Carboxamide functionality grafted entangled Co(ii) framework as a unique hydrogen-bond-donor catalyst in solvent-free tandem deacetalization-Knoevenagel condensation with pore-fitting-mediated size-selectivity†
Abstract
Concerning environmentally benign catalysis with reduced chemical usage, less energy consumption, and waste minimization, metal–organic frameworks (MOFs) with spatially isolated task-specific functionalities not only execute atom-economic important reactions but also enable size-exclusive catalysis at the interface of structure–function synergy. Herein, we synthesized a bipillar-layer Co(II) MOF from the dicarboxylate ligand and carboxamide moiety grafted pyridyl linker. The framework contains a [Co2(COO)4N4] secondary building unit (SBU) and shows excellent hydrolytic stability due to ample non-covalent interactions among the highly conjugated aromatic struts. Notably, the carboxamide functionalities remain free and are perfectly positioned throughout the one-dimensional channels of the framework, wherein three-fold interpenetration of the structure largely increases their density along the pore wall. Benefiting from these structural features, the activated MOF acts as an unprecedented organocatalyst in tandem deacetalization-Knoevenagel condensation towards electronically assorted substrates that were additionally characterized using single-crystal X-ray diffraction. Importantly, the reaction occurs under solvent-free mild conditions, and high catalyst reusability is recorded. In this one-pot cascade reaction, substrates with molecular dimensions larger than that of the three-fold interpenetration generated optimized pore-aperture undergo insignificant conversion, and therefore a rare molecular-dimension-induced size-selectivity is demonstrated. The catalytic route is detailed based on a battery of control experiments, including juxtaposing the performance of an isostructural MOF without any linker functionalization. Compared to the common Lewis acid mediated route, the results explicitly corroborate the first-ever substrate activation via hydrogen bonding to prepare coumarin derivatives via a tandem pathway, and shed light on this futuristic unconventional catalysis using contemporary materials and avoiding major operative glitches.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        