during the
folding process?

White matter is particularly interesting in light of the open
questions about the relationship between brain structure and
function.>* It has been observed that abnormal white matter
connectivity is found in various neurological disorders, which
frequently coincide with atypical folding patterns within the
brain. Of course, these relationships could be causal or simply
correlative. Regardless, a deeper understanding of the role of
white matter connectivity in cortical folding has far-reaching
implications for our understanding of the brain’s structure and
function.
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From a macroscopic perspective, the inner white matter and
the outer gray matter form a bi-layered system, and the folding
process in the cortex layer can be categorized as an instability
problem. Instability theory has been heavily used in the study
of gyrification; however, it can only predict the critical condi-
tions and wavelength of the cortical folds, not the precise
location of folds. Instead, numerical simulations are often used
to understand certain features of the post-buckling analysis.
However, finite element simulations require some type of
perturbation that induces symmetry breaking and determines
fold placement.>*° There are several approaches available to
introduce the imperfections in the finite element simulations,
such as applying a small perturbation in thickness, growth,
curvature, or stiffness.®’™® While axonal tension has been
relatively less studied than these other sources of perturbation,
it is a plausible source of heterogeneous forces that could break
symmetry.

Recently, finite element simulations have made promising
advances in understanding the process of brain develop-
ment.**? Simulations can not only provide quantitative infor-
mation about stress, for instance, which is difficult to measure
experimentally, but when combined with experiments, they can
help to identify and evaluate potential mechanisms of
folding.*>"" However, the complexity of brain tissue is a chal-
lenge for the accuracy of finite element models. In addition to
multiple cell types, complex mechanical behavior,*” and highly
heterogeneous structure and properties,*>** there is also an
issue of scale. This is particularly relevant for axons whose
length exceeds the dimensions of typical finite elements,
challenging the assumption of local behavior.

Despite the wide variety and increasing complexity of finite
element models of cortical folding, the mechanical role of
axons has generally been overlooked, and only a few models
have incorporated axon fibers when modeling the white matter
tissue. The first model of cortical folding to incorporate axonal
growth'® represented axon orientations as directions of trans-
versely isotropic growth and found that axon arrangement
affected the resulting morphology. However, a limitation of
that study was that each point in the model could only have a
single axonal orientation, meaning that distributed fiber
anisotropy®>™’ or intersections between multiple axonal bun-
dles couldn’t be captured. More recently, the role of hetero-
geneous axonal distribution has been explored using the
embedded element method in both 2D*® and 3D domains;*’
however, these models were limited to straight, radially aligned
axons without prestretch. Another recent model has focused on
how the patterns of axons seen in the brain emerge as a result
of their stretch-driven growth.>® Although the resulting fiber
distribution is consistent with experimental data, the computa-
tional model doesn’t consider phenomena like widespread
crossing fibers.>

In this paper, we introduce a novel model of cortical folding
incorporating both the differential growth and axon tension
hypotheses (Section 2). We assume that these mechanisms
contribute to cortical folding concurrently, with the differential
growth serving as the main driver of gyrification and the

This journal is © The Royal Society of Chemistry 2024
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subcortical axon tension as a slight perturbation during the
initiation of folding. Our model incorporates axon orientation
and homeostatic tension, allowing us to investigate the effects
of these features on brain development. Using our model,
we are specifically interested in testing several hypotheses put
forward in the foundational paper on the axon tension hypo-
thesis:'® first, that axon tension works to draw strongly con-
nected regions closer together, while allowing less-connected
regions to drift apart; and second, that axon tension tends to
result in globally-optimized wiring patterns (Section 3).

2 Methodology

2.1 Kinematics of cortical growth

We simulate brain tissue growth using the finite growth theory
based on nonlinear continuum mechanics. To capture the large
deformation during the cortical folding, we introduce the
deformation mapping ¢. The particle X in the reference
configuration moves to x = ¢(X, t) in the current configuration
after time t. The deformation gradient of this mapping F is
given by,

F=Ag, 1)

where V denotes the gradient with respect to the reference
coordinate. Adopting the multiplicative decomposition of the
deformation gradient,”" the total deformation gradient F can be
decomposed into

F = F¢Fg, (2)

where F, represents the stress-free material growth while F. is
an elastic deformation that ensures compatibility. The total
volume change, J = detF > 0, can similarly be decomposed into
J = JdJg, where J, and J. are the determinants of F, and F,
respectively.

As in previous works,”® we model the substrate as a purely
elastic material (i.e., F, = I), while the gray matter experiences
in-plane area growth defined by

Fy= /3l + (1= /&) m @ m, (3)

where 3, denotes the growth multiplier and n, is the referential
outward normal to the brain surface.
The inverse of the growth tensor is

1 /% -1
Fol=—=I+Y " ——ny@n (4)
V 98

V3

The resulting elastic deformation tensor can be found as

1 V3 — 1
Fo=F F,7' = ——F+Y 2>

Vi Vo

where n = F-n, is the current surface out-normal.

n® ny, (5)
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Assuming that the cortex grows roughly linearly with time ¢,>*
we adopt a linear growth rate, such that

9g(1) = 1 + Byt (6)

2.2 Constitutive equations

We model the cortex and the subcortex tissue as compressible
neo-Hookean materials with strain energy density function

W=t -3 -2mu + 4wl ()

where C. = FIF. is the elastic right Cauchy-Green tensor. The
cortical-subcortical stiffness ratio is defined as

B = pelps. (8)
The Cauchy stress tensor ¢ is given by

oW
oF,

c=J. Fr. 9)
We describe the cortical growth as quasi-static and solve the
governing equation

dive = 0. (10)

2.3 Computational model of axonal tension

The circumferential fibers in the subcortical region can be
divided into short- and long-association fibers, which connect
neighboring gyri and distant cortical areas in the same hemi-
sphere, respectively. Short-association fibers (3 mm to 30 mm®?)
are also called U-fiber because they form a “U’” shape around a
sulcus, connecting neighboring cortical areas.’*>* U-Fibers are
prominent in superficial brain tissue across species, including
humans, monkeys, and ferrets,”>>> and have been thought to
play a crucial role in brain development, aging, and plasticity.
Reductions in U-fiber density are associated with multiple
brain disorders.’® To model these fibers in the brain, we
discretize longer axon tracts as a series of shorter connector
elements that are attached to the white matter subcortex via
surfaced-based coupling constraints in Abaqus/Standard.”” The
connector element, CONN2D2, acts as a straight wire connec-
tion between two nodes with linear or nonlinear force-displa-
cement relationships. We approximate the U-fiber shape
(Fig. 1), which is typical of axon connectivity in the subcortex,
by connecting multiple elements end to end.

Here, we consider linear elastic connector behavior, where
the magnitude of tension along a connector is

T=K( - /o), (11)

which is defined by a stiffness K and two length parameters: the
geometrical length / and the reference length /,. The geome-
trical length is the Euclidean distance between two connector
nodes when creating the model, and the reference length
specifies the resting length of the axon. The stretch ratio 4 of

Soft Matter, 2024, 20, 3053-3065 | 3055
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anatomy modeling

Fig. 1 Schematic of axon connectivity. In the brain (left), axon tracts made
out of groups of parallel axons connect different parts of the brain, with
varying densities and orientations throughout the white matter. In our
model (right), we discretize long axon tracts into shorter linear connectors,
with varying stiffness representing the number of axons in the bundle. Each
connector is connected to a region with radius R of the underlying tissue,
where the connecting force is proportional to the radial distance r.

the connector is defined as

1=t

: (12)

When ¢ = /,, there is no stretch along the axial direction,
representing a stress-free state; Aayon > 1 implies that the axon
is under a state of stretch. The stiffness of the connector
elements, K, is an extrinsic quantity, with dimensions of force
per length change. However, when measured experimentally, it
is more common to determine the intrinsic stiffness with
dimensions of force per cross-sectional area; for instance, the
shear modulus y is an intrinsic quantity. To find the intrinsic
stiffness of axons, we need Young’s modulus, cross-sectional
area, and initial length. The Young’s modulus, assuming a
nearly incompressible material, can be found as

E = 3axon-

(13)

The cross-sectional area of each fiber bundle can be estimated
from the average diameter of an axon, d, and the number of
axons in the bundle, n, as

nd?

A=n—m-.

. (14)

Then we obtain the extrinsic stiffness of connector elements in
an axon tract as

EA 3 mnp,,,d°

To ensure that all connector elements in a single axon tract

3056 | Soft Matter, 2024, 20, 3053-3065
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have the same stiffness values, we assume tracts have a uniform
cross-sectional area, stretch ratio, and material properties
along their length, and discretize them into segments of the
same reference length. Here, based on reports of axon tracts
with diameters of 500 um,*® or a cross-sectional area of
0.2 mm®, we set the default number of axons to produce a
similar cross-section.

Each connector element connects two nodes, which play
multiple roles. They serve as the hinge connections to adjacent
connectors and act as the coupling points for the connector-
substrate interaction, governed by surface-based coupling con-
straints in Abaqus.”” For the surface-based coupling con-
straints, we chose the distributing coupling constraint, where
the connector tension T is transmitted to n nearby substrate

nodes within a specified influence radius R (Fig. 1) via a
weighted function,
. . . . ri
T=wifi +wafs +...+wufy, with w;=1-— ® (16)

where w;, f;, and r; are the weighting factor, magnitude of nodal
force, and distance from the connector location, respectively, at
the ith node, and R is the parameter to control the influence
radius.

2.4 Finite element bi-layered model

We implement our computational model in ABAQUS/Standard.
The simulation domain is a 2D rectangle with dimension W x
H, composed of a cortical layer with thickness H. and shear
modulus g, and a subcortical substrate with thickness Hy and
shear modulus ps. The default value of all parameters are
provided in Table 1. We discretize the domain with 4795 hybrid
elements CPE4H (Fig. 2). All solutions presented here are the
converged solutions checked by a mesh sensitivity test.

The bottom surface is fixed, and roller boundary conditions
are applied to the left and right edges of the rectangle. In
addition, we apply a frictionless self-contact interaction to the
top surface of the cortex, which prevents self-penetration.

To model the axon tracts, we approximate their geometry
with parabola equations,

y=ax*+b

(17)

The shape of a parabola can be described by its horizontal span
and tangent at intersections where the axon tracts are close to
the cortical-subcortical interface. We fixed the coordinate in
the center of the top surface Fig. 2, such that the span of the

parabola is s =2,/(—2—b)/a, and the tangent at the right
intersection is tan§ = 2,/a(—2 — b). From histology images,”®

we estimate s ~ 24.5 mm and tanf =~ 0.8. Solving the

. . . 1
equations, we obtain the geometrical parameters ¢ = — mm™!

30
and b = —7 mm.

In this work, we predominantly focus on the effect of a
single axon bundle. However, we also briefly consider the
effects of multiple bundles, where two additional tracts are
placed symmetrically around the primary tract, centered
around the ends of the primary tract. As different axon tracts

This journal is © The Royal Society of Chemistry 2024
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Variable Description Value and unit Source/comment

g The total growth of the cortex layer 1.23

w Width of the bi-layered model 80 mm

H. Thickness of the cortex tissue 2 mm

Hy Thickness of the subcortex tissue 38 mm

Ue Shear modulus of the cortex 0.1 kPa Holland et al.**

v Poisson’s ratio of the materials 0.46 Holland et al.>*

p Stiffness ratio between the cortex and the subcortex 3 Holland et al.**

J Stretch ratio of axon tracts 2 Dennerll et al.***

lo Reference length of the axon segment 65 pm

d Average diameter of myelinated axons 1 pm Liewald et al.®*

Haxon Shear modulus of myelinated axon 12 kPa Bernal et al.®®

R Coupling constraint influence radius 1.0 mm Chosen based on mesh sensitivity test
n Number of the paralleled axons in the bundle 3.45 x 10° Chavoshnejad et al.*®“
a Second-order geometrical parameter 1/130 mm Riley et al.>®¢

b First-order geometrical parameter —7 mm Riley et al.>®“

[ Sinusoidal perturbation wavelength 4 mm Diab et al.®*¢

¢/H, Relative thickness perturbation amplitude 2.5-5% Auguste et al.®*?

¢ Indicates values that are calculated; otherwise the values are given in the relevant source.

y
X
o <ty H,
> 5 <
D <
w

Fig. 2 Finite element mesh and boundary conditions. The full domain of
W x H is split into the cortical layer with thickness H. and the subcortical
layer with thickness Hs. The horizontal span of the axonal tract, s, and the
angle of the parabola at the right intersection, 0, are also shown.

may have different stiffnesses, we quantify this by the stiffness
ratio 7,

n = Ki/K, (18)
where K; and K, are the primary and secondary axon tract
stiffnesses, respectively. Differences in stiffness between two
axon tracts reflect differences in the number of axons found in
each bundle; higher stiffnesses reflect an increased number of
axons aligned in parallel. By adjusting the stiffness value, we
can investigate the influence of spatial density variations of
axons in the white matter.>

We also consider the role of local thickness changes, as
another plausible source of perturbations in a numerical
simulation. This is achieved by slightly altering the y-position
of nodes along the cortical-subcortical interface in a sinusoidal
form’eo—es

u, = & cos(2nx,/l),

for —I/4 < X; < /4 (19)

This journal is © The Royal Society of Chemistry 2024

where [ is the wavelength of the perturbation and &/H. is the
relative thickness perturbation amplitude.

When comparing two folding morphologies, we quantify the
differences via the mean squared displacements i for each of
the m = 800 nodes on the top surface of the cortex layer,

\/(xi —xi0) + (i = yi0)’,

1 m
n//:%;

(20)

where (x;, y;) and (x;,, y:0) are the (x, y) coordinates of the ith
surface node of the simulation of interest and the benchmark
simulation, respectively.

3 Results and discussion
3.1 Critical strain in presence of axonal tension

The first goal of this study is to confirm that small amounts of
axonal tension can serve as a perturbation of the bi-layered
system. Here, we compare the theoretical critical strain
of a perfect bilayered system®® with our simulations of a bilayer
with a single axon tract. For comparison, we identify the
buckling points visually, and calculate the critical strain as
¢=1-1/,/9,. Both approaches show that higher cortical-
subcortical stiffness ratios correlate with lower critical strains,
meaning the system is increasingly prone to instability (Fig. 3).
By comparing our simulation results with the theoretical pre-
diction, we found that our model is less stable, consistent
with axonal tension serving as a perturbation. Furthermore,
when testing with three different axonal tract stiffness values
(10 Nm™*, 150 N m ™" and 300 N m '), we found that higher
axon stiffnesses further decreased stability slightly.

3.2 Influence of the axon geometry

The second goal of this study is to understand how the
arrangement of axons affects cortical morphology. We theorize
that alterations in axon geometry would lead to a different
distribution of axonal tension on the white matter, thus

Soft Matter, 2024, 20, 3053-3065 | 3057
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Fig. 3 Critical strain ¢ = 1 — 1/,/9, vs. cortical-subcortical stiffness ratio.
Theoretical results are taken from Holland et al.®®

influencing the cortical folding pattern. To test this, we con-
sider a single axon bundle with a stiffness of 150 N m™"
(representing approximately 3.4 x 10> axons), with different
initial geometries. Since we use parabola equations to charac-
terize the axon arrangement, the span of the curve and the
tangent at intersections can be changed easily. This allows us to
approximate radial axons, with a near-infinite tangent, as have
been studied elsewhere,*® and to compare them with axons that
act at an angle. Note that because of the biased mesh density,

» N
2 |

span of the parabola s [mm]

20 25 3.0 35
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we increase the value of the influence radius to 1.5 mm in the
case when the axon tract is placed close to the bottom of
the model.

Given a cortical-subcortical stiffness ratio of 3, the system is
predicted to buckle into wavelengths of 15.6 mm; given the
dimensions of our model, this is likely to translate into a wave
number of 5 (or wavelength of 16 mm).®® When exploring the
parameter space of span and slope, we found that nearly all of
the resulting folding patterns matched this wavelength. Simu-
lations with a small span (16 mm) and a large span (25 mm)
showed different patterns with the same wavelength, with a
sulcus and a gyrus in the middle, respectively (Fig. 4). Interest-
ingly, in these regimes, the morphology was not sensitive to the
insertion angle. However, in an intermediate range, a third
morphology with different wavelength emerges at moderate
slopes.

These patterns appear to reflect the competition between the
natural stability of the system and the effect of axon tension.
Naturally, the system tends to form five folds, and many axon
configurations can be accommodated by such undulations,
with the axon either spanning a single fold in the case of short
spans, or two folds in the case of long spans. However in the
middle, the span is such that it falls awkwardly relative to the
natural wavelength of the system - tending to connect some-
thing like sulcal walls instead of sulci themselves. At shallow
angles, these sulcal walls are pulled together fairly efficiently,
while at steeper angles it is more energetically favorable for the
axonal insertion points to form true sulci, which entails

e | | || ]| =

> [N S

d | ]
o

d | ]

s | |

40 45 50

slope of the parabola root tan(f) [-]

19
19
17
16
0.5 1.0 1.5
I I i
0.0 0.5 1.0

1.5 2.0 2.5

mean squared displacement ¢ [mm)]

Fig. 4 Folded brain tissue morphology with different axon connection geometrical parameters. The benchmark for the calculation of mean squared
displacement has a span of 16 mm and a tangent of 0.5 (bottom left corner).
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Fig. 5 Simulated folding morphologies under perturbations. Top left:
Thickness perturbation, applied at the location of the arrow. Top right:
Axonal tension perturbation, applied at the middle of the subcortex.
Bottom: Both perturbations shifted to the right by one-half of a
wavelength.

changing the wavelength. In short, both the initial axon span
and the initial axonal tension orientation interact with the
system stability to determine the folding morphology.

3.3 Influence of axonal tension vs. thickness perturbation

The third goal of this study is to compare the influence of
axonal tension with other perturbations. Slight heterogeneities,
for instance in thickness, curvature, stiffness, or growth, can
change the location of gyral and sulcal folds throughout the
brain and are potential explanations for the consistent location
of primary folds throughout the brain.”> Here, we compare
axonal tension against a small change in local cortical thick-
ness. Initially, we apply both perturbations in two locations (in
the center and slightly off-center) and observe the effect on
folding morphology (Fig. 5). In both cases, a sulcus emerges in
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Paper

the center of the domain when the perturbation is located in
the middle. Similarly, when the perturbation is shifted to the
right by half of a wavelength, the location of the folds shifts
accordingly, and a gyrus is instead located at the center. Thus,
while the system properties (i.e. the cortical-subcortical stiff-
ness ratio) determine the resulting wavelength, the location of
the perturbation determines the phase shift of the folding
pattern.

We are further interested in the pote competition between
these two perturbations - if they are applied such that they tend
to form folds in different locations, which perturbation will
dominate under which conditions? To answer this question, we
apply both perturbations in a single model, with the thickness
perturbation in the center of the model and the axon tract
shifted half of a wavelength to the right. We run 100 simula-
tions with varying combinations of thickness perturbation
magnitude and axonal stiffness. The benchmark case is taken
to be the case of (¢/H. =0.05, K=10 N m '), where the thickness
perturbation is the greatest and the axonal tension is the
weakest (Fig. 6). That is, low values of i sugge