Recent developments of core–shell structured catalysts for the selective catalytic reduction of NOx with ammonia
Abstract
Selective catalytic reduction of NOx with ammonia (NH3-SCR) is an efficient and established technology for removing NOx emission from anthropogenic sources. The commercial de-NOx catalysts based on V2O5–WO3/TiO2 possess some significant drawbacks limiting their applicability, including narrow operating temperature window, biotoxicity, poor hydrothermal stability and SO2/H2O intolerance. To circumvent these shortcomings, modifications of existing V2O5–WO3/TiO2 catalysts as well as development of novel catalysts have been investigated intensively. Recently, the unique properties of core–shell structures and their extensive application within, e.g. biotechnology, pharmaceutics, electrochemical cells, optics as well as catalysis have also made their use in NH3-SCR attractive. This review summarizes recent material developments and provides an up-to-date appraisal of core–shell structured catalyst design and assembly for NH3-SCR, including classification, synthesis, catalytic performance as well as structure–property relationships. The review may inspire future developments within the NH3-SCR technology leading to novel catalyst designs with improved de-NOx performance.
- This article is part of the themed collection: 2023 Inorganic Chemistry Frontiers Review-type Articles