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Creating high-performance host materials for potassium (K) metal anodes remains a significant challenge
due to the complex preparation process and poor K reversibility. In our work, we developed
a potassiophilicity strategy using an oxygen-modified carbon cloth (O-CC) network as a host for K metal
anodes. The O-CC network exhibited superior potassiophilic ability, and this improvement was also
observed in other carbon hosts using the same process. The oxygen-induced epoxy group in the carbon
network regulates interface electrons and enables strong binding of K adatoms through orbital
hybridization, resulting in fewer side reactions with the electrolyte and promoting K-ion desolvation and
uniform deposition. These factors result in unprecedented stability of the carbon network host, with
a long lifespan of over 5500 hours at 0.5 mA ¢cm™2/0.5 mA h cm™2 and 3500 h at 1 mA cm™%/

0.5mAhcm™2in symmetric cells for K metal anodes, surpassing the cycle life of all previously reported
Received 24th June 2025 K metal anodes. Furth high lombic efficiency of over 99.3% is demonstrated in O-
Accepted 4th August 2023 metal anodes. Furthermore, a high average coulombic efficiency of over 99.3% is demonstrated in

CC//K cells during 210 cycles. The O-CC also exhibited a stable electrochemical performance, with

DOI: 10.1039/d3sc03203e a capacity retention of 73.3% in full cells coupled with a perylene-3,4,9,10-tetracarboxylic dianhydride
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Introduction

The shortage of Li sources has caused a rapid increase in the
cost, which has restricted the further spread of lithium-ion
batteries (LIBs)."> Exploring a new high-efficiency energy
storage system with low cost has become necessary. Among the
new rechargeable battery systems, potassium-ion batteries
(KIBs) have attracted great attention due to the low cost of K
resources, high operating voltage, and fast diffusion kinetics.*"*
To achieve high energy density KIBs, developing the anode with
a low charge plateau is a reliable approach.®” However, most
anodes, including carbon and sulfide, still present high charge
plateaus, resulting in the decrease of the KIB's open-circuit
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cathode. We believe that this new strategy holds great promise for metal anodes in battery applications.

voltage.®® To achieve high output voltage, the K metal anode
has gained wide attention due to its extremely low potential of
—2.93 V vs. the standard hydrogen electrode (SHE) and vitally
high theoretical capacity of 687 mA h g '.1*'' However, the
adverse effect of the high reactivity and the vigorous dendrite
growth of the K metal anode during the plating/stripping
process has caused serious safety hazards for KIBs, which
seriously limits the practical application of K metal anodes."*

To realize the practical applications of the K metal anode,
scientists have made a lot of attempts to address critical issues,
including dendrite growth and dead K.'*'* Among all of the
attempts, designing the K metal host is undoubtedly one of the
most reliable strategies.'®” The introduction of the host in the
K metal anode can reduce the side reaction caused by the direct
contact between the electrolyte and K metal anode."®° The host
frame buffers the large volume expansion during the plating/
stripping process.”** Due to these properties, the K metal
host has acquired a great deal of investigation. Mitlin's group
developed a 3D copper current collector with reduced graphene
oxide as a host for the K metal anode and this composite host
exhibited a significantly enhanced adsorption capacity for K
metal, which achieved stable cycling for 167 h at 0.5 mA cm ™ 2.%
Xu's group reported a 3D SnO, coated conductive porous carbon
nanofiber framework as a host and this framework host pre-
sented ultra-long cycling stability over 1700 h at 1 mA cm ™ in
a symmetric cell.”® Despite a relatively stable circulation being
achieved in the above studies, the complex preparation

© 2023 The Author(s). Published by the Royal Society of Chemistry
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methods of these hosts are still difficult to obtain at a large scale
for K metal batteries (KMBs), resulting in the limitation of their
practical application. So far, some researchers have attempted
to explore the simplified preparation path to optimize the K
metal host performance. Tu's group utilized Ag nanoparticles to
decorate carbon cloth (Ag-CC) as a K metal host and the Ag-CC
host maintained stable cycling for more than 700 cycles at 0.5
mA cm %/0.5 mA h em™? in a symmetric cell without abnor-
mality.>* Xu's group adopted biomass carbon as the K metal
host and found that the carbon derived from the bacterial
cellulose host presented stable cycling for 1400 h at 0.5 mA
ecm ? with a low overpotential of 45 mV.'* Although these
studies involving K metal hosts have made a series of
advancements, the cycle life is still nowhere near enough for the
batteries. Further development of the simple approaches to
obtaining a K metal host with stable cycling remains to be
explored.

In this work, we developed a one-step air heat treatment to
obtain oxygen-modified carbon cloth (O-CC) as a host for the K
metal anode. It is found that numerous epoxy groups were
introduced onto the surface of O-CC after the air modification.
According to our experiments and calculations, this introduc-
tion can decrease the surrounding electron density and hinder
the transfer of electrons to the lowest unoccupied molecular
orbital (LUMO) of the electrolyte. A lower Fermi level on the

One-step air heat treatment
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surface of the O-CC material can be obtained after introduction
of epoxy groups, which causes fewer side reactions of the elec-
trolyte in batteries. Additionally, due to orbital hybridization,
the epoxy groups on the O-CC surface present strong forces,
allowing easy desolvation of K atoms from the electrolyte which
then deposited on the surface of the host. Benefiting from this
behavior, the O-CC@K electrode in a symmetric cell delivers
unprecedented electrochemical performance with an ultra-long
lifespan of over 5500 h at 0.5 mA cm 2/0.5 mA h cm > and
3500 h at 1 mA cm /0.5 mA h cm™2, which outperforms the
cycle life of all previously reported K metal anodes. The O-
CC@K electrode coupled with a modified perylene-3,4,9,10-
tetracarboxylic dianhydride (PTCDA) cathode is used to
construct K metal full batteries, which present a stable capacity
over 300 cycles. We suggest that our optimization path will
provide a guide to designing a high-efficiency host for current K
metal anodes.

Results and discussion

Fig. 1a shows the schematic of O-CC's fabrication process,
which is obtained by heat treatment in the air to achieve the
surface modification of oxidation. For comparison, we denote
the pristine carbon cloth without heat treatment as P-CC.
Fig. S1f shows the photographs of P-CC and O-CC. It is
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Fig.1 Schematic illustration and characterization. (a) Schematic illustration for the preparation of the O-CC. SEM images of (b and ¢) P-CC and
(e and f) O-CC and the corresponding O elemental mapping images of (d) P-CC and (g) O-CC. (h) C 1s and (i) O 1s XPS spectra, and (j) Raman

spectra of P-CC and O-CC.
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almost impossible to distinguish these two electrodes macro-
scopically. From the scanning electron microscope (SEM)
images, we found that there is virtually no change in the
macroscopic region between P-CC (Fig. 1b) and O-CC (Fig. 1e).
In the enlarged SEM image (Fig. 1c), the relatively smooth
surface of a carbon fiber in P-CC can be detected. After heat
treatment, the surface of O-CC becomes rough (Fig. 1f). To
identify the changed elements, the element mapping of P-CC
(Fig. 1d and S2at) and O-CC (Fig. 1g and S2bf¥) is provided. It
is observed that the O content in O-CC is significantly increased
and evenly distributed, indicating the introduction of oxygen
into the carbon fiber surface after heat treatments in air. Since
H won't be introduced into carbon at high temperatures, we
suggest that the newly introduced O should be bonded with C to
form the epoxy groups.”*® To further determine the surface
elemental composition, X-ray photoelectron spectroscopy (XPS)
of P-CC and O-CC was conducted, and the results are shown in
Fig. S31 and 1h and i. Four peaks of C 1s XPS spectra can be
deconvoluted, corresponding to the conjugated C, non-
conjugated C, epoxy group (-C(O)C-) and hydroxy group (-C-
OH) bonds, respectively. The increased peak intensity at
286.8 eV indicates the increase of epoxy groups on the surface of
O-CC after heat treatment in air.>”*®* From the O 1s XPS spectra,
two peaks corresponding to the epoxy group and hydroxy group

View Article Online
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are deconvoluted. It is observed that the peak intensity at
532.3 eV increases, also illustrating the reinforcement of the
epoxy group. Due to the detection depth of XPS being less than
10 nm, except for the O inside carbon fibers, the increased O
content should be derived from the interface's epoxy group. The
Raman spectra of P-CC and O-CC were recorded, and are shown
in Fig. 1j. Two typical carbon characteristic peaks of the D band
and G band are observed. The D band arises from the vibration
of amorphous carbon and the G band involves the vibration of
graphitic carbon.* It is found that the G-band intensity of O-CC
increases, indicating that the heat treatment of carbon fibers in
the air tends to the graphitization state.** To further confirm the
presence of epoxy groups, we also compared the FTIR spectra
(Fig. S41) of P-CC and O-CC. We found that at the position
corresponding to the epoxy group (1077 cm™ "), O-CC showed
a significantly enhanced vibration peak, further demonstrating
that air thermal treatment can introduce epoxy groups into the
carbon network. The molten K metal cannot be adsorbed by P-
CC even after 30 s contact, indicating P-CC presents potassio-
phobic properties (Fig. S5a and Video S1t). Therefore, the P-
CC@K electrode is obtained by physical squeezing. Compared
with P-CC, O-CC exhibits a superior potassiophilic ability with
rapid molten K metal adsorption in a short time (less than 1 s,
Fig. S5b and Video S2t). Fig. S61 shows the photographs of P-CC
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and O-CC obtained using an optical microscope and the SEM
images. A very poor combination between P-CC and K metal can
be found by the naked eye and at smaller scales. For O-CC,
uniform and strong infiltration of K metal can be observed,
with K metal plating uniformly on the surface of O-CC and
combining tightly with each carbon fiber, indicating that O-CC
can be a superior host for the K metal anode during the plating/
stripping process. To demonstrate the universality, carbon felt
and carbon paper were also used with the same procedure and
demonstrate a similarly enhanced potassiophilicity. In Fig. S7
(video S3t) and Fig. S8 (Video S47), both show a rapid molten K
metal adsorption.

To evaluate the K plating/stripping efficiency of the host,
a series of electrochemical tests were conducted. Fig. 2a and
b show the reversibility of Cu@K, P-CC@K, and O-CC@K in
symmetric cells during K plating/stripping. As shown in Fig. 2a,
Cu@K and P-CC@XK electrodes suffer a fast failure at 117 h and
330 h, respectively. After the introduction of the epoxy group,
the O-CC@XK electrode presents an ultra-long cycle life of over
5500 h at 0.5 mA cm 2/0.5 mA h cm™ 2 and an ultralow voltage
hysteresis of less than 30 mV, which are much better than those
of Cu@K and P-CC@K electrodes in symmetric cells. A slight
periodic voltage hysteresis fluctuation can be observed in
Fig. 2a, which is caused by the temperature difference between
day and night. Fig. S9t also presents the reversibility of Cu@XK,
P-CC@K, and O-CC@K in symmetric cells during K plating/
stripping in the first 500 h, confirming the ultralow voltage
hysteresis of the O-CC@K electrode for the K metal anode. We
also noticed that the voltage hysteresis of the O-CC@XK electrode
gradually decreases with the K plating/stripping process.
Therefore, the electrochemical impedance spectroscopy (EIS) of
O-CC@K electrodes at different K plating/stripping states and
the EIS of bare K and P-CC@XK before cycling are also provided,
as shown in Fig. S10.7 The decreased impedance of the O-CC@K
electrode can be detected, indicating continuous optimization
of the electrode interface with the proceeding of K plating/
stripping.®® The O-CC@K electrode also undergoes stable
cycling for 3500 h even at 1 mA cm™2/0.5 mA h em ™2, as shown
in Fig. 2b. These long cycle life and low polarization voltage
indicate that the O-CC can significantly inhibit dendrite growth.
To better evaluate the electrochemical performance of our O-
CC, all the previous performances of K metal hosts are
provided for comparison, as shown in Fig. 2c and Table S1.7 The
results demonstrate that our O-CC presents unprecedented
stability for K plating/stripping. Fig. 2d and S117 exhibit the
cycling performance of the P-CC@K and O-CC@XK electrodes in
symmetric cells at different current densities. The P-CC@K
electrode presents a short circuit at 1 mA cm 2 and the O-
CC@K electrode still maintains stable cycling performance
even at 3 mA cm > To further assess the electrochemical
performance, we quantified the coulombic efficiencies (CEs) of
the battery by O-CC//K and P-CC//K asymmetric cells with an
areal capacity of 1 mA h em™>, as shown in Fig. 2e and S12a and
b. P-CC//K and O-CC//K cells present the initial CE of 22.5%
and 31.6% at 0.5 mA cm™ 2, respectively. The higher initial CE
indicated less side reaction with the electrolyte during SEI
formation. The O-CC//K cell presents excellent stability with

© 2023 The Author(s). Published by the Royal Society of Chemistry
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a high average CE of 99.6% for 250 cycles at 0.5 mA cm ™ > and
average CE of 99.3% for 210 cycles at 1 mA cm ™. However, P-
CC//K suffers from a break only after 35 cycles at 0.5 mA cm >
(Fig. S12b and ct). The low initial CE of O-CC//K at 1 mA cm >
indicates that a large amount of K is absorbed by the epoxy
group in the surface of O-CC during SEI formation, while the
high average CE indicates that the O-CC can inhibit the dendrite
growth well for a long time. Besides, the CEs of Cu//P-CC@K
and Cu//O-CC@K asymmetric cells are also provided with an
areal capacity of 0.5 mA h cm ™2, as shown in Fig. $12d.1 Only an
average CE of 82% in 40 cycles can be achieved for the Cu//P-
CC@K cell, while the Cu//O-CC@XK cell holds a high average
CE of 91.2% for 50 cycles. Fig. S12e and f} show the galvano-
static charge-discharge (GCD) curves of Cu//P-CC@K and Cu//
O-CC@K cells, respectively. Both initial GCD curves present
less than 300 mV bias voltage gaps between charge and
discharge plateaus, implying side reactions with the electro-
Iyte.*> Compared with the Cu//P-CC@XK cell, the Cu//O-CC@K
cell shows an overlapping flat pattern with little fluctuation,
indicating the stability of the O-CC electrode for KMBs. The K
nucleation process in the different hosts is studied in Fig. 2f and
the O-CC presents a lower nucleation overpotential (258 mV)
than that of P-CC (386 mV), indicating that the O-CC exhibits
a rapid nucleation process during K plating.*® The rapid
nucleation process of O-CC demonstrates the formation of
slight K accumulation, which appears as uniform K deposition
macroscopically.

We investigated the charge distribution, Fermi levels,
surface binding energies, and the corresponding partial density
of states (pDOS) to explore the electrochemical enhancement
mechanism of the epoxy group by density functional theory
(DFT) calculations. From Fig. 3a, the P-CC model presents high
electron density for all atoms, and the O-CC model exhibits
a decrease in charge distribution after the introduction of the
epoxy group at this level. This behavior indicates that O-CC
exerts strong electron binding to passivate the interface due to
electron regulation by the epoxy group. Automatically, the
surface of O-CC shows a Fermi level of —2.84 eV, which is lower
than that of P-CC (—2.31 eV), as shown in Fig. 3b. Compared
with P-CC, a larger energy difference between O-CC and the
LUMO level of dimethoxyethane (DME) electrolyte indicates
that it is difficult for the electron to jump from the Fermi level of
O-CC to the LUMO level of DME. This behavior illustrates the
suppression of electron transfer in O-CC, resulting in the
reduction of the side reaction between the electrode and DME
solvent during the stripping/plating process.*** From the
charge distribution in Fig. 3c, a relatively high electron density
around the epoxy group can be observed in the O-CC model,
indicating that the introduction of the epoxy group causes
interface electron regulation. Relative to the P-CC model, this
interface electron regulation will create a region of very strong
localized electrons for the adsorption of K atoms. Furthermore,
we calculated the density of states (DOS) of the K atom on P-CC
and O-CC for comparison, as shown in Fig. 3d. Compared with
the K atom on P-CC, a DOS broadening of the K atom on O-CC
can be observed, indicating stronger orbital hybridization of the
K atom and the epoxy group. Fig. 3e shows the calculation

Chem. Sci., 2023, 14, 9114-9122 | 97
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surface binding energies to K, (f) TEM images of the SEI layers after 1 cycle; (g) XPS spectra of SEI layers after 1 cycle.

model of P-CC and O-CC for K atom adsorption. It is found that
the binding energy between K atoms and P-CC is —1.21 eV. For
O-CC, the binding energy greatly decreases to —3.15 eV, indi-
cating that K will preferentially adsorb on O-CC. To verify this
behavior, the Raman spectra of the primary electrolyte and the
electrolyte filtered by P-CC and O-CC are provided in Fig. S13.1
According to fitting results, the Raman peaks of the electrolyte
can be deconvoluted into three peaks, which correspond to the
solvent-separated ion pair (SSIP), contact ion pair (CIP), and
aggregate (AGG) coordination.? It is observed that the solvation
structures of aggregate (AGG) coordination in the electrolyte
filtered by O-CC decrease and show almost no change in the
electrolyte filtered by P-CC, indicating the strong K adsorption
ability of O-CC after epoxy group introduction. In all, we suggest
that the K adsorption ability influences the solvated structures
of electrolyte and changes the constituent of the solid electro-
lyte interphase (SEI) layer, which contributes to the improved
electrochemical behavior of the battery.’” To further confirm
this behavior, we calculated the adsorption energy (E,) of P-CC
and O-CC with DME electrolyte (Fig. S14}). O-CC presents an
adsorption energy of —0.12 eV with DME molecules, more
negative than that of P-CC (0.06 eV). Therefore, for the solvated
structure of K ions, the more negative adsorption energy indi-
cates the strong adsorption of K ions by O-CC, which facilitates
the desolvation process and the interfacial transfer process of K
ions.

The contact angles of P-CC and O-CC with electrolyte
(Fig. S151) were compared to verify the calculation results and it
was found that O-CC presents an angle of 11° at 0.07 s after the

9118 | Chem. Sci, 2023, 14, 914-9122

electrolyte drops, lower than that of P-CC (20°), demonstrating
an improvement of electrolyte wettability of the O-CC electrode.
Due to this reason and good potassiophilic ability, O-CC has
a larger active area of K metal with electrolyte while K covers the
surface of P-CC like a two-dimensional plane by physical
squeezing. Then a larger amount of K-ions can translate faster
in the host and avoid localized deposition. We disassembled the
symmetric cells after cycling to observe the change in electrode
structure. The TEM images in Fig. 3f indicate that the SEI layer
in the O-CC@K//O-CC@K symmetric cell is about 8 nm, thinner
than in the P-CC@K//P-CC@K cell (25 nm). To further explore
the SEI composition, the XPS of P-CC and O-CC is also per-
formed, as shown in Fig. S16, 3g, and S17.} Considering that the
detection depth of XPS is less than 10 nm, we believe that the
detection results based on XPS after cycling are from the SEI
layer of the electrode.*® From the F 1s XPS, the K-F bond
(682.7 eV and 684.6 eV) and S-F bond (687.1 eV) can be
deconvoluted.* It is found that the SEI layer of the O-CC elec-
trode contains more K-F ingredients compared with the P-CC
electrode. The high K-F content of the SEI layer contributes to
the enhancement of the mechanical strength of the electrode
during the K plating/stripping process, resulting in better
stability of the batteries.**!

Fig. 4a and b show the in situ optical microscope photo-
graphs of P-CC@K and O-CC@K electrodes at a plating areal
current density of 0.1 mA ecm™? for 60 min, respectively. The
corresponding photograph of the in situ optical microscope
observation system is shown in Fig. S18.f Both electrodes
present a smooth interface in the initial stage. However, clear K

© 2023 The Author(s). Published by the Royal Society of Chemistry
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dendrites arise quickly in the P-CC@XK electrode after plating for
30 min (Fig. 4a and Video S57), which is ascribed to the uneven
deposition caused by the high adsorption energy between K and
P-CC. With the increase of the plating process to 60 min, the
growth of K dendrites is more pronounced. In contrast, the O-
CC@K electrode still has a smooth interface from 0 min to
60 min (Fig. 4b and Video S67), indicating that the K dendrite
can be inhibited significantly with the introduction of the epoxy
group. Fig. 4c and d show the SEM images of P-CC@K and O-
CC@K which transfer under an Ar atmosphere after 100
cycles at a current density of 0.5 mA cm™ > with a capacity of
0.5 mA h em 2. The P-CC still has plenty of carbon fiber that
can't be wrapped by K, indicating that P-CC easily accumulates
K non-uniformly, which causes the growth of K dendrites. In
contrast, the carbon fiber of O-CC is evenly and densely wrap-
ped by K without dendrites. This micro-scale feature ensures
the absence of dendrites in the macro-scale. After that, we also
attempted to model the growth of K dendrites of P-CC and O-CC
by finite element analysis (FEA). Given the different adsorption
abilities of K with P-CC and O-CC electrodes, we set the P-CC
and O-CC electrodes with the initial conditions of inhomoge-
neous K-ions and homogeneous K-ions for deposition, respec-
tively (Fig. 4e and f). From the FEA results, some
inhomogeneous deposition of the P-CC electrode begins to
appear at 300 s and intensifies at 600 s. As a comparison, the O-
CC electrode delivers uniform K deposition and seems almost
dendrite-free at 600 s.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Based on the aforementioned discussions, we propose the
electrochemical enhancement schematic of the O-CC multi-
functional host for KIBs, as shown in Fig. 4g. Generally, the
electron distribution in the interface of the host should be
homogeneous and the number of electrons exceeds the
number of K-ions in the initial state in both P-CC and O-CC
electrodes. Therefore, the K-ion desolvation rate is critical
for the uniform deposition of K metal. For P-CC, due to the
slow K-ion desolvation, the electrons in the interface of the
host tend to accumulate at the local region, triggering the
enhancement of K-ion desolvation in the local region and
causing the rapid growth of K dendrites. In addition, the high
Fermi level of P-CC also reinforces the electron transfer from
the electrode to DME, resulting in the decomposition of DME
solvent. After the introduction of the epoxy group, the strong
electron binding of the epoxy group means that the O-CC
electrode has a strong interaction with K-ions. Therefore, it
exhibits a rapid K-ion desolvation during the K plating state.
In this process, the uniformly distributed electrons can
quickly react with the desolvated K-ions, giving rise to the
uniform K metal deposition. This homogeneous K metal
deposition results in dendrite-free growth on the O-CC elec-
trode. Besides, the O-CC electrode also exhibits a weak
interaction with DME, indicating the electrode is inclined to
react with the anion, which contributes to forming a robust
KF-rich SEI layer.
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Fig.5 Electrochemical performance of PTCDA//O-CCe@K full cells. (a)
Cyclic performance at 20 mA g~* and (c) rate performance at different
current densities; (c) long-term cyclic performance at 100 mA g% (d)
schematic of TENG charge and galvanostatic discharge of the self-
powered system; (e) TENG charge and galvanostatic discharge
performance of the self-powered system by O-CC@K//PTCDA
batteries. All cells were tested after a 20-cycle activation process at
20mA g

We assembled an O-CC@XK//PTCDA full battery to further
evaluate practical applicability. The corresponding full battery
schematic is shown in Fig. S19.f The full cells delivered
a reversible specific capacity of 91 mA h g™ " at a current density
of 20 mA h g~ after 50 cycles (Fig. 5a) (Fig. S20at). The corre-
sponding GCD curves show a high degree of reversibility and
almost overlapping GCD curves in different potassiation—
depotassiation processes (Fig. S217). Fig. 5b presents the rate
performance of the O-CC@XK//PTCDA full cell, which delivers
the stable reversible discharge capacities of 89, 80, 63, 54, and
37 mA h g' at current densities of 20, 40, 80, 100, and
200 mA g, respectively. Fig. 5¢ presents the long-term cyclic
performance of O-CC@XK//PTCDA and the full cell has a high
reversible specific capacity of 44 mA h g™ " at a current density of
100 mA h g~ " after 300 cycles with a capacity retention of 73.3%.
The full cell presents a super high average CE at 300 cycles
(Fig. S20bt) and a stable charge-discharge plateau (Fig. S227).
To demonstrate its excellent discharge performance, a high-
power LED bulb (1 W) can be lit up by the CC@K//PTCDA cell
(Fig. S231), indicating a high-power discharge capacity of the
CC@K//PTCDA cell. The schematic in Fig. 5d presents a pros-
pect for the potential application of KMBs charged by a tribo-
electric nanogenerator (TENG).** As a validation example, we
used our O-CC@XK//PTCDA full cell as an energy storage system,
which is charged by a TENG and discharged at a galvanostatic
current density of 100 mA g~ for 3 cycles (Fig. 5e). This result
indicates the great potential of the O-CC@K//PTCDA cell for
constructing a self-charging power pack.
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Conclusions

In summary, we constructed an O-CC as a multifunctional host
for a K metal anode. The epoxy groups in O-CC can suppress
electron transfer and form a surface with lower Fermi levels,
resulting in fewer side reactions with the electrolyte and the
formation of a robust SEI layer. Meanwhile, abundant epoxy
groups impart strong binding of K adatoms via orbital hybrid-
ization but weak binding of electrolyte molecules, which can
effectively promote K-ion desolvation and uniform deposition. As
a result, it exhibited ultra-long stable cycling for over 5500 h at
0.5 mA cm™%/0.5 mA h cm~? with a low polarization voltage of
about 29 mV. Even at a high current density of 1 mA ecm 2/
0.5 mA h cm ™2, O-CC also exhibits a stable cycling performance
over 3500 h at a low polarization voltage of 41 mV for K plating/
stripping, surpassing the cycle life of all previously reported K
metal anodes. Additionally, high average CEs of over 99.3%
during 210 cycles for the O-CC//K asymmetric cell and capacity
retention of 73.3% during 300 cycles for the O-CC@K//PTCDA
full cell are also achieved. Finally, the stable electrochemical
performance of O-CC@XK in full cells coupled with PTCDA cath-
odes is demonstrated, indicating great application potential.
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